Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (883)

Search Parameters:
Keywords = temperate water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5702 KB  
Article
All Is Not Quiet on the Western Front: High Host–Parasite (Echinodermata and Caenogastropoda) Diversity Revealed at an Australian Marine Transition Zone
by Henry Carrick and Lisa Kirkendale
Diversity 2025, 17(11), 796; https://doi.org/10.3390/d17110796 - 14 Nov 2025
Abstract
While substantial eulimid diversity has been revealed in the Indo-West Pacific marine diversity hotspot, many neighbouring areas are still unexplored, including in Western Australia. The Houtman Abrolhos are a unique chain of islands in a well-characterised marine transition zone where tropical and temperate [...] Read more.
While substantial eulimid diversity has been revealed in the Indo-West Pacific marine diversity hotspot, many neighbouring areas are still unexplored, including in Western Australia. The Houtman Abrolhos are a unique chain of islands in a well-characterised marine transition zone where tropical and temperate waters meet along the mid-west coast. During a biodiversity survey of the islands in 2025, sixty-two eulimids from 15 stations were collected, a family of marine gastropods never-before documented from this region. Here we incorporate newly collected and legacy material from the Western Australian Museum to illustrate 23 new eulimid morphospecies records for the Houtman Abrolhos. Sixteen hosts, representing all five classes of Echinodermata, were identified. Most eulimids were attached externally to their hosts, though Stilifer utinomii and two unidentified species of Melanella were found embedded in Disasterina longispina and Actinopyga mauritiana, respectively. Apicalia angulata, Peasistilifer nitidula and Stilifer utinomii are newly recorded for Western Australia, and Thyca ectoconcha and Vitreobalcis tripneusticola are new Australian records. The biogeographic affinities of these symbionts, like other marine life surveyed in the Houtman Abrolhos islands, are overwhelmingly tropical in nature, representing in many instances the southernmost records of otherwise widespread Indo-West Pacific species. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

33 pages, 47566 KB  
Article
Spatiotemporal Patterns of Climate-Vegetation Regulation of Soil Moisture with Phenological Feedback Effects Using Satellite Data
by Hanmin Yin, Xiaohan Liao, Huping Ye, Jie Bai, Wentao Yu, Yue Li, Junbo Wei, Jincheng Yuan and Qiang Liu
Remote Sens. 2025, 17(22), 3714; https://doi.org/10.3390/rs17223714 - 14 Nov 2025
Abstract
Global soil moisture has undergone significant changes in recent decades due to climate change and vegetation greening. However, the seasonal and climate zonal variations in soil moisture dynamics at different depths, driven by both climate and vegetation, remain insufficiently explored. This study provides [...] Read more.
Global soil moisture has undergone significant changes in recent decades due to climate change and vegetation greening. However, the seasonal and climate zonal variations in soil moisture dynamics at different depths, driven by both climate and vegetation, remain insufficiently explored. This study provides a comprehensive analysis of the global patterns in rootzone and surface soil moisture and leaf area index (LAI) across different seasons and climate zones, utilizing satellite observations from 1982 to 2020. We investigate how climatic factors and LAI influence soil moisture variations and quantify their dominant contributions. Furthermore, by employing key vegetation phenological indicators, namely the peak of growing season (POS) and the corresponding maximum LAI (LAIMAX), we assess the feedback effects of vegetation phenology on soil moisture dynamics. The results indicate that the greening trend (as reflected by LAI increases) from 2000 to 2020 was significantly stronger than that observed during 1982–1999 across all seasons and climate zones. Both rootzone and surface soil moisture shifted from a decreasing (drying) trend (1982–1999) to an increasing (wetting) trend (2000–2020). From 1982 to 2020, the LAI induced moistening trends in both surface and rootzone soil moisture. In arid and temperate zones, precipitation drove rootzone soil moisture increases only during the summer. Among all seasons and climate zones, solar radiation induced the strongest surface soil drying in tropical summers, with a rate of −0.04 × 10−3 m3m−3/Wm−2. For rootzone soil moisture, LAI dominated over individual climatic factors in winter and spring globally. In contrast, solar radiation became the primary driver during summer and autumn, followed by precipitation. For surface soil moisture, precipitation exhibited the strongest control in winter, but solar radiation surpassed it as the dominant factor from spring through autumn. In the tropical autumn, the sensitivity of rootzone and surface soil moisture to POS (and LAIMAX) was highest, at 0.059 m3m−3·d−1 (0.256 m3m−3/m2m−2) and 0.052 m3m−3·d−1 (0.232 m3m−3/m2m−2), respectively. This research deepens the understanding of how climate and vegetation regulate soil moisture across different climate zones and seasons. It also provides a scientific basis for improving global soil moisture prediction models and managing water resource risks in the context of climate change. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

