Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,918)

Search Parameters:
Keywords = temporal feature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3158 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
18 pages, 11668 KiB  
Article
A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning
by Haoyu Jiang and Chunxiao Zhang
Water 2025, 17(14), 2146; https://doi.org/10.3390/w17142146 - 18 Jul 2025
Abstract
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes [...] Read more.
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes a novel XAJ-LSTM-TFM hybrid model that accounts for time-lagged hydrological responses and enhances the regional applicability of the Xinanjiang model. The model innovatively integrates the physical mechanisms of the Xinanjiang model with the temporal learning capacity of LSTM networks. By incorporating intermediate hydrological variables (including interflow and groundwater flow) along with 1–3 day lagged meteorological features, the model achieves an average 15.3% improvement in Nash–Sutcliffe Efficiency (NSE) across five sub-basins, with the Ganjiang Basin attaining an NSE of 0.812 and a 25.7% reduction in flood peak errors. The results demonstrate superior runoff simulation performance and reliable generalization capability under intensive anthropogenic activities. Full article
20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 6337 KiB  
Article
Two Novel Multidimensional Data Analysis Approaches Using InSAR Products for Landslide Prone Areas
by Hamit Beran Gunce and Bekir Taner San
Appl. Sci. 2025, 15(14), 8024; https://doi.org/10.3390/app15148024 - 18 Jul 2025
Abstract
Successfully detecting ground deformation, especially landslides, using InSAR has not always been possible. Improvements to existing InSAR tools are needed to address this issue. This study develops and evaluates two novel approaches that use multidimensional InSAR products to detect surface displacements in the [...] Read more.
Successfully detecting ground deformation, especially landslides, using InSAR has not always been possible. Improvements to existing InSAR tools are needed to address this issue. This study develops and evaluates two novel approaches that use multidimensional InSAR products to detect surface displacements in the landslide-prone region of Büyükalan, Antalya. Multi-temporal InSAR analysis of Sentinel-1 data (2015–2020) is performed using LiCSAR–LiCSBAS, followed by two novel approaches: multi-dimensional InSAR research and analysis (MIRA) and Crosta’s InSAR application (InCROSS). Cumulative LOS velocity maps reveal deformation rates of −1.1 cm/year to 1.0 cm/year for descending tracks and −3.8 cm/year to 3.8 cm/year for ascending tracks. Vertical displacements range from −1.9 cm/year to 2.3 cm/year and east–west components from −2.8 cm/year to 2.9 cm/year. MIRA uses an n-Dimensional Visualizer and SVM classifier to identify deformation clusters, and InCROSS applies PCA to enhance deformation features. MIRA increases the deformation detection capacity compared to conventional InSAR products, and InCROSS integrates these products. A comparison of the results reveals 80.48% consistency between them. Overall, the integration of InSAR with statistical and multidimensional analysis significantly enhances the detection and interpretation of ground deformation patterns in landslide-prone areas. Full article
13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 3235 KiB  
Article
Advanced Multi-Scale CNN-BiLSTM for Robust Photovoltaic Fault Detection
by Xiaojuan Zhang, Bo Jing, Xiaoxuan Jiao and Ruixu Yao
Sensors 2025, 25(14), 4474; https://doi.org/10.3390/s25144474 - 18 Jul 2025
Abstract
The increasing deployment of photovoltaic (PV) systems necessitates robust fault detection mechanisms to ensure operational reliability and safety. Conventional approaches, however, struggle in complex industrial environments characterized by high noise, data incompleteness, and class imbalance. This study proposes an innovative Advanced CNN-BiLSTM architecture [...] Read more.
The increasing deployment of photovoltaic (PV) systems necessitates robust fault detection mechanisms to ensure operational reliability and safety. Conventional approaches, however, struggle in complex industrial environments characterized by high noise, data incompleteness, and class imbalance. This study proposes an innovative Advanced CNN-BiLSTM architecture integrating multi-scale feature extraction with hierarchical attention to enhance PV fault detection. The proposed framework employs four parallel CNN branches with kernel sizes of 3, 7, 15, and 31 to capture temporal patterns across various time scales. These features are then integrated by an adaptive feature fusion network that utilizes multi-head attention. A two-layer bidirectional LSTM with temporal attention mechanism processes the fused features for final classification. Comprehensive evaluation on the GPVS-Faults dataset using a progressive difficulty validation framework demonstrates exceptional performance improvements. Under extreme industrial conditions, the proposed method achieves 83.25% accuracy, representing a substantial 119.48% relative improvement over baseline CNN-BiLSTM (37.93%). Ablation studies reveal that the multi-scale CNN contributes 28.0% of the total performance improvement, while adaptive feature fusion accounts for 22.0%. Furthermore, the proposed method demonstrates superior robustness under severe noise (σ = 0.20), high levels of missing data (15%), and significant outlier contamination (8%). These characteristics make the architecture highly suitable for real-world industrial deployment and establish a new paradigm for temporal feature fusion in renewable energy fault detection. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 4874 KiB  
Article
A Novel 3D Convolutional Neural Network-Based Deep Learning Model for Spatiotemporal Feature Mapping for Video Analysis: Feasibility Study for Gastrointestinal Endoscopic Video Classification
by Mrinal Kanti Dhar, Mou Deb, Poonguzhali Elangovan, Keerthy Gopalakrishnan, Divyanshi Sood, Avneet Kaur, Charmy Parikh, Swetha Rapolu, Gianeshwaree Alias Rachna Panjwani, Rabiah Aslam Ansari, Naghmeh Asadimanesh, Shiva Sankari Karuppiah, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
J. Imaging 2025, 11(7), 243; https://doi.org/10.3390/jimaging11070243 - 18 Jul 2025
Abstract
Accurate analysis of medical videos remains a major challenge in deep learning (DL) due to the need for effective spatiotemporal feature mapping that captures both spatial detail and temporal dynamics. Despite advances in DL, most existing models in medical AI focus on static [...] Read more.
Accurate analysis of medical videos remains a major challenge in deep learning (DL) due to the need for effective spatiotemporal feature mapping that captures both spatial detail and temporal dynamics. Despite advances in DL, most existing models in medical AI focus on static images, overlooking critical temporal cues present in video data. To bridge this gap, a novel DL-based framework is proposed for spatiotemporal feature extraction from medical video sequences. As a feasibility use case, this study focuses on gastrointestinal (GI) endoscopic video classification. A 3D convolutional neural network (CNN) is developed to classify upper and lower GI endoscopic videos using the hyperKvasir dataset, which contains 314 lower and 60 upper GI videos. To address data imbalance, 60 matched pairs of videos are randomly selected across 20 experimental runs. Videos are resized to 224 × 224, and the 3D CNN captures spatiotemporal information. A 3D version of the parallel spatial and channel squeeze-and-excitation (P-scSE) is implemented, and a new block called the residual with parallel attention (RPA) block is proposed by combining P-scSE3D with a residual block. To reduce computational complexity, a (2 + 1)D convolution is used in place of full 3D convolution. The model achieves an average accuracy of 0.933, precision of 0.932, recall of 0.944, F1-score of 0.935, and AUC of 0.933. It is also observed that the integration of P-scSE3D increased the F1-score by 7%. This preliminary work opens avenues for exploring various GI endoscopic video-based prospective studies. Full article
Show Figures

