Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = terahertz (THz) communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8922 KiB  
Article
A Two-Stage Time-Domain Equalization Method for Mitigating Nonlinear Distortion in Single-Carrier THz Communication Systems
by Yunchuan Liu, Hongcheng Yang, Ziqi Liu, Minghan Jia, Shang Li, Jiajie Li, Jingsuo He, Zhe Yang and Cunlin Zhang
Sensors 2025, 25(15), 4825; https://doi.org/10.3390/s25154825 - 6 Aug 2025
Abstract
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based [...] Read more.
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based time-domain equalization method, specifically designed to mitigate the nonlinear distortions in such systems, thereby enhancing communication reliability and performance. The method adopts a progressive learning strategy, whereby global characteristics are initially captured before progressing to local levels. This enables the effective identification and equalization of channel characteristics, particularly in the mitigation of nonlinear distortion and random interference, which can otherwise negatively impact communication quality. In an experimental setting at a frequency of 230 GHz and a channel distance of 2.1 m, this method demonstrated a substantial reduction in the system’s bit error rate (BER), exhibiting particularly noteworthy performance enhancements in comparison to before equalization. To validate the model’s generalization capability, data collection and testing were also conducted at a frequency of 310 GHz and a channel distance of 1.5 m. Experimental results show that the proposed time-domain equalizer, trained using the two-stage DL framework, achieved significant BER reductions of approximately 92.15% at 230 GHz (2.1 m) and 83.33% at 310 GHz (1.5 m), compared to the system’s performance prior to equalization. The method exhibits stable performance under varying conditions, supporting its use in future THz communication studies. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

13 pages, 3292 KiB  
Article
Topological Large-Area Waveguide States Based on THz Photonic Crystals
by Yulin Zhao, Feng Liang, Jingsen Li, Jianfei Han, Jiangyu Chen, Haihua Hu, Ke Zhang and Yuanjie Yang
Photonics 2025, 12(8), 791; https://doi.org/10.3390/photonics12080791 - 5 Aug 2025
Abstract
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have [...] Read more.
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have driven significant advancements in THz wave manipulation. Nevertheless, the width of the topological waveguide based on edge states remains restricted. In this work, we put forward a type of spin photonic crystal with three-layer heterostructures, where large-area topological waveguide states are demonstrated. The results show that these topological waveguide states are localized within the region of Dirac photonic crystals. They also display spin-momentum-locking characteristics and maintain strong robustness against defects and sharp bends. Furthermore, a THz beam splitter and a topological beam modulator are implemented. The designed heterostructures expand the applications of multi-functional topological devices and provide a prospective pathway for overcoming the waveguide bottleneck in THz applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 502
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 201
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 258
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 479
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 402
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

54 pages, 17044 KiB  
Review
Perspectives and Research Challenges in Wireless Communications Hardware for the Future Internet and Its Applications Services
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Theodoros N. F. Kaifas, Constantinos L. Zekios and George A. Kyriacou
Future Internet 2025, 17(6), 249; https://doi.org/10.3390/fi17060249 - 31 May 2025
Viewed by 996
Abstract
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and [...] Read more.
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and roadmaps elaborate on the perspectives and research challenges of wireless systems, in general, including both unified physical and cyber space. Hence, this paper presents a comprehensive review of the technological challenges and recent advancements in wireless communication hardware that underpin the development of next-generation networks, particularly 6G. Emphasizing the physical layer, the study explores critical enabling technologies including beamforming, massive MIMO, reconfigurable intelligent surfaces (RIS), millimeter-wave (mmWave) and terahertz (THz) communications, wireless power transfer, and energy harvesting. These technologies are analyzed in terms of their functional roles, implementation challenges, and integration into future wireless infrastructure. Beyond traditional physical layer components, the paper also discusses the role of reconfigurable RF front-ends, innovative antenna architectures, and user-end devices that contribute to the adaptability and efficiency of emerging communication systems. In addition, the inclusion of application-driven paradigms such as digital twins highlights how new use cases are shaping design requirements and pushing the boundaries of hardware capabilities. By linking foundational physical-layer technologies with evolving application demands, this work provides a holistic perspective aimed at guiding future research directions and informing the design of scalable, energy-efficient, and resilient wireless communication platforms for the Future Internet. Specifically, we first try to identify the demands and, in turn, explore existing or emerging technologies that have the potential to meet these needs. Especially, there will be an extended reference about the state-of-the-art antennas for massive MIMO terrestrial and non-terrestrial networks. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