40 pages, 2797 KB  
Review
A Review of Riverbank Filtration with a Focus on Tropical Agriculture for Irrigation Water Supply
by Leonardo Castillo-Sánchez, Andrés Fernando Echeverri-Sánchez, Luis Darío Sánchez Torres, Edgar Leonardo Quiroga-Rubiano and Jhony Armando Benavides-Bolaños
Water 2025, 17(21), 3169; https://doi.org/10.3390/w17213169 - 5 Nov 2025
Viewed by 499
Abstract
Tropical agriculture requires sustainable irrigation solutions that balance water availability with quality and environmental protection. This review synthesizes current knowledge on riverbank filtration (RBF)—a nature-based technology for improving agricultural water quality—with objectives to elucidate design principles, water quality performance, and operational challenges specific [...] Read more.
Tropical agriculture requires sustainable irrigation solutions that balance water availability with quality and environmental protection. This review synthesizes current knowledge on riverbank filtration (RBF)—a nature-based technology for improving agricultural water quality—with objectives to elucidate design principles, water quality performance, and operational challenges specific to tropical contexts. Through systematic analysis of 128 peer-reviewed articles across topics including RBF hydrogeology, contaminant removal mechanisms, sediment transport, pathogen reduction, site selection criteria, and monitoring strategies, this work consolidates interdisciplinary evidence on RBF effectiveness for irrigation water supply. The Roldanillo–Unión–Toro (RUT) district in Valle del Cauca, Colombia, serves as a case study illustrating RBF application to sediment-rich, pathogen-prone rivers typical of tropical agricultural regions. While RBF is established for drinking water supply in temperate zones, its adaptation to tropical irrigation remains underexplored. This review identifies critical hydrogeological, environmental, and operational considerations for implementing RBF systems in tropical agricultural settings characterized by high water demand, seasonal variability, and challenging water quality conditions. Key findings are synthesized into a practitioner-oriented framework—covering site selection, design optimization, and adaptive management—intended to guide deployment of RBF for irrigation in tropical agricultural settings. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 1188 KB  
Article
Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging
by Mubashir Husnain, Pablo L. Ribeiro, Britta Pitann and Karl Hermann Mühling
Nitrogen 2025, 6(4), 98; https://doi.org/10.3390/nitrogen6040098 - 3 Nov 2025
Viewed by 272
Abstract
Climate change is expected to increase the frequency of extreme soil moisture events, such as winter waterlogging followed by spring drought, particularly in temperate regions of Europe, North America and Northeast China. While N2O emissions from paddy soils under waterlogging and [...] Read more.
Climate change is expected to increase the frequency of extreme soil moisture events, such as winter waterlogging followed by spring drought, particularly in temperate regions of Europe, North America and Northeast China. While N2O emissions from paddy soils under waterlogging and subsequent drainage have been widely studied, knowledge of upland arable soils under wheat cultivation remains limited. We hypothesized that: (1) in upland soils, combined waterlogging and drought reduces N2O emissions compared to continuous waterlogging, and (2) plant presence mitigates soil nitrate accumulation and N2O emissions across different moisture regimes. A greenhouse experiment was conducted using intact upland soil cores with and without wheat under four moisture treatments: control (60% water-holding capacity, WHC), drought (30% WHC), waterlogging, and waterlogging followed by drought. Daily and cumulative N2O fluxes, soil mineral nitrogen (NH4+-002DN and NO3-N), and total nitrogen uptake by wheat shoots were measured. Prolonged waterlogging resulted in the highest cumulative N2O emissions, whereas the transition from waterlogging to drought triggered a sharp but transient N2O peak, particularly in soils without plants. Wheat presence consistently reduced N2O emissions, likely through nitrate uptake, which limited substrate availability for incomplete denitrification. Moisture regimes strongly affected nitrate dynamics, with drought promoting nitrate accumulation and waterlogging enhancing nitrate loss. These findings highlight the vulnerability of upland soils in regions prone to seasonal moisture extremes. Effective management of soil moisture and nitrogen, including the promotion of plant growth, is essential to mitigate N2O emissions and improve nitrogen use efficiency under future climate scenarios. Full article
(This article belongs to the Special Issue Nitrogen Uptake and Loss in Agroecosystems)
Show Figures

