Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Characteristics
2.2. Experimental Design
2.3. Gas Sampling
- -
- Vgas is the volume of gas in each pot (dm−3)
- -
- Area is the pot area (m2)
- -
- AR is the atomic mass of nitrogen (14 g mol−1)
- -
- Vm is the molar volume of gas at 25 °C
2.4. Determination of Ammonium and Nitrate Concentrations in Soil
2.5. Plant Harvest and Total N
2.6. Statistical Analysis
3. Results
3.1. N2O Daily Emissions
3.2. Total N2O Emissions
3.3. Ammonium and Nitrate in Soil
3.4. Nitrogen Uptake by Wheat Plants
4. Discussion
4.1. Effects of Permanent and Transient Waterlogging on N2O Emissions
4.2. Ammonium and Nitrate Dynamics
4.3. Implications for Climate Change Adaptation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 15 October 2025).
- Tian, H.; Pan, N.; Thompson, R.L.; Canadell, J.G.; Suntharalingam, P.; Regnier, P.; Davidson, E.A.; Prather, M.; Ciais, P.; Muntean, M.; et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 2024, 16, 2543–2604. [Google Scholar] [CrossRef]
- Wei, Z.; Shan, J.; Well, R.; Yan, X.; Senbayram, M. Land use conversion and soil moisture affect the magnitude and pattern of soil-borne N2, NO, and N2O emissions. Geoderma 2022, 407, 115568. [Google Scholar] [CrossRef]
- Guo, Y.; Naeem, A.; Mühling, K.H. Comparative effectiveness of four nitrification inhibitors for mitigating carbon dioxide and nitrous oxide emissions from three different textured soils. Nitrogen 2021, 2, 155–166. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Z.; Ju, X.; Song, X.; Zhang, J.; Li, S.; Zhu-Barker, X. Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Front. Microbiol. 2023, 13, 1110151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, N.; Li, Y.; Xu, S.; Liu, Y.; Miao, S.; Ding, W. Extreme rainfall amplified the stimulatory effects of soil carbon availability on N2O emissions. Glob. Change Biol. 2025, 31, e70164. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Rodell, M. How have hydrological extremes changed over the past 20 years? J. Climate 2023, 36, 8581–8599. [Google Scholar] [CrossRef]
- He, X.; Sheffield, J. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys. Res. Lett. 2020, 47, e2020GL087924. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Grosser, P.F.; Schmalz, B. Projecting hydroclimatic extremes: Climate change impacts on drought in a German low mountain range catchment. Atmosphere 2023, 14, 1203. [Google Scholar] [CrossRef]
- Steensen, B.M.; Myhre, G.; Hodnebrog, Ø.; Fischer, E. Future increase in European compound events where droughts end in heavy precipitation. Npj Clim. Atmos. Sci. 2025, 8, 267. [Google Scholar] [CrossRef]
- Ribeiro, P.L.; Singh, A.; Sagervanshi, A.; Naeem, A.; Mühling, K.H. High soil moisture rather than drying-rewetting cycles reduces the effectiveness of nitrification inhibitors in mitigating N2O emissions. Biol. Fertil. Soils 2024, 60, 627–638. [Google Scholar] [CrossRef]
- Zhao, C.; Qiu, R.; Zhang, T.; Luo, Y.; Agathokleous, E. Effects of alternate wetting and drying irrigation on methane and nitrous oxide emissions from rice fields: A Meta-Analysis. Glob. Change Biol. 2024, 30, e17581. [Google Scholar] [CrossRef]
- Loaiza, S.; Verchot, L.; Valencia, D.; Guzmán, P.; Amezquita, N.; Garcés, G.; Puentes, O.; Trujillo, C.; Chirinda, N.; Pittelkow, C.M. Evaluating greenhouse gas mitigation through alternate wetting and drying irrigation in Colombian rice production. Agric. Ecosyst. Environ. 2024, 360, 108787. [Google Scholar] [CrossRef]
- Tang, Y.; Minasny, B.; McBratney, A. Partitioning denitrification pathways in N2O emissions from re-flooded dry paddy soils. Biogeochemistry 2024, 167, 1315–1333. [Google Scholar] [CrossRef]
- Xia, Y.; Fu, C.; Liao, A.; Wu, H.; Wu, H.; Zhang, H. Effects of extreme weather events on nitrous oxide emissions from rice-wheat rotation croplands. Plants 2023, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Dahlgreen, J.; Parr, A. Exploring the impact of alternate wetting and drying and the system of rice intensification on greenhouse gas emissions: A review of rice cultivation practices. Agronomy 2024, 14, 378. [Google Scholar] [CrossRef]
- Ribeiro, P.L.; Singh, A.; Sagervanshi, A.; Mühling, K.H. Nitrogen rate drives the effectiveness of 3,4-Dimethylpyrazole phosphate (DMPP) in reducing N2O emissions from limed soil subjected to temporary waterlogging. Appl. Soil Ecol. 2025, 213, 106287. [Google Scholar] [CrossRef]
- Barneze, A.S.; van Groenigen, J.W.; Philippot, L.; Bru, D.; Abalos, D.; De Deyn, G.B. Plant communities can attenuate flooding induced N2O fluxes by altering nitrogen cycling microbial communities and plant nitrogen uptake. Soil Biol. Biochem. 2023, 185, 109142. [Google Scholar] [CrossRef]