Figure 1

18 pages, 1724 KiB  
Article
Transient Stability Assessment of Power Systems Built upon Attention-Based Spatial–Temporal Graph Convolutional Networks
by Yu Nan, Weiping Niu, Yong Chang, Zhenzhen Kong and Huichao Zhao
Energies 2025, 18(14), 3824; https://doi.org/10.3390/en18143824 - 18 Jul 2025
Abstract
Rapid and accurate transient stability assessment (TSA) is crucial for ensuring secure and stable operation in power systems. However, existing methods fail to adequately exploit the spatiotemporal characteristics in power grid transient data, which constrains the evaluation performance of models. This paper proposes [...] Read more.
Rapid and accurate transient stability assessment (TSA) is crucial for ensuring secure and stable operation in power systems. However, existing methods fail to adequately exploit the spatiotemporal characteristics in power grid transient data, which constrains the evaluation performance of models. This paper proposes a TSA method built upon an Attention-Based Spatial–Temporal Graph Convolutional Network (ASTGCN) model. First, a spatiotemporal attention module is used to aggregate and extract the spatiotemporal correlations of the transient process in the power system. A spatiotemporal convolution module is then employed to effectively capture the spatial features and temporal evolution patterns of transient stability data. In addition, an adaptive focal loss function is designed to enhance the fitting of unstable samples and increase the weight of misclassified samples, thereby improving global accuracy and reducing the occurrence of missed instability samples. Finally, the simulation results from the New England 10-machine 39-bus system and the NPCC 48-machine 140-bus system validate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