Figure 1

31 pages, 2649 KB  
Article
Stepwise Single-Axis Tracking of Flat-Plate Solar Collectors: Optimal Rotation Step Size in a Continental Climate
by Robert Kowalik and Aleksandar Nešović
Energies 2025, 18(21), 5776; https://doi.org/10.3390/en18215776 - 1 Nov 2025
Viewed by 322
Abstract
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was [...] Read more.
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was carried out for the city of Kragujevac in Serbia, located in a temperate continental climate zone, based on five representative summer days (3 July–29 September) to account for seasonal variability. Three collector types with different efficiency parameters were considered, and inlet water temperatures of 20 °C, 30 °C, and 40 °C were applied to represent typical operating conditions. The results show that single-axis tracking increased the incident irradiance by up to 28% and the useful seasonal heat gain by up to 25% compared to the fixed configuration. Continuous tracking (ψ = 1°) achieved the highest energy yield but required 181 daily movements, which makes it mechanically demanding. Stepwise tracking with ψ = 10–15° retained more than 90–95% of the energy benefit of continuous tracking while reducing the number of daily movements to 13–19. For larger steps (ψ = 45–90°), the advantage of tracking decreased sharply, with thermal output only 5–10% higher than the fixed case. Increasing the inlet temperature from 20 °C to 40 °C reduced seasonal heat gain by approximately 30% across all scenarios. Overall, the findings indicate that relative single-axis tracking with ψ between 10° and 15° provides the most practical balance between energy efficiency, reliability, and economic viability, making it well-suited for residential-scale solar thermal systems. This is the first study to quantify how discrete rotation steps in single-axis tracking affect both thermal and economic performance of flat-plate collectors. The proposed EnergyPlus–Python model demonstrates that a 10–15° step offers 90–95% of the continuous-tracking energy gain while reducing actuator motion by ~85%. The results provide practical guidance for optimizing low-cost solar-thermal tracking in continental climates. Full article
Show Figures