- Guo, Y.; Saiz, E.; Radu, A.; Sonkusale, S.; Ullah, S. Prolonged flooding followed by drying increase greenhouse gas emissions differently from soils under grassland and arable land uses. Geoderma Reg. 2023, 34, e00697. [Google Scholar] [CrossRef]
- Krichels, A.H.; Jenerette, G.D.; Shulman, H.; Piper, S.; Greene, A.C.; Andrews, H.M.; Botthoff, J.; Sickman, J.O.; Aronson, E.L.; Homyak, P.M. Bacterial denitrification drives elevated N2O emissions in arid southern California drylands. Sci. Adv. 2023, 9, eadj1989. [Google Scholar] [CrossRef]
- Liu, Y.; Cong, R.; Liao, S.; Guo, Q.; Li, X.; Ren, T.; Lu, Z.; Lu, J. Rapid soil rewetting promotes limited N2O emissions and suppresses NH3 volatilization under urea addition. Environ. Res. 2022, 212, 113402. [Google Scholar] [CrossRef]
- Elberling, B.; Kovács, G.M.; Hansen, H.F.E.; Fensholt, R.; Ambus, P.; Tong, X.; Gominski, D.; Mueller, C.W.; Poultney, D.M.N.; Oehmcke, S. High nitrous oxide emissions from temporary flooded depressions within croplands. Commun. Earth Environ. 2023, 4, 463. [Google Scholar] [CrossRef]
- Kemmann, B.; Ruf, T.; Matson, A.; Well, R. Waterlogging effects on N2O and N2 emissions from a Stagnosol cultivated with Silphium perfoliatum and silage maize. Biol. Fertil. Soils 2023, 59, 53–71. [Google Scholar] [CrossRef]
- Timilsina, A.; Neupane, P.; Yao, J.; Raseduzzaman, M.; Bizimana, F.; Pandey, B.; Feyissa, A.; Li, X.; Dong, W.; Yadav, R.K.P.; et al. Plants mitigate ecosystem nitrous oxide emissions primarily through reductions in soil nitrate content: Evidence from a meta-analysis. Sci. Total Environ. 2024, 949, 175115. [Google Scholar] [CrossRef]
- Galland, W.; el Zahar Haichar, F.; Czarnes, S.; Mathieu, C.; Demorge, J.-L.; Simon, L.; Puijalon, S.; Piola, F. Biological inhibition of denitrification (BDI) in the field: Effect on plant growth in two different soils. Appl. Soil Ecol. 2021, 159, 103857. [Google Scholar] [CrossRef]
- Song, X.; Parker, J.; Jones, S.K.; Zhang, L.; Bingham, I.; Rees, R.M.; Ju, X. Labile carbon from artificial roots alters the patterns of N2O and N2 production in agricultural soils. Environ. Sci. Technol. 2024, 58, 3302–3310. [Google Scholar] [CrossRef] [PubMed]
- Malique, F.; Ke, P.; Boettcher, J.; Dannenmann, M.; Butterbach-Bahl, K. Plant and soil effects on denitrification potential in agricultural soils. Plant Soil 2019, 439, 459–474. [Google Scholar] [CrossRef]
- Rummel, P.S.; Well, R.; Pfeiffer, B.; Dittert, K.; Floßmann, S.; Pausch, J. Nitrate uptake and carbon exudation–do plant roots stimulate or inhibit denitrification? Plant Soil 2021, 459, 217–233. [Google Scholar] [CrossRef]
- Eckei, J.; Well, R.; Maier, M.; Matson, A.; Dittert, K.; Rummel, P.S. Determining N2O and N2 fluxes in relation to winter wheat and sugar beet growth and development using the improved 15N gas flux method on the field scale. Biol. Fertil. Soils 2025, 61, 489–505. [Google Scholar] [CrossRef]
- Ni, K.; Vietinghoff, M.; Pacholski, A. Targeting yield and reducing nitrous oxide emission by use of single and double inhibitor treated urea during winter wheat season in Northern Germany. Agric. Ecosyst. Environ. 2023, 347, 108391. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Ruosteenoja, K.; Hautala, J.; Rantanen, M. Climate Change in Finland, Germany, Uruguay and China: Observed Changes and Future Projections Derived from CMIP6 Global Climate Models; Finnish Meteorological Institute: Helsinki, Finland, 2024. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Khera, T.S.; Doran, J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. Effect of nitrate and ammoniacal nitrogen: I. Effect of nitrate and ammoniacal nitrogen. Biol. Fertil. Soils 2000, 31, 162–167. [Google Scholar] [CrossRef]
- Krüger, M.; Potthast, K.; Michalzik, B.; Tischer, A.; Küsel, K.; Deckner, F.F.; Herrmann, M. Drought and rewetting events enhance nitrate leaching and seepage-mediated translocation of microbes from beech forest soils. Soil Biol. Biochem. 2021, 154, 108153. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Li, M.; Zhao, C.; Yu, K.; Hagedorn, F. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: A meta-analysis. Soil Biol. Biochem. 2020, 148, 107896. [Google Scholar] [CrossRef]
- Lian, T.; Cheng, L.; Liu, Q.; Yu, T.; Cai, Z.; Nian, H.; Hartmann, M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME Commun. 2023, 3, 71. [Google Scholar] [CrossRef] [PubMed]
- Kreienkamp, F.; Deutschländer, T.; Malitz, G.; Rauthe, M.; Becker, A.; Früh, B.; Becker, P.; Starkniederschläge in Deutschland. Offenbach am Main, Germany: Deutscher Wetterdienst. 2016. Available online: https://www.dwd.de/DE/leistungen/klimareports/download_einleger_report_2016.pdf (accessed on 15 October 2025).
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Ramalho, J.C.; Lidon, F.C.; Coutinho, J.; Maçãs, B.; Scotti-Campos, P. Wheat crop under waterlogging: Potential soil and plant effects. Plants 2023, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Mahmud, J.A.; Nahar, K.; Anee, T.I.; Inafuku, M.; Oku, H.; Fujita, M. Responses, adaptation, and ROS metabolism in plants exposed to waterlogging stress. In Springer eBooks; Springer: Singapore, 2017; pp. 257–281. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE 2016, 11, e0161424. [Google Scholar] [CrossRef]
- Wollmer, A.C.; Pitann, B.; Mühling, K.H. Timing of waterlogging is crucial for the development of micronutrient deficiencies or toxicities in winter wheat and rapeseed. J. Plant Growth Regul. 2019, 38, 824–830. [Google Scholar] [CrossRef]
- Wollmer, A.C.; Pitann, B.; Mühling, K.H. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J. Agron. Crop Sci. 2018, 204, 165–174. [Google Scholar] [CrossRef]
- Hussain, M.A.; Naeem, A.; Sulieman, S.; Pitann, B.; Mühling, K.H. Sulfur uptake and distribution, grain yield, and quality of hybrid and inbred winter wheat (Triticum aestivum L.) varieties under early and late waterlogging. J. Plant Nutr. Soil Sci. 2022, 185, 622–631. [Google Scholar] [CrossRef]
- Hussain, M.A.; Pitann, B.; Mühling, K.H. Combined effect of melatonin and sulfur on alleviating waterlogging stress in rapeseed. Plant-Environ. Interact. 2025, 6, e70050. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases Between Terr. Ecosyst. Atmos. 1989, 47, 7–21. [Google Scholar]
- Yi, L.; Sheng, R.; Wei, W.; Zhu, B.; Zhang, W. Differential contributions of electron donors to denitrification in the flooding-drying process of a paddy soil. Appl. Soil Ecol. 2022, 177, 104527. [Google Scholar] [CrossRef]
- Wollmer, A.C.; Pitann, B.; Mühling, K.H. Grain storage protein concentration and composition of winter wheat (Triticum aestivum L.) as affected by waterlogging events during stem elongation or ear emergence. J. Cereal Sci. 2018, 83, 9–15. [Google Scholar] [CrossRef]





| Treatments | Abbreviation | Water Holding Capacity (WHC, %) |
|---|---|---|
| Control | 60% WHC | 60 |
| Drought | 30% WHC | 30 |
| Waterlogging | WL | 100 |
| Waterlogging followed by drought | WL + D | 100→30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husnain, M.; Ribeiro, P.L.; Pitann, B.; Mühling, K.H. Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging. Nitrogen 2025, 6, 98. https://doi.org/10.3390/nitrogen6040098
Husnain M, Ribeiro PL, Pitann B, Mühling KH. Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging. Nitrogen. 2025; 6(4):98. https://doi.org/10.3390/nitrogen6040098
Chicago/Turabian StyleHusnain, Mubashir, Pablo L. Ribeiro, Britta Pitann, and Karl Hermann Mühling. 2025. "Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging" Nitrogen 6, no. 4: 98. https://doi.org/10.3390/nitrogen6040098
APA StyleHusnain, M., Ribeiro, P. L., Pitann, B., & Mühling, K. H. (2025). Wheat Plants Reduce N2O Emissions from Upland Soil Subject to Transient and Permanent Waterlogging. Nitrogen, 6(4), 98. https://doi.org/10.3390/nitrogen6040098