29 pages, 6396 KiB  
Article
A Hybrid GAS-ATT-LSTM Architecture for Predicting Non-Stationary Financial Time Series
by Kevin Astudillo, Miguel Flores, Mateo Soliz, Guillermo Ferreira and José Varela-Aldás
Mathematics 2025, 13(14), 2300; https://doi.org/10.3390/math13142300 - 18 Jul 2025
Abstract
This study proposes a hybrid approach to analyze and forecast non-stationary financial time series by combining statistical models with deep neural networks. A model is introduced that integrates three key components: the Generalized Autoregressive Score (GAS) model, which captures volatility dynamics; an attention [...] Read more.
This study proposes a hybrid approach to analyze and forecast non-stationary financial time series by combining statistical models with deep neural networks. A model is introduced that integrates three key components: the Generalized Autoregressive Score (GAS) model, which captures volatility dynamics; an attention mechanism (ATT), which identifies the most relevant features within the sequence; and a Long Short-Term Memory (LSTM) neural network, which receives the outputs of the previous modules to generate price forecasts. This architecture is referred to as GAS-ATT-LSTM. Both unidirectional and bidirectional variants were evaluated using real financial data from the Nasdaq Composite Index, Invesco QQQ Trust, ProShares UltraPro QQQ, Bitcoin, and gold and silver futures. The proposed model’s performance was compared against five benchmark architectures: LSTM Bidirectional, GARCH-LSTM Bidirectional, ATT-LSTM, GAS-LSTM, and GAS-LSTM Bidirectional, under sliding windows of 3, 5, and 7 days. The results show that GAS-ATT-LSTM, particularly in its bidirectional form, consistently outperforms the benchmark models across most assets and forecasting horizons. It stands out for its adaptability to varying volatility levels and temporal structures, achieving significant improvements in both accuracy and stability. These findings confirm the effectiveness of the proposed hybrid model as a robust tool for forecasting complex financial time series. Full article
Show Figures

Figure 1

22 pages, 4732 KiB  
Article
Improving Winter Wheat Yield Estimation Under Saline Stress by Integrating Sentinel-2 and Soil Salt Content Using Random Forest
by Chuang Lu, Maowei Yang, Shiwei Dong, Yu Liu, Yinkun Li and Yuchun Pan
Agriculture 2025, 15(14), 1544; https://doi.org/10.3390/agriculture15141544 - 18 Jul 2025
Abstract
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method [...] Read more.
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method to improve yield estimation of winter wheat in Kenli County, a typical saline area in China’s Yellow River Delta. First, feature importance analysis of a temporal vegetation index (VI) and salinity index (SI) across all growth periods were achieved to select main parameters. Second, yield models of winter wheat were developed in VI-, SI-, VI + SI-, and VI + SI + SC-based groups. Furthermore, error assessment and spatial yield mapping were analyzed in detail. The results demonstrated that feature importance varied by growth periods. SI dominated in pre-jointing periods, while VI was better in the post-jointing phase. The VI + SI + SC-based model achieved better accuracy (R2 = 0.78, RMSE = 720.16 kg/ha) than VI-based (R2 = 0.71), SI-based (R2 = 0.69), and VI + SI-based (R2 = 0.77) models. Error analysis results suggested that the residuals were reduced as the input parameters increased, and the VI + SI + SC-based model showed a good consistency with the field-measured yields. The spatial distribution of winter wheat yield using the VI + SI + SC-based model showed significant differences, and average yields in no, slight, moderate, and severe salinity areas were 7945, 7258, 5217, and 4707 kg/ha, respectively. This study can provide a reference for winter wheat yield estimation and crop production improvement in saline regions. Full article
Show Figures

