Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,988)

Search Parameters:
Keywords = temperature equations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

17 pages, 1090 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
15 pages, 338 KiB  
Article
Nonoscillatory Solutions for m-th-Order Nonlinear Neutral Differential Equations with General Delays: Fixed-Point Approach and Application
by Mouataz Billah Mesmouli, Ioan-Lucian Popa and Taher S. Hassan
Mathematics 2025, 13(15), 2362; https://doi.org/10.3390/math13152362 - 23 Jul 2025
Abstract
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The [...] Read more.
This paper investigates the existence and uniqueness of bounded nonoscillatory solutions for two classes of m-th-order nonlinear neutral differential equations that incorporate both discrete and distributed delays. By applying Banach’s fixed-point theorem, we establish sufficient conditions under which such solutions exist. The results extend and generalize previous works by relaxing assumptions on the nonlinear terms and accommodating a wider range of feedback structures, including positive, negative, bounded, and unbounded cases. The mathematical framework is unified and applicable to a broad class of problems, providing a comprehensive treatment of neutral equations beyond the first or second order. To demonstrate the practical relevance of the theoretical findings, we analyze a delayed temperature control system as an application and provide numerical simulations to illustrate nonoscillatory behavior. This paper concludes with a discussion of analytical challenges, limitations of the numerical scope, and possible future directions involving stochastic effects and more complex delay structures. Full article
(This article belongs to the Special Issue Research on Delay Differential Equations and Their Applications)
Show Figures

Figure 1

13 pages, 696 KiB  
Article
Modeling Temperature Requirements for Growth and Toxin Production of Alternaria spp. Associated with Tomato
by Irene Salotti, Paola Giorni, Chiara Dall’Asta and Paola Battilani
Toxins 2025, 17(8), 361; https://doi.org/10.3390/toxins17080361 - 23 Jul 2025
Abstract
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, [...] Read more.
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, and A. tenuissima) by evaluating the effects of different temperatures (5 to 40 °C) and substrata (PDA and V8) on mycelial growth and the production of mycotoxins (alternariol, alternariol monomethyl ether, and tenuazonic acid). Both biological processes were supported between 5 and 35 °C, with optimal temperatures between 20 and 30 °C, depending on the species. Temperature and its interaction with species significantly (p < 0.05) affected both processes. However, the species factor alone was not significant (p > 0.05), indicating that environmental conditions affect Alternaria spp. growth and mycotoxin production more than the species itself does. Mathematical equations were developed to describe the effect of temperature on mycelial growth, as well as on the production of AOH, AME, and TeA, for each Alternaria species. High concordance (CCC ≥ 0.807) between observed and predicted data and low levels of residual error (RMSE ≤ 0.147) indicated the high goodness of fit of the developed equations, which may be used for the development of models to predict Alternaria contamination both in field and during post-harvest storage. Full article
(This article belongs to the Special Issue Mycotoxins in Food Safety: Challenges and Biocontrol Strategies)
Show Figures

Figure 1

15 pages, 2825 KiB  
Article
Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum
by Shun-Feng Yan, Lin Li, Xiao Dong, Xiao-Wei Li, Mao-Wen Yuan and Sheng-Rong Li
Crystals 2025, 15(8), 672; https://doi.org/10.3390/cryst15080672 - 23 Jul 2025
Abstract
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the [...] Read more.
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the DFT + NEB method. The results indicate that H atoms tend to aggregate into H2 molecules within corundum under both ambient and high-pressure conditions. However, hydrogen predominantly migrates in its atomic form (H) under both low- and high-pressure environments. The energy barriers for H and H2 diffusion increase with pressure, and hydrogen diffusion weakens the chemical bonds nearby. Using the Arrhenius equation, we calculated the diffusion coefficient of H in corundum, which increases with temperature but decreases with pressure. On geological time scales, hydrogen diffusion is relatively slow, potentially resulting in a heterogeneous distribution of water in the lower mantle. These findings provide novel insights into hydrogen diffusion mechanisms in corundum under extreme conditions, with significant implications for hydrogen behavior in mantle minerals at high pressures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

33 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

16 pages, 1681 KiB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 39
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