Figure 1

18 pages, 1625 KB  
Review
Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Wenhui Bao
Biology 2025, 14(11), 1534; https://doi.org/10.3390/biology14111534 - 1 Nov 2025
Viewed by 315
Abstract
Rising atmospheric CO2 is expected to fertilize forest photosynthesis; yet, ecosystem-scale observations often reveal muted responses, creating a critical knowledge gap in global climate projections. In this review, we explore this paradox by moving beyond the traditional ‘CO2 fertilization’ paradigm. We [...] Read more.
Rising atmospheric CO2 is expected to fertilize forest photosynthesis; yet, ecosystem-scale observations often reveal muted responses, creating a critical knowledge gap in global climate projections. In this review, we explore this paradox by moving beyond the traditional ‘CO2 fertilization’ paradigm. We propose an integrated framework that positions elevated CO2 as a complex modulator whose net effect is determined by a hierarchy of cross-scale constraints. At the plant level, photosynthetic acclimation acts as a universal first brake on the initial biochemical potential. At the ecosystem level, nutrient availability—primarily nitrogen in temperate/boreal systems and phosphorus in the tropics—emerges as the dominant bottleneck limiting long-term productivity gains. Furthermore, interactions with the water cycle, such as increased water-use efficiency, create state-dependent dynamic responses. By synthesizing evidence from pivotal Free-Air CO2 Enrichment (FACE) experiments, we systematically evaluate these constraining factors. We conclude that accurately predicting the future of the forest carbon sink necessitates a paradigm shift: from single-factor analysis to multi-stressor approaches, and from ecosystem-scale observations to an integrated understanding that links these phenomena to their underlying molecular and genetic mechanisms. This review provides a roadmap for future research and informs more realistic strategies for forest management and climate mitigation in a high-CO2 world. Full article
(This article belongs to the Special Issue Adaptation Mechanisms of Forest Trees to Abiotic Stress)
Show Figures

Figure 1

18 pages, 1320 KB  
Article
Persistence of Biochar Effects on Soil and Nitrous Oxide Emissions: Evaluating Single vs. Repeated Applications in Multi-Year Field Trial
by Melinda Molnárová, Elena Aydın, Vladimír Šimanský, Ján Čimo, Morad Mirzaei, Natalya P. Buchkina and Ján Horák
Agriculture 2025, 15(21), 2259; https://doi.org/10.3390/agriculture15212259 - 29 Oct 2025
Viewed by 351
Abstract
Biochar has been widely recognized for its potential to improve soil quality and mitigate greenhouse gas (GHG) emissions. A field experiment was conducted in a temperate climate zone of Slovakia on Haplic Luvisol and evaluated the long-term impact of biochar on soil properties, [...] Read more.
Biochar has been widely recognized for its potential to improve soil quality and mitigate greenhouse gas (GHG) emissions. A field experiment was conducted in a temperate climate zone of Slovakia on Haplic Luvisol and evaluated the long-term impact of biochar on soil properties, nitrous oxide (N2O) emissions, and winter wheat (Triticum aestivum L.) yield. Biochar was applied in 2014 at rates of 0, 10, and 20 t ha−1 and reapplied in 2018 at the same rates, combined with nitrogen (N) fertilization (0, 140, and 210 kg N ha−1). Measurements, conducted from March to October 2021, showed that biochar improved soil water content, increased soil pH, and enhanced soil organic carbon content. However, the concentrations of NH4+-N and NO3-N generally decreased across all the treatments compared to their respective controls. Biochar reapplication rate at 20 t ha−1, especially combined with second level of N-fertilization, led to a significant reduction in cumulative N2O emissions by 38.40%. Winter wheat yield was positively correlated with both biochar application (10 and 20 t ha−1) and N levels (140 and 210 kg N ha−1), but these differences were not statistically significant (p > 0.05). The positive effects of biochar on soil properties and yield declined over time, with no significant yield differences observed 7 years after the initial application and 3 years after reapplication. These findings suggest that while biochar can enhance soil conditions and reduce GHG emissions in the short term, its long-term effectiveness remains uncertain. Further research is needed to explore alternative biochar feedstocks, application methods, and strategies to sustain its benefits in agricultural systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 1925 KB  
Article
Ontogenetic Stage Strongly and Differentially Influences Leaf Economic and Stomatal Traits Along Phyllotactic and Environmental Gradients
by Jian Li, Yunlong Wang, Qingxin Mao, Wanting Cheng, Mingyang Cao, Honghui Teng, Yunfei Diao, Mingyue Jin and Nuoya Fei
Forests 2025, 16(11), 1624; https://doi.org/10.3390/f16111624 - 24 Oct 2025
Viewed by 276
Abstract
Phyllotaxy is a key determinant of intraspecific variation in leaf functional traits, with different leaflet positions often representing distinct strategies of resource acquisition and utilization. Yet, the extent to which such phyllotactic differentiation is modulated by ontogenetic stage remains poorly understood. Here, we [...] Read more.
Phyllotaxy is a key determinant of intraspecific variation in leaf functional traits, with different leaflet positions often representing distinct strategies of resource acquisition and utilization. Yet, the extent to which such phyllotactic differentiation is modulated by ontogenetic stage remains poorly understood. Here, we examined saplings and adult trees of Fraxinus mandshurica, a dominant compound-leaved species in temperate broadleaf forests, by quantifying four leaf economic traits and four stomatal traits across six phyllotactic positions. We further assessed the relative influences of phyllotaxy and environmental factors, including soil total nitrogen, soil water content, and canopy openness, on trait variation at different ontogenetic stages. Our results showed that economic traits varied significantly along phyllotaxy, whereas stomatal traits were relatively conservative. The effects of ontogenetic stage on traits at a given phyllotactic position were trait-specific. Within-group correlations of economic traits and of stomatal traits remained stable across ontogenetic stages and were consistently stronger than between-group correlations. Sapling traits were more strongly affected by soil total nitrogen and soil water content, whereas those in adult trees were primarily shaped by soil water content and canopy openness. Moreover, both trait–trait and trait–environment associations were weaker at the leaflet level than at the compound-leaf level. Our study highlights the critical role of ontogenetic stage in shaping leaf trait responses to phyllotaxy and environmental change, providing new insights into the mechanisms underlying intraspecific trait variation in compound-leaved tree species. Full article
Show Figures

Figure 1

24 pages, 2091 KB  
Systematic Review
A Conceptual Framework for Biophilic Architectural Design in Cold Climates: A Meta-Synthesis Analysis
by Bekir Huseyin Tekin and Mehmet Arif Aktog
Buildings 2025, 15(21), 3825; https://doi.org/10.3390/buildings15213825 - 23 Oct 2025
Viewed by 535
Abstract
Biophilic design has traditionally evolved from temperate-zone contexts, where access to nature is more readily available, and has rarely addressed the challenges of extreme climatic conditions. The potential of biophilic design to enhance health and well-being in cold environments, where exposure to nature [...] Read more.
Biophilic design has traditionally evolved from temperate-zone contexts, where access to nature is more readily available, and has rarely addressed the challenges of extreme climatic conditions. The potential of biophilic design to enhance health and well-being in cold environments, where exposure to nature must adapt to low temperatures, limited solar radiation, and pronounced photoperiod variation, remains underexplored. This study conducts a systematic meta-synthesis of biophilic architectural design strategies in Arctic and Sub-Arctic regions, adopting the SALSA (Search, Appraisal, Synthesis, and Analysis) framework in alignment with PRISMA guidelines to ensure methodological transparency and reproducibility. Nine peer-reviewed studies published between 2019 and 2024 were analyzed using qualitative coding and synthesis in NVivo. The findings identify thermal comfort, daylight, and circadian regulation as the most influential biophilic parameters, while greenery and water features, common in temperate frameworks, were limited due to environmental constraints. Key interventions include adaptive envelopes, optimized window design, intermediate buffer zones, and materials that balance insulation with sensory enrichment. The study proposes an “Interventions–Parameters–Outcomes” framework that illustrates the interrelationships among biophilic strategies, health-related outcomes, and climatic adaptation. While all studies originated from northern Canada, the conceptual framework provides a transferable foundation for future empirical validation and comparative research across diverse cold-climate regions, contributing to the advancement of climate-responsive, human-centered design in extreme environments. Full article
Show Figures

Figure 1

21 pages, 3962 KB  
Article
Improving Thermal Performance of Solar Heating Systems
by Sebastian Pater and Krzysztof Kupiec
Appl. Sci. 2025, 15(20), 11118; https://doi.org/10.3390/app152011118 - 16 Oct 2025
Viewed by 483
Abstract
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the [...] Read more.
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the problem of thermal self-sufficiency in single-family houses. It is therefore advisable to seek solutions that improve the thermal efficiency of domestic solar installations. Efficient use of solar radiation heat accumulated during the summer months for heating requires the use of high-volume storage tanks. Another option is to discharge excess heat outside the system during the summer. This publication focuses on the latter solution. A model of the solar heating system for a residential building and pool with a storage tank powered by solar energy has been developed. Simulation calculations were performed, showing that the removal of excess heat is a beneficial solution, especially when this energy can be used to heat water in the pool. The calculations concerned the heating of a single-family house in a temperate climate. Lowering the temperature of the water in the storage tank reduces heat losses from the tank to the environment (ground), while supplying the solar collectors with lower-temperature fluid increases the driving force of the heat transfer process. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 4764 KB  
Systematic Review
Asynchronous Responses of Plants, Soils, and Microbes to Snow Cover Change Across Terrestrial Ecosystems: A Global Meta-Analysis
by Yafei Shi, Yuning Zhang, Xing Hong and Xiaoni Liu
Plants 2025, 14(20), 3172; https://doi.org/10.3390/plants14203172 - 15 Oct 2025
Viewed by 289
Abstract
Snow cover, as a critical component of the global climate system, strongly influences ecological processes in cold and temperate regions. However, how different ecosystem components—plants, soils, and microbes—respond to snow cover change remains poorly understood, especially in terms of their coordination. Here, we [...] Read more.
Snow cover, as a critical component of the global climate system, strongly influences ecological processes in cold and temperate regions. However, how different ecosystem components—plants, soils, and microbes—respond to snow cover change remains poorly understood, especially in terms of their coordination. Here, we conducted a global meta-analysis of 1986 single and 1047 paired observations from snow manipulation experiments across diverse terrestrial ecosystems. Our results showed that snow removal generally reduced SWC and microbial diversity, whereas snow addition exerted smaller or more variable influences across ecosystem components. Among all variables, the effect of snow cover change on soil water content was most pronounced, whereas its impacts on other factors were generally weak. Notably, the direction and magnitude of responses often differed among ecosystem components exposed to the same treatments. Pairwise comparisons revealed frequent mismatches between plant and soil organism responses, indicating substantial ecosystem-level decoupling across biomes. These findings support the ecosystem asynchrony hypothesis and highlight the need for integrated approaches that link aboveground and belowground processes. Our study improves the understanding of ecosystem stability under changing snow regimes and provides insights for predicting future terrestrial responses to global climate change. Full article
(This article belongs to the Special Issue Plant-Soil Interaction Response to Global Change—2nd Edition)
Show Figures

Figure 1

29 pages, 4532 KB  
Article
Exploring the Potential of Multi-Hydrological Model Weighting Schemes to Reduce Uncertainty in Runoff Projections
by Zeynep Beril Ersoy, Okan Fistikoglu and Umut Okkan
Water 2025, 17(20), 2919; https://doi.org/10.3390/w17202919 - 10 Oct 2025
Viewed by 527
Abstract
While weighted multi-model approaches are widely used to improve predictive capability, hydrological models (HMs) and their weighted combinations that perform well under past conditions may not guarantee robustness under future climate scenarios. Furthermore, the extent to which weighting schemes influence the propagation of [...] Read more.
While weighted multi-model approaches are widely used to improve predictive capability, hydrological models (HMs) and their weighted combinations that perform well under past conditions may not guarantee robustness under future climate scenarios. Furthermore, the extent to which weighting schemes influence the propagation of runoff projection uncertainty remains insufficiently explored. Therefore, this study evaluates the capacity of strategies that weight monthly scale HMs to narrow runoff projection uncertainty. Since standard approaches rely only on historical simulation skill and offer static weighting, this study introduces a refined framework, the Uncertainty Optimizing Multi-Model Ensemble (UO-MME), which dynamically considers the trade-offs between calibration performance and projection uncertainty. In performing the uncertainty decomposition, a total of 140 ensemble runoff projections, generated through a modelling chain comprising five GCMs, two emission scenarios, two downscaling methods, and seven HMs, were analyzed for Beydag and Tahtali watersheds in Türkiye. Results indicate that standard techniques, such as Bayesian model averaging, ordered weighted averaging, and Granger–Ramanathan averaging, led to either marginal reductions or noticeable increases in projection uncertainty, depending on the case and projection period. Conversely, the UO-MME achieved average reductions in projection uncertainty of around 30% across the two watersheds by balancing the influences of climate signals produced by GCMs that are reflected in the projections through HMs while maintaining high simulation accuracy, as indicated by Nash–Sutcliffe efficiency values exceeding 0.75. Although not designed to eliminate inherently irreducible uncertainty, the UO-MME framework helps temper the inflation of noisy GCM signals in runoff responses, providing more balanced hydrological projections for water resources planning. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 5164 KB  
Article
Effects of Different Operation Years of Photovoltaic Power Stations on Vegetation and Soil Characteristics in Temperate Deserts
by Yaoxin Yu, Tao Chen, Shijun Ma, Ya Tian, Qing Li, Zhaoshan Cai, Lijun Zhao, Xiaoni Liu, Jianhua Xiao and Yafei Shi
Agriculture 2025, 15(19), 2097; https://doi.org/10.3390/agriculture15192097 - 9 Oct 2025
Viewed by 414
Abstract
The rapid expansion of photovoltaic installations in arid and semi-arid regions has altered regional water–heat regimes, triggering complex responses in vegetation recovery and soil processes. However, systematic assessments of ecological restoration under varying operational durations and microenvironmental interactions remain insufficient. Therefore, this study [...] Read more.
The rapid expansion of photovoltaic installations in arid and semi-arid regions has altered regional water–heat regimes, triggering complex responses in vegetation recovery and soil processes. However, systematic assessments of ecological restoration under varying operational durations and microenvironmental interactions remain insufficient. Therefore, this study examines photovoltaic power stations operating for 1, 7, and 13 years within China’s temperate desert regions, alongside undeveloped control areas, to compare differences across four microenvironments: the front eave of photovoltaic panels (FP), underneath photovoltaic panels (UP), back eave of photovoltaic panels (BP), and interval between photovoltaic panels (IP). Combining analysis of variance, correlation analysis, variance partitioning analysis (VPA), and generalised additive models (GAMs), the study evaluates the coupling mechanisms between vegetation and soil. The results indicate that operational duration significantly enhances vegetation cover, biomass, and species diversity, with the 13 year operational zone demonstrating optimal restoration outcomes. Microenvironmental variations were pronounced, with vegetation and soil quality in the front eave zone surpassing other areas, while the inter-panel zone exhibited the weakest recovery. Key soil factors shifted with recovery stages: early-stage vegetation showed heightened sensitivity to soil water content (SWC), whereas later stages relied more heavily on soil organic matter (SOM) and nutrient supply. Variation Partial Analysis (VPA) revealed that soil factors in the 13 year operational zone accounted for 71.9% of the variation in vegetation cover. The operational lifespan of photovoltaic power stations, microenvironmental variations, and key soil factors collectively drive the restoration of thermophilic desert vegetation. This research reveals phased regulatory mechanisms during the restoration process, providing scientific grounds for optimising photovoltaic layouts and enhancing desert ecosystem stability. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

21 pages, 2607 KB  
Article
Drivers of Alpine Mire Vegetation at Their Range Limit
by Aaron Pérez-Haase and Josep M. Ninot
Diversity 2025, 17(10), 702; https://doi.org/10.3390/d17100702 - 8 Oct 2025
Viewed by 280
Abstract
Mires are fragile ecosystems in which plant communities are structured by complex interactions among hydrological regimes and groundwater properties. Although extensively studied in boreal and temperate regions, their environmental drivers in southern European mountains remain poorly understood. We investigated five complex mires in [...] Read more.
Mires are fragile ecosystems in which plant communities are structured by complex interactions among hydrological regimes and groundwater properties. Although extensively studied in boreal and temperate regions, their environmental drivers in southern European mountains remain poorly understood. We investigated five complex mires in the Pyrenees, sampling 156 plots of vascular plants and bryophytes while measuring water table dynamics and groundwater chemistry over two years. Vegetation was classified into six main groups, including acid and alkaline fens, transition mires and Sphagnum hummocks. Ordination analyses (tb-PCA and RDA) revealed that mean water table depth, groundwater calcium and silicon content, and pH were the most important determinants of floristic composition. Bryophytes responded primarily to pH, whereas vascular plants were more influenced by water table variables, reflecting functional trait differences. Despite these environmental effects, spatial structure explained a comparable or greater proportion of variance, especially for vascular plants, underscoring the roles of local species pools, dispersal limitation, and site history in shaping community patterns. Establishing a reliable baseline is crucial for interpreting the distribution patterns of mire vegetation. Our results demonstrate that both environmental gradients and spatial processes are fundamental to understanding mire vegetation and highlight the importance of analyzing plant taxonomic groups separately. Full article
Show Figures

Figure 1

25 pages, 6855 KB  
Article
Survey of Thirteen Novel Pseudomonas putida Bacteriophages
by Simon Anderson, Rachel Persinger, Akaash Patel, Easton Rupe, Johnathan Osu, Katherine I. Cooper, Susan M. Lehman, Rohit Kongari, James D. Jaryenneh, Catherine M. Mageeney, Steven G. Cresawn and Louise Temple
Appl. Microbiol. 2025, 5(4), 108; https://doi.org/10.3390/applmicrobiol5040108 - 7 Oct 2025
Viewed by 673
Abstract
Bacteriophages have been widely investigated as a promising treatment of food, medical equipment, and humans colonized by antibiotic-resistant bacteria. Phages pose particular interest in combating those bacteria which form biofilms, such as the medically important human pathogen Pseudomonas aeruginosa and several plant pathogens, [...] Read more.
Bacteriophages have been widely investigated as a promising treatment of food, medical equipment, and humans colonized by antibiotic-resistant bacteria. Phages pose particular interest in combating those bacteria which form biofilms, such as the medically important human pathogen Pseudomonas aeruginosa and several plant pathogens, including P. syringae. In an undergraduate lab course, P. putida was used as the host to isolate novel anti-pseudomonal bacteriophages. Environmental samples of soil and water were collected, and purified phage isolates were obtained. After Illumina sequencing, genomes of these phages were assembled de novo and annotated. Assembled genomes were compared with known genomes in the literature and GenBank to identify taxonomic relations and to refine their functional annotations. The thirteen phages described are sipho-, myo-, and podoviruses in several families of Caudoviricetes, spanning several novel genera, with genomes ranging from 40,000 to 96,000 bp. One phage (DDSR119) is unique and is the first reported P. putida siphovirus. The remaining 12 can be clustered into four distinct groups. Six are highly related to each other and to previously described Autotranscriptaviridae phages: Waldo5, PlaquesPlease, and Laces98 all belong to the Waldovirus genus, whereas Stalingrad, Bosely, and Stamos belong to the Troedvirus genus. Zuri was previously classified as the founding member of a new genus Zurivirus within the family Schitoviridae. Ebordelon and Holyagarpour each represent different species within Zurivirus, whereas Meara is a more distantly related member of the Schitoviridae. Dolphis and Jeremy are similar enough to form a genus but have only a few distant relatives among sequenced phages and are notable for being temperate. We identified the lysis cassettes in all 13 phages, compared tail spike structures, and found auxiliary metabolic genes in several. Studies like these, which isolate and characterize infectious virions, enable the identification of novel proteins and molecular systems and also provide the raw materials for further study, evaluation, and manipulation of phage proteins and their hosts. Full article
Show Figures

Figure 1

Back to TopTop