Figure 1

21 pages, 2308 KiB  
Article
Forgery-Aware Guided Spatial–Frequency Feature Fusion for Face Image Forgery Detection
by Zhenxiang He, Zhihao Liu and Ziqi Zhao
Symmetry 2025, 17(7), 1148; https://doi.org/10.3390/sym17071148 - 18 Jul 2025
Abstract
The rapid development of deepfake technologies has led to the widespread proliferation of facial image forgeries, raising significant concerns over identity theft and the spread of misinformation. Although recent dual-domain detection approaches that integrate spatial and frequency features have achieved noticeable progress, they [...] Read more.
The rapid development of deepfake technologies has led to the widespread proliferation of facial image forgeries, raising significant concerns over identity theft and the spread of misinformation. Although recent dual-domain detection approaches that integrate spatial and frequency features have achieved noticeable progress, they still suffer from limited sensitivity to local forgery regions and inadequate interaction between spatial and frequency information in practical applications. To address these challenges, we propose a novel forgery-aware guided spatial–frequency feature fusion network. A lightweight U-Net is employed to generate pixel-level saliency maps by leveraging structural symmetry and semantic consistency, without relying on ground-truth masks. These maps dynamically guide the fusion of spatial features (from an improved Swin Transformer) and frequency features (via Haar wavelet transforms). Cross-domain attention, channel recalibration, and spatial gating are introduced to enhance feature complementarity and regional discrimination. Extensive experiments conducted on two benchmark face forgery datasets, FaceForensics++ and Celeb-DFv2, show that the proposed method consistently outperforms existing state-of-the-art techniques in terms of detection accuracy and generalization capability. The future work includes improving robustness under compression, incorporating temporal cues, extending to multimodal scenarios, and evaluating model efficiency for real-world deployment. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 4033 KiB  
Article
Masked Feature Residual Coding for Neural Video Compression
by Chajin Shin, Yonghwan Kim, KwangPyo Choi and Sangyoun Lee
Sensors 2025, 25(14), 4460; https://doi.org/10.3390/s25144460 - 17 Jul 2025
Abstract
In neural video compression, an approximation of the target frame is predicted, and a mask is subsequently applied to it. Then, the masked predicted frame is subtracted from the target frame and fed into the encoder along with the conditional information. However, this [...] Read more.
In neural video compression, an approximation of the target frame is predicted, and a mask is subsequently applied to it. Then, the masked predicted frame is subtracted from the target frame and fed into the encoder along with the conditional information. However, this structure has two limitations. First, in the pixel domain, even if the mask is perfectly predicted, the residuals cannot be significantly reduced. Second, reconstructed features with abundant temporal context information cannot be used as references for compressing the next frame. To address these problems, we propose Conditional Masked Feature Residual (CMFR) Coding. We extract features from the target frame and the predicted features using neural networks. Then, we predict the mask and subtract the masked predicted features from the target features. Thereafter, the difference is fed into the encoder with the conditional information. Moreover, to more effectively remove conditional information from the target frame, we introduce a Scaled Feature Fusion (SFF) module. In addition, we introduce a Motion Refiner to enhance the quality of the decoded optical flow. Experimental results show that our model achieves an 11.76% bit saving over the model without the proposed methods, averaged over all HEVC test sequences, demonstrating the effectiveness of the proposed methods. Full article
Show Figures

Figure 1

18 pages, 947 KiB  
Article
Temporal Dynamics of Host Plant Use and Parasitism of Three Stink Bug Species: A Multi-Trophic Perspective
by Martina Falagiarda, Francesco Tortorici, Sara Bortolini, Martina Melchiori, Manfred Wolf and Luciana Tavella
Insects 2025, 16(7), 731; https://doi.org/10.3390/insects16070731 - 17 Jul 2025
Abstract
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal [...] Read more.
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal host plant use and parasitism of Halyomorpha halys, Palomena prasina, and Pentatoma rufipes in South Tyrol, Italy. Over two years, we conducted field surveys at 27 sites, recording stink bug presence across 85 plant species and analyzing egg parasitism rates. Results show that stink bugs exhibit distinct host plant preferences, with H. halys utilizing the broadest range of host plants while P. prasina and P. rufipes showed stronger affinities for specific families such as Sapindaceae and Rosaceae. Parasitism rates varied across species and plant families: Trissolcus japonicus predominantly parasitized H. halys while T. cultratus and two Telenomus species targeted P. rufipes and P. prasina, respectively. Spatial–temporal features and host plant associations significantly influenced species distributions and parasitoid occurrence. These findings emphasize the role of plant–insect interactions in shaping pest and parasitoid dynamics. Integrating plant diversity into pest management strategies could enhance parasitoid effectiveness and reduce stink bug populations, contributing to more sustainable agricultural practices. Full article
Show Figures

Figure 1

25 pages, 890 KiB  
Article
MCTGNet: A Multi-Scale Convolution and Hybrid Attention Network for Robust Motor Imagery EEG Decoding
by Huangtao Zhan, Xinhui Li, Xun Song, Zhao Lv and Ping Li
Bioengineering 2025, 12(7), 775; https://doi.org/10.3390/bioengineering12070775 - 17 Jul 2025
Abstract
Motor imagery (MI) EEG decoding is a key application in brain–computer interface (BCI) research. In cross-session scenarios, the generalization and robustness of decoding models are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals in both temporal and frequency domains, as [...] Read more.
Motor imagery (MI) EEG decoding is a key application in brain–computer interface (BCI) research. In cross-session scenarios, the generalization and robustness of decoding models are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals in both temporal and frequency domains, as well as distributional shifts across different recording sessions. While multi-scale feature extraction is a promising approach for generalized and robust MI decoding, conventional classifiers (e.g., multilayer perceptrons) struggle to perform accurate classification when confronted with high-order, nonstationary feature distributions, which have become a major bottleneck for improving decoding performance. To address this issue, we propose an end-to-end decoding framework, MCTGNet, whose core idea is to formulate the classification process as a high-order function approximation task that jointly models both task labels and feature structures. By introducing a group rational Kolmogorov–Arnold Network (GR-KAN), the system enhances generalization and robustness under cross-session conditions. Experiments on the BCI Competition IV 2a and 2b datasets demonstrate that MCTGNet achieves average classification accuracies of 88.93% and 91.42%, respectively, outperforming state-of-the-art methods by 3.32% and 1.83%. Full article
(This article belongs to the Special Issue Brain Computer Interfaces for Motor Control and Motor Learning)
Show Figures

Figure 1

25 pages, 4363 KiB  
Article
Method for Predicting Transformer Top Oil Temperature Based on Multi-Model Combination
by Lin Yang, Minghe Wang, Liang Chen, Fan Zhang, Shen Ma, Yang Zhang and Sixu Yang
Electronics 2025, 14(14), 2855; https://doi.org/10.3390/electronics14142855 - 17 Jul 2025
Abstract
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature [...] Read more.
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature prediction. However, it overlooks the influence of other features. This has a negative effect on the prediction accuracy. Furthermore, the training dataset is often made up of data from a single transformer. This leads to the poor generalization of the prediction. To tackle these challenges, this paper leverages large-scale data analysis and processing techniques, and presents a transformer top oil temperature prediction model that combines multiple models. The Convolutional Neural Network was applied in this method to extract spatial features from multiple input variables. Subsequently, a Long Short-Term Memory network was employed to capture dynamic patterns in the time series. Meanwhile, a Transformer encoder enhanced feature interaction and global perception. The spatial characteristics extracted by the CNN and the temporal characteristics extracted by LSTM were further integrated to create a more comprehensive representation. The established model was optimized using the Whale Optimization Algorithm to improve prediction accuracy. The results of the experiment indicate that the maximum RMSE and MAPE of this method on the summer and winter datasets were 0.5884 and 0.79%, respectively, demonstrating superior prediction accuracy. Compared with other models, the proposed model improved prediction performance by 13.74%, 36.66%, and 43.36%, respectively, indicating high generalization capability and accuracy. This provides theoretical support for condition monitoring and fault warning of power equipment. Full article
Show Figures

Figure 1

Back to TopTop