16 pages, 6052 KiB  
Article
W-Band Transverse Slotted Frequency Scanning Antenna for 6G Wireless Communication and Space Applications
by Hurrem Ozpinar, Sinan Aksimsek and Nurhan Türker Tokan
Aerospace 2025, 12(6), 493; https://doi.org/10.3390/aerospace12060493 - 30 May 2025
Viewed by 503
Abstract
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces [...] Read more.
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces the modeling of a full-metal transverse slotted waveguide antenna (TSWA) for 6G and beyond. The proposed antenna operates across the upper regions of the V-band and the entire W-band. Designed and simulated using widely adopted full-wave analysis tools, the antenna achieves a peak gain of 17 dBi and a total efficiency exceeding 90% within the band. Additionally, it exhibits pattern-reconfigurable capabilities, enabling main lobe beam steering between 5° and 68° with low side lobe levels. Simulations are conducted to assess the power handling capability (PHC) of the antenna, including both the peak (PPHC) and average (APHC) values. The results indicate that the antenna can handle 17 W of APHC within the W-band and 3.4 W across the 60–160 GHz range. Furthermore, corona discharge and multipaction analyses are performed to evaluate the antenna’s power handling performance under extreme operating conditions. These features make the proposed TSWA a strong candidate for high-performance space applications, 6G communication systems, and beyond. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

12 pages, 4596 KiB  
Article
High-Speed Terahertz Modulation Signal Generation Based on Integrated LN-RMZM and CPPLN
by Hangfeng Zhou, Miao Ma, Chenwei Zhang, Xinlong Zhao, Weichao Ma, Wangzhe Li and Mingjun Xia
Photonics 2025, 12(5), 490; https://doi.org/10.3390/photonics12050490 - 15 May 2025
Viewed by 435
Abstract
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack [...] Read more.
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack resonator-integrated Mach–Zehnder modulators (RMZMs) with a chirped periodically poled lithium niobate (CPPLN) waveguide. The on-chip system combines near-infrared electro-optic modulation and cascaded difference-frequency generation (CDFG) for high-speed THz modulation signal generation. At 300 K, utilizing two input optical waves at frequencies of 193.55 THz and 193.14 THz, this on-chip system enables high-speed THz modulation signal generation at 0.41 THz, with a 1 Gbit/s modulation rate and a 0.25 V modulation voltage. During the simulation, when the intensity of the input optical waves is 1000 MW/cm2, the generated 0.41 THz signal reaches a peak intensity of 21.24 MW/cm2. Furthermore, based on theoretical analysis and subsequent simulation, the on-chip system is shown to support a maximum modulation signal generation rate of 7.75 Gbit/s. These results demonstrate the potential of the proposed on-chip system as a compact and efficient solution for high-speed THz modulation signal generation. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 653
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

17 pages, 1133 KiB  
Article
Near-Infrared to T-Ray Frequency Conversion Using Kagome Photonic Crystal Resonators
by Deepika Tyagi, Vijay Laxmi, Ahsan Irshad, Abida Parveen, Mehboob Alam, Yibin Tian and Zhengbiao Ouyang
Nanomaterials 2025, 15(9), 663; https://doi.org/10.3390/nano15090663 - 27 Apr 2025
Cited by 3 | Viewed by 596
Abstract
Kagome lattices have attracted significant research interest due to their unique interplay of geometry, topology, and material properties. They provide deep insights into strongly correlated electron systems, novel quantum phases, and advanced material designs, making them fundamental in condensed matter physics and material [...] Read more.
Kagome lattices have attracted significant research interest due to their unique interplay of geometry, topology, and material properties. They provide deep insights into strongly correlated electron systems, novel quantum phases, and advanced material designs, making them fundamental in condensed matter physics and material engineering. This work presents an efficient method for terahertz (THz) wave generation across the entire THz spectrum, leveraging high-quality-factor Kagome-shaped silicon photonic crystal resonators. In the proposed simulation-based approach, an infrared (IR) single-frequency wave interacts with an induced resonance mode within the resonator, producing a THz beat frequency. This beat note is then converted into a standalone THz radiation (T-ray) wave using an amplitude demodulator. Simulations confirm the feasibility of our method, demonstrating that a conventional single-frequency wave can induce resonance and generate a stable beat frequency. The proposed technique is highly versatile, extending beyond THz generation to frequency conversion in electronics, optics, and acoustics, among other domains. Its high efficiency, compact design, and broad applicability offer a promising solution to challenges in THz technology. Furthermore, our findings establish a foundation for precise frequency manipulation, unlocking new possibilities in signal processing, sensing, detection, and communication systems. Full article
(This article belongs to the Special Issue 2D Materials and Metamaterials in Photonics and Optoelectronics)
Show Figures