20 pages, 4023 KiB  
Article
Numerical Study on the Thermal Behavior of Lithium-Ion Batteries Based on an Electrochemical–Thermal Coupling Model
by Xing Hu, Hu Xu, Chenglin Ding, Yupeng Tian and Kuo Yang
Batteries 2025, 11(7), 280; https://doi.org/10.3390/batteries11070280 - 21 Jul 2025
Viewed by 114
Abstract
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics [...] Read more.
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics equations such as Fick’s law, Ohm’s law, and the Butler–Volmer equation, to resolve coupled electrochemical and thermal dynamics, with temperature-dependent parameters calibrated via the Arrhenius equation. Simulations under varying discharge rates reveal that high-rate discharges exacerbate internal heat accumulation. Low ambient temperatures amplify polarization effects. Forced convection cooling reduces surface temperatures but exacerbates core-to-surface thermal gradients. Structural optimization strategies demonstrate that enhancing through-thickness thermal conductivity reduces temperature differences. These findings underscore the necessity of balancing energy density and thermal management in lithium-ion battery design, proposing actionable insights such as preheating protocols for low-temperature operation, optimized cooling systems for high-rate scenarios, and material-level enhancements for improved thermal uniformity. Full article
Show Figures

Figure 1

17 pages, 9043 KiB  
Article
Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios
by Jun Hou, Jianwei Wang, Xiaofeng Chen, Yong Hu and Guoqiang Dong
Water 2025, 17(14), 2157; https://doi.org/10.3390/w17142157 - 20 Jul 2025
Viewed by 209
Abstract
Our study focused on identifying the evolution of soil erosion and its key drivers under multiple future scenarios in the Yiluo River Basin. Integrating the Universal Soil Loss Equation (USLE), future land use and vegetation cover simulation methods, and the Geodetector model, we [...] Read more.
Our study focused on identifying the evolution of soil erosion and its key drivers under multiple future scenarios in the Yiluo River Basin. Integrating the Universal Soil Loss Equation (USLE), future land use and vegetation cover simulation methods, and the Geodetector model, we analyzed historical soil erosion trends (2000–2020), projected future soil erosion risks under multiple Shared Socioeconomic Pathways (SSPs), and quantified the interactive effects of key driving factors. The results showed that soil erosion within the basin exhibited moderate intensity. Over the past 20 years, soil erosion decreased by 28.78%, with 76.29% of the area experiencing reduced erosion intensity. Future projections indicated an overall declining trend in soil erosion, showing reductions of 4.93–35.95% compared to baseline levels. However, heterogeneous patterns emerged across various scenarios, with the highest risk observed under SSP585. Land use type was identified as the core driving factor behind soil erosion (explanatory capacity q-value > 5%). Under diverse future climate scenarios, interactions between land use type and precipitation and temperature exhibited high sensitivity, highlighting the critical regulatory role of climate change in regulating erosion processes. This research provides a scientific foundation for the precise prevention and adaptive management of soil erosion in the Loess Plateau region. Full article
Show Figures

Figure 1

24 pages, 4099 KiB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 187
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

26 pages, 3919 KiB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Viewed by 196
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

29 pages, 4982 KiB  
Article
Comprehensive Investigation of Polymorphic Stability and Phase Transformation Kinetics in Tegoprazan
by Joo Ho Lee, Ki Hyun Kim, Se Ah Ryu, Jason Kim, Kiwon Jung, Ki Sung Kang and Tokutaro Yamaguchi
Pharmaceutics 2025, 17(7), 928; https://doi.org/10.3390/pharmaceutics17070928 - 18 Jul 2025
Viewed by 303
Abstract
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of [...] Read more.
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of polymorph selection, focusing on conformational bias and solvent-mediated phase transformations (SMPTs). Methods: The conformational energy landscapes of two TPZ tautomers were constructed using relaxed torsion scans with the OPLS4 force field and validated by nuclear Overhauser effect (NOE)-based nuclear magnetic resonance (NMR). Hydrogen-bonded dimers were analyzed using DFT-D. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility, and slurry tests were conducted using methanol, acetone, and water. Kinetic profiles were modeled with the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. Results: Polymorph A was thermodynamically stable across all analyses. Both amorphous TPZ and Polymorph B converted to A in a solvent-dependent manner. Methanol induced direct A formation, while acetone showed a B → A transition. Crystallization was guided by solution conformers and hydrogen bonding. Conclusions: TPZ polymorph selection is governed by solution-phase conformational preferences, tautomerism, and solvent-mediated hydrogen bonding. DFT-D and NMR analyses showed that protic solvents favor the direct crystallization of stable Polymorph A, while aprotic solvents promote the transient formation of metastable Polymorph B. Elevated temperatures and humidity accelerate polymorphic transitions. This crystal structure prediction (CSP)-independent strategy offers a practical framework for rational polymorph control and the mitigation of disappearing polymorph risks in tautomeric drugs. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2903 KiB  
Article
Casson Fluid Saturated Non-Darcy Mixed Bio-Convective Flow over Inclined Surface with Heat Generation and Convective Effects
by Nayema Islam Nima, Mohammed Abdul Hannan, Jahangir Alam and Rifat Ara Rouf
Processes 2025, 13(7), 2295; https://doi.org/10.3390/pr13072295 - 18 Jul 2025
Viewed by 241
Abstract
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant [...] Read more.
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant in various industrial and biological contexts where traditional fluid models are insufficient. This study addresses the limitations of the standard Darcy’s law by examining non-Darcy flow, which accounts for nonlinear inertial effects in porous media. The governing equations, derived from conservation laws, are transformed into a system of no linear ordinary differential equations (ODEs) using similarity transformations. These ODEs are solved numerically using a finite differencing method that incorporates central differencing, tridiagonal matrix manipulation, and iterative procedures to ensure accuracy across various convective regimes. The reliability of this method is confirmed through validation with the MATLAB (R2024b) bvp4c scheme. The investigation analyzes the impact of key parameters (such as the Casson fluid parameter, Darcy number, Biot numbers, and heat generation) on velocity, temperature, and microorganism concentration profiles. This study reveals that the Casson fluid parameter significantly improves the velocity, concentration, and motile microorganism profiles while decreasing the temperature profile. Additionally, the Biot number is shown to considerably increase the concentration and dispersion of motile microorganisms, as well as the heat transfer rate. The findings provide valuable insights into non-Newtonian fluid behavior in porous environments, with applications in bioengineering, environmental remediation, and energy systems, such as bioreactor design and geothermal energy extraction. Full article
Show Figures

Figure 1

14 pages, 1614 KiB  
Article
Neural Networks and Markov Categories
by Sebastian Pardo-Guerra, Johnny Jingze Li, Kalyan Basu and Gabriel A. Silva
AppliedMath 2025, 5(3), 93; https://doi.org/10.3390/appliedmath5030093 - 18 Jul 2025
Viewed by 127
Abstract
We present a formal framework for modeling neural network dynamics using Category Theory, specifically through Markov categories. In this setting, neural states are represented as objects and state transitions as Markov kernels, i.e., morphisms in the category. This categorical perspective offers an algebraic [...] Read more.
We present a formal framework for modeling neural network dynamics using Category Theory, specifically through Markov categories. In this setting, neural states are represented as objects and state transitions as Markov kernels, i.e., morphisms in the category. This categorical perspective offers an algebraic alternative to traditional approaches based on stochastic differential equations, enabling a rigorous and structured approach to studying neural dynamics as a stochastic process with topological insights. By abstracting neural states as submeasurable spaces and transitions as kernels, our framework bridges biological complexity with formal mathematical structure, providing a foundation for analyzing emergent behavior. As part of this approach, we incorporate concepts from Interacting Particle Systems and employ mean-field approximations to construct Markov kernels, which are then used to simulate neural dynamics via the Ising model. Our simulations reveal a shift from unimodal to multimodal transition distributions near critical temperatures, reinforcing the connection between emergent behavior and abrupt changes in system dynamics. Full article
Show Figures

Figure 1

14 pages, 3236 KiB  
Article
Climate Change for Lakes in the Coterminous United States in Relation to Lake Warming from 1981 to 2023
by Roger W. Bachmann
Water 2025, 17(14), 2138; https://doi.org/10.3390/w17142138 - 18 Jul 2025
Viewed by 170
Abstract
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface [...] Read more.
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface water temperatures in the same lakes were calculated with equations using 8-day mean daily air temperatures, latitude, elevation, and the year of sampling. Over the past 43 years, there have been changes in air temperatures over many lakes of the United States with generally increasing trends for minimum air temperatures and mean air temperatures during the months of June through September. The greatest increases have been in daily minimum air temperatures followed by the mean daily air temperatures. Maximum daily air temperatures did not show a statistically significant increase for the summer season but did show a significant increase for the month of September. Along with the changes in the climate, the near-surface water temperatures of the lakes of the United States on average showed increases of 0.33 °C decade−1 for the four summer months and increases for each of the summer months. Full article
Show Figures

Figure 1

Back to TopTop