Graphical abstract

19 pages, 1403 KiB  
Review
Nonlinear Dielectric Metasurfaces for Terahertz Applications
by Forouzan Habibighahfarokhi, Olga Sergaeva, Luca Carletti, Paolo Franceschini, Andrea Tognazzi, Andrea Locatelli, Unai Arregui Leon, Giuseppe Della Valle, Costantino De Angelis and Davide Rocco
Photonics 2025, 12(4), 370; https://doi.org/10.3390/photonics12040370 - 12 Apr 2025
Cited by 1 | Viewed by 1068
Abstract
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 30 THz, represents a prospering area in photonics, with transformative applications in imaging, communications, and material analysis. However, the development of efficient and compact THz sources has long been hampered by [...] Read more.
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 30 THz, represents a prospering area in photonics, with transformative applications in imaging, communications, and material analysis. However, the development of efficient and compact THz sources has long been hampered by intrinsic material limitations, inefficient conversion processes, and complex phase-matching requirements. Recent breakthroughs in nonlinear optical mechanisms, resonant metasurface engineering, and advances in the fabrication processes for materials such as lithium niobate (LN) and aluminum gallium arsenide (AlGaAs) have paved the way for innovative THz generation techniques. This review article explores the latest theoretical advances, together with key experimental results and outlines perspectives for future developments. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

9 pages, 566 KiB  
Proceeding Paper
Comparative Analysis of Multicarrier Waveforms for Terahertz-Band Communications
by Srinivas Ramavath, Umesh Chandra Samal, Prasanta Kumar Patra, Sunil Pattepu, Nageswara Rao Budipi and Amitkumar Vidyakant Jha
Eng. Proc. 2025, 87(1), 41; https://doi.org/10.3390/engproc2025087041 - 8 Apr 2025
Viewed by 334
Abstract
The terahertz (THz) band, ranging from 0.1 to 10 THz, offers substantial bandwidths that are essential for meeting the ever-increasing demands for high data rates in future wireless communication systems. This paper presents a comprehensive comparative analysis of various multicarrier waveforms suitable for [...] Read more.
The terahertz (THz) band, ranging from 0.1 to 10 THz, offers substantial bandwidths that are essential for meeting the ever-increasing demands for high data rates in future wireless communication systems. This paper presents a comprehensive comparative analysis of various multicarrier waveforms suitable for THz-band communications. We explore the performance, advantages, and limitations of several waveforms, including Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Generalized Frequency Division Multiplexing (GFDM). The analysis covers key parameters such as spectral efficiency, the peak-to-average power ratio (PAPR), robustness to phase noise, and computational complexity. The simulation results demonstrate that while OFDM offers simplicity and robustness to multipath fading, it suffers from high PAPR and phase noise sensitivity. FBMC and UFMC, with their enhanced spectral efficiency and reduced out-of-band emissions, show promise for THz-band applications but come at the cost of increased computational complexity. GFDM presents a flexible framework with a trade-off between complexity and performance, making it a potential candidate for diverse THz communication scenarios. Our study concludes that no single waveform universally outperforms the others across all metrics. Therefore, the choice of multicarrier waveform for THz communications should be tailored to the specific requirements of the application, balancing performance criteria and implementation feasibility. Future research directions include the development of hybrid waveforms and adaptive techniques to dynamically optimize performance in varying THz communication environments. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop