Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = taste genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 2173 KiB  
Review
Bridging Genes and Sensory Characteristics in Legumes: Multi-Omics for Sensory Trait Improvement
by Niharika Sharma, Soumi Paul Mukhopadhyay, Dhanyakumar Onkarappa, Kalenahalli Yogendra and Vishal Ratanpaul
Agronomy 2025, 15(8), 1849; https://doi.org/10.3390/agronomy15081849 - 31 Jul 2025
Viewed by 717
Abstract
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing [...] Read more.
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing these challenges requires a comprehensive understanding of the complex molecular mechanisms governing appearance, aroma, taste, flavour, texture and palatability in legumes, aiming to enhance their sensory appeal. This review highlights the transformative power of multi-omics approaches in dissecting these intricate biological pathways and facilitating the targeted enhancement of legume sensory qualities. By integrating data from genomics, transcriptomics, proteomics and metabolomics, the genetic and biochemical networks that directly dictate sensory perception can be comprehensively unveiled. The insights gained from these integrated multi-omics studies are proving instrumental in developing strategies for sensory enhancement. They enable the identification of key biomarkers for desirable traits, facilitating more efficient marker-assisted selection (MAS) and genomic selection (GS) in breeding programs. Furthermore, a molecular understanding of sensory pathways opens avenues for precise gene editing (e.g., using CRISPR-Cas9) to modify specific genes, reduce off-flavour compounds or optimise texture. Beyond genetic improvements, multi-omics data also inform the optimisation of post-harvest handling and processing methods (e.g., germination and fermentation) to enhance desirable sensory profiles and mitigate undesirable ones. This holistic approach, spanning from the genetic blueprint to the final sensory experience, will accelerate the development of new legume cultivars and products with enhanced palatability, thereby fostering increased consumption and ultimately contributing to healthier diets and more resilient food systems worldwide. Full article
Show Figures

Figure 1

23 pages, 8937 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 203
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

16 pages, 3539 KiB  
Article
The Wx/SSIIa and GS3/GW7 Alleles, Both Individually and in Combination, Can Significantly Distinguish Rice Germplasm Quality
by Yuanyuan Hao, Junfeng Xu, Mingming Wu, Ying Zhu, Jiayu Song, Yifei Han, Chunshou Li and Fudeng Huang
Int. J. Mol. Sci. 2025, 26(14), 6726; https://doi.org/10.3390/ijms26146726 - 14 Jul 2025
Viewed by 239
Abstract
As living standards rise, there has been a growing emphasis on quality traits related to rice’s taste potential. Recent studies explored correlations among quality traits, but the influence of major genes governing a specific quality trait on other quality traits remains elusive. Here, [...] Read more.
As living standards rise, there has been a growing emphasis on quality traits related to rice’s taste potential. Recent studies explored correlations among quality traits, but the influence of major genes governing a specific quality trait on other quality traits remains elusive. Here, we report on the application of grain quality genes, two of Waxy (Wx) and Starch synthase II-a (SSIIa), which dominates in rice cooking and eating quality, and two grain length/width-related genes, grain size 3 (GS3) and grain width 7 (GW7), on appearance quality traits. Five allele-specific markers for these genes were developed, and used to stack the desirable alleles at these loci. The effects of individual or combined alleles at the loci were evaluated using a set of 156 rice germplasm. We found that the Wx-In1 (Intron 1) locus exerts a major effect in controlling both amylose content and gel consistency, while the SSIIa-Ex8 (Exon 8) locus primarily governs alkali spreading value. The impact on chalkiness-related traits follows the hierarchy of Wx-In1 > SSIIa-Ex8 > Wx-Ex10 (Exon 10). GS3-Ex2 (Exon 2) has a highly significant impact on chalkiness-related traits, and the GW7-Pro (Promoter) locus exerts a synergistic effect. The GS3-Ex2 locus exerts an effect in controlling both gel consistency and alkali spreading value, while the GW7-Pro locus governs amylose content. The data for newly developed allele-specific markers will facilitate the improvement of rice quality in rice. Full article
(This article belongs to the Special Issue Molecular and Epigenetic Regulation in Seed Development)
Show Figures

Figure 1

17 pages, 1988 KiB  
Article
Transcriptomic Profiling of Thermotolerant Sarcomyxa edulis PQ650759 Reveals the Key Genes and Pathways During Fruiting Body Formation
by Zitong Liu, Minglei Li, Hongyu Ma, Fei Wang, Lei Shi, Jinhe Wang, Chunge Sheng, Peng Zhang, Haiyang Yu, Jing Zhao and Yanfeng Wang
J. Fungi 2025, 11(7), 484; https://doi.org/10.3390/jof11070484 - 26 Jun 2025
Viewed by 380
Abstract
Sarcomyxa edulis is a characteristic low-temperature, edible mushroom in Northeast China. It has a delicious taste and rich nutritional and medicinal value. S. edulis can undergo explosive fruiting, neat fruiting, and unified harvesting, making it suitable for factory production. The molecular mechanisms underlying [...] Read more.
Sarcomyxa edulis is a characteristic low-temperature, edible mushroom in Northeast China. It has a delicious taste and rich nutritional and medicinal value. S. edulis can undergo explosive fruiting, neat fruiting, and unified harvesting, making it suitable for factory production. The molecular mechanisms underlying fruiting body development in S. edulis remain poorly understood. This study employed transcriptome analysis to compare the post-ripening mycelium (NPM) and primordial fruiting bodies (PRMs) of the thermostable S. edulis strain PQ650759, which uniquely forms primordia under constant temperature. A total of 4862 differentially expressed genes (DEGs) (|log2(fold change)| ≥ 1) were identified and found to be predominantly enriched in biological processes such as cell wall organization, DNA replication, and carbohydrate metabolism. KEGG pathway analysis revealed significant enrichment in 20 metabolic pathways, including mismatch repair, yeast cell cycle, and starch/sucrose metabolism. Ten candidate genes (e.g., SKP1, MRE11, GPI) linked to cell cycle regulation, DNA repair, and energy metabolism were randomly selected and prioritized for functional analysis. Quantitative PCR validation confirmed the reliability of transcriptome data, with expression trends consistent across both methods. Our findings provide critical insights into the molecular regulation of fruiting body development in S. edulis and establish a foundation for future mechanistic studies and strain optimization in industrial cultivation. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

19 pages, 1862 KiB  
Article
Study of the Geographical Distribution, Ecological–Biological Characteristics, and Economic Value of Rosa acicularis Lindl., Rosa laxa Retz., and Rosa spinosissima L. (Rosaceae) in Kazakhstan’s Part of the Altai Mountains
by Alevtina N. Danilova, Tatyana A. Vdovina, Yuriy A. Kotukhov, Olga A. Anufriyeva, Andrey A. Vinokurov, Elena A. Isakova, Olga A. Lagus and Aidar A. Sumbembayev
Diversity 2025, 17(7), 441; https://doi.org/10.3390/d17070441 - 20 Jun 2025
Viewed by 326
Abstract
This article presents the results of a comprehensive study on Rosa acicularis Lindl., Rosa laxa Retz., and Rosa spinosissima L. growing in the sharply continental climate of the Kazakhstan Altai under diverse ecological and phytocenotic conditions. All three wild rose species show notable [...] Read more.
This article presents the results of a comprehensive study on Rosa acicularis Lindl., Rosa laxa Retz., and Rosa spinosissima L. growing in the sharply continental climate of the Kazakhstan Altai under diverse ecological and phytocenotic conditions. All three wild rose species show notable ecological plasticity, allowing them to thrive in heterogeneous environments. A total of 41 populations were recorded: 12 of R. acicularis, 13 of R. laxa, and 16 of R. spinosissima, with vertical distribution ranging from 404 to 1837 m a.s.l. Nine populations where each species dominates its plant community were selected as model sites to assess ecological, biological, and economic traits. For each population, the floristic composition and structure were described, and morphometric, resource, and physiological indicators were evaluated. Significant phenotypic variation was noted in plant height, bush diameter, leaf traits, and fruit morphology and taste. Under natural conditions, industrial thickets are mainly formed by R. laxa in the Southern Altai and by R. spinosissima in the Southwestern Altai due to their wide distribution and high plant density. Fruit weight ranged from 2.23 to 2.47 g (R. acicularis), 2.28 to 2.68 g (R. laxa), and 2.17 to 2.55 g (R. spinosissima), values generally lower than those previously reported. Based on coefficients of variation for intra-population diversity in morphological and quantitative traits, several promising populations were identified. These populations hold potential for selecting valuable forms for breeding programs and for establishing a regionally adapted gene pool. Full article
Show Figures

Figure 1

31 pages, 7842 KiB  
Article
Genome-Wide Characterization and Functional Analysis of CsDOF Transcription Factors in Camellia sinensis cv. Tieguanyin Under Combined Heat–Drought Stress
by Yingxin Wen, Cunyi Tan, Yujie Zhang, Hua Wu, Dian Chen, Heng Yue, Zekai Ding, Shijiang Cao and Kehui Zheng
Plants 2025, 14(12), 1829; https://doi.org/10.3390/plants14121829 - 14 Jun 2025
Viewed by 588
Abstract
Tieguanyin tea, celebrated as one of China’s top ten famous teas, is highly regarded for its unique flavor and taste. However, recent intensification of global warming has escalated the occurrence of abiotic stresses, posing significant threats to the growth, development, yield, and quality [...] Read more.
Tieguanyin tea, celebrated as one of China’s top ten famous teas, is highly regarded for its unique flavor and taste. However, recent intensification of global warming has escalated the occurrence of abiotic stresses, posing significant threats to the growth, development, yield, and quality of Tieguanyin tea plants. DOF (DNA-binding one zinc finger protein), a plant-specific transcription factor, plays a critical role in plant development and stress response. In this study, we identified and analyzed 58 CsDOF genes across the whole genome, which were found to be randomly and unevenly distributed across 15 chromosomes. A phylogenetic tree was constructed using DOF genes from Arabidopsis thaliana and Tieguanyin, categorizing these genes into 10 subgroups. Collinearity analysis revealed homologous gene pairs between CsDOF and OsDOF(19 pairs), StDOF (101 pairs), and ZmDOF (24 pairs). Cis-acting element analysis indicated that CsDOF genes contain elements related to both stress and hormone responses. Heat map analysis demonstrated that subfamily C2 predominantly regulates the growth and development of roots, stems, and leaves in Tieguanyin. Tertiary structure analysis of CsDOF proteins revealed diverse structures, underscoring the functional variability within the CsDOF gene family. Furthermore, qRT-PCR analysis was employed to assess the expression profiles of 13 CsDOF genes under high-temperature and drought conditions. Notably, CsDOF51 and CsDOF12 exhibited significant expression changes under drought and high-temperature stress, respectively, while CsDOF44 showed significant changes under both conditions. This study provides foundational knowledge of the CsDOF gene family and offers novel insights for enhancing the drought and heat tolerance of Tieguanyin tea. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

19 pages, 4335 KiB  
Article
Functional Characterization of Squalene Epoxidases from Siraitia grosvenorii
by Huan Zhao, Ze Song, Xuan Liu, Shukun Gong, Qi Tang, Changli Liu, Yifeng Zhang, Xianan Zhang, Haiyun Gao, Wei Gao, Yating Hu and Luqi Huang
Plants 2025, 14(12), 1740; https://doi.org/10.3390/plants14121740 - 6 Jun 2025
Viewed by 718
Abstract
The medicinal plant Siraitia grosvenorii produces sweet-tasting cucurbitane-type mogrosides from the atypical triterpenoid precursor 2,3,22,23-dioxidosqualene (SDO), rather than the conventional 2,3-oxidosqualene (SQO). However, SDO formation in mogroside biosynthesis remains unclear. Here, we systematically characterized two squalene epoxidases (SgSQE1/2) through phylogenetic analysis, heterologous expression, [...] Read more.
The medicinal plant Siraitia grosvenorii produces sweet-tasting cucurbitane-type mogrosides from the atypical triterpenoid precursor 2,3,22,23-dioxidosqualene (SDO), rather than the conventional 2,3-oxidosqualene (SQO). However, SDO formation in mogroside biosynthesis remains unclear. Here, we systematically characterized two squalene epoxidases (SgSQE1/2) through phylogenetic analysis, heterologous expression, subcellular localization, qRT-PCR, and alanine scanning studies. Both SgSQE1 and SgSQE2 exhibited squalene epoxidase activity, with SgSQE2 catalyzing SDO formation in yeast. We identified two critical catalytic residues governing epoxidation efficiency through mutagenesis. Both SgSQEs were localized in the ER, while expression profiling revealed a similar trend between SgSQE2 expression and mogroside accumulation in fruits. In our study, we developed a genomically engineered strategy for heterologous SQE characterization. These results lay the foundation for the SQE catalytic reaction involved in mogroside biosynthesis, and provide gene resources and a feasible approach for triterpene metabolic engineering. Full article
Show Figures

Figure 1

26 pages, 12240 KiB  
Article
BuZhong YiQi Formula Alleviates Taste Disorders in Rats with Type 2 Diabetes Mellitus by Increasing the Number of Taste Buds and the Expression of Signaling Molecules in Taste Transduction Pathways
by Zhen-Ran Hu, Xiang-Ke Li, Guo-Jun Fei, Ming-Yu Wang, Meng-Juan Luo, Xin-Xin Zeng, Liang Wang and Ze-Min Yang
Pharmaceuticals 2025, 18(6), 838; https://doi.org/10.3390/ph18060838 - 3 Jun 2025
Viewed by 664
Abstract
Background: Taste disorders in patients with type 2 diabetes mellitus (T2DM) have a negative impact on their quality of life and glycemic control, and treatment options are limited. Buzhong yiqi formula (BZYQF) improves T2DM symptoms but its effects on T2DM-induced taste disorders have [...] Read more.
Background: Taste disorders in patients with type 2 diabetes mellitus (T2DM) have a negative impact on their quality of life and glycemic control, and treatment options are limited. Buzhong yiqi formula (BZYQF) improves T2DM symptoms but its effects on T2DM-induced taste disorders have not been sufficiently studied. Methods: Molecular docking was utilized to evaluate binding activity between the compounds in BZYQF and the sweet taste receptors (STRs). T2DM was induced in rats through the administration of high-fat diet and streptozotocin, and the rats were then treated with BZYQF for 8 weeks. Daily indicators and serum biochemical factors were monitored. Taste preferences for sweet, bitter, salty, and sour solutions were assessed using a two-bottle test. The morphology of lingual papillae and the numbers of taste buds were examined using HE staining. A high-glucose (HG) model of taste bud organoids was established to measure sucrose-evoked ATP release. The expression of signaling molecules in the sweet taste receptors (STRs) pathway was determined via RT-qPCR, Western blot, and immunofluorescence in lingual papillae and organoids. Results: A total of 508 compounds in BZYQF indicated good binding activity to T1R2, T1R3 or heterodimers of T1R2/T1R3, and 60 compounds had good binding activity to all three forms of STRs. BZYQF alleviated T2DM symptoms and improved taste perception for maltose (10 mM, 50 mM), quinine (0.03 mM, 0.1 mM), and citric acid (1 mM) solutions. BZYQF improved the morphological structure of lingual papillae and increased taste bud numbers in T2DM rats. BZYQF enhanced ATP release responses to sucrose solution in the taste bud organoids of the HG model. Gene expression determination showed that BZYQF upregulated the expression of signaling molecules in the STRs pathway (T1R2, T1R3, IP3R, α-gustducin, TRPM5) in the lingual papillae of the T2DM rats and in the taste bud organoids of the HG model. Conclusions: BZYQF alleviates T2DM-induced taste disorders by increasing the numbers of taste buds and upregulating STR signaling molecules, in which various compounds, especially flavonoids, exhibit a synergistic effect. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

17 pages, 2156 KiB  
Article
Low TAS1R2 Sweet Taste Receptor Expression in Skeletal Muscle of Genetically Diverse BXD Mice Mirrors Transcriptomic Signatures of Loss-of-Function Mice
by Kendall King, Joan Serrano, Nishita N. Meshram, Mahdiye Saadi, Lynn Moreira, Evaggelia G. Papachristou and George A. Kyriazis
Nutrients 2025, 17(11), 1918; https://doi.org/10.3390/nu17111918 - 3 Jun 2025
Viewed by 555
Abstract
Background/Objectives: Sweet taste receptor TAS1R2 is expressed in skeletal muscle, yet its role in muscle metabolism remains poorly understood. Methods: Here, we leverage the BXD recombinant inbred mouse panel and Tas1r2 whole-body knockout (bKO) models to investigate the transcriptional impact of Tas1r2 deficiency [...] Read more.
Background/Objectives: Sweet taste receptor TAS1R2 is expressed in skeletal muscle, yet its role in muscle metabolism remains poorly understood. Methods: Here, we leverage the BXD recombinant inbred mouse panel and Tas1r2 whole-body knockout (bKO) models to investigate the transcriptional impact of Tas1r2 deficiency on skeletal muscle function. Results: A gene network analysis revealed significant overlap in transcriptomic signatures between BXD strains with low Tas1r2 expression (BXD LTas1r2) and bKO muscle, particularly in pathways regulating oxidative phosphorylation, cytoplasmic ribosome function, and proteostasis. Notably, Tas1r2 expression negatively correlated with genes involved in fatty acid metabolism, suggesting its role in lipid utilization. Under high-fat diet (HFD) conditions, BXDHFD LTas1r2 mice exhibited further enrichment in pathways linked to proteasome degradation, oxidative stress, and interleukin signaling, amplifying the transcriptomic convergence with bKO models. Key transcription factors (Mlxipl, Nfic, Rxrb) exhibited altered regulatory patterns under dietary stress, indicating that TAS1R2 influences metabolic adaptability through transcriptional reprogramming. Conclusions: Given that human TAS1R2 variants rarely result in complete loss of function (LOF), the BXD panel provides an effective dose-dependent model to bridge the gap between knockout phenotypes and human SNP carriers. Our findings establish TAS1R2 as a metabolic regulator in skeletal muscle and highlight the utility of genetically diverse mouse populations in dissecting gene-diet interactions relevant to human metabolic diseases. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Expression Analysis of Citrate Metabolism-Related Genes Reveals New Insights into High Citrate Accumulation in a Bingtang Orange Bud Mutant (Citrus sinensis cv. Jinyan)
by Lingxia Guo, Syed Bilal Hussain, Lei Tang, Jian Han, Wei Liao, Tie Zhou, Fei Liu, Congtian Wang, Yuanyuan Xu and Peng Chen
Horticulturae 2025, 11(6), 616; https://doi.org/10.3390/horticulturae11060616 - 31 May 2025
Viewed by 484
Abstract
Understanding the molecular regulation of citric acid accumulation in citrus fruits is crucial, as acidity directly influences fruit flavor, consumer preference, and commercial value. Citric acid is the predominant organic acid in citrus, and its levels are shaped by several factors, including genetic [...] Read more.
Understanding the molecular regulation of citric acid accumulation in citrus fruits is crucial, as acidity directly influences fruit flavor, consumer preference, and commercial value. Citric acid is the predominant organic acid in citrus, and its levels are shaped by several factors, including genetic and developmental factors. ‘Jinyan’ Bingtang orange (Citrus sinensis cv. Jinyan) is a novel mutant derived from ‘Jinhong’ Bingtang orange (C. sinensis cv. Jinhong) that has a noticeably sour taste. However, the molecular basis of the increased citrate content in ‘Jinyan’ fruits remains unclear. This study compared the organic acid profiles and expression of citric acid metabolism-related genes between ‘Jinyan’ and ‘Jinhong’ fruit juice sacs throughout fruit development. The trend of citric acid content in both cultivars was similar; however, ‘Jinyan’ consistently presented significantly higher levels than ‘Jinhong’ did from 95 to 215 days after flowering (DAF). After 155 DAF, the transcript levels of citrate biosynthesis-related genes (PEPC1, PEPC2, PEPC3, CS1, and CS2) and citrate transport-related genes (V1-E1, V1-E2, V0-a2, V0-d, VHP1, VHP2, and CsPH8) were significantly greater in ‘Jinyan’ than in ‘Jinhong’. In contrast, citrate degradation-related genes (NAD-IDH2 and NAD-IDH3) were expressed at lower levels than in ‘Jinhong’. Notably, the expression patterns of V1-E2 and CsPH8 closely matched the changes in citrate content in both cultivars. These results indicate that, compared with ‘Jinhong’, high citric acid accumulation in the juice sacs of ‘Jinyan’ fruit is likely due to increased citrate synthesis (via upregulated PEPCs and CSs) and increased vacuolar citrate sequestration (via upregulated proton pumps and transporters), coupled with reduced citrate degradation (lower NAD-IDH2/3). Full article
(This article belongs to the Special Issue Citrus Plant Growth and Fruit Quality)
Show Figures

Figure 1

16 pages, 2329 KiB  
Article
Ibα-XYL1 Interfered Expression Decreases Starch Granule Size and Increases Soluble Sugar Content to Improve Steamed Sweetpotato Storage Root Taste
by Chen Li, Meng Kou, Chang You, Meng Ma, Weihan Song, Wei Tang, Hui Yan, Runfei Gao, Xin Wang, Yungang Zhang and Qiang Li
Int. J. Mol. Sci. 2025, 26(11), 5015; https://doi.org/10.3390/ijms26115015 - 23 May 2025
Viewed by 365
Abstract
As an important characteristic and horticultural crop in China, sweetpotato can be used as food, industrial raw material, vegetable, and ornamental material. Purple sweetpotato for table use is rich in anthocyanin, which leads to some bitter taste, so it needs further quality improvement. [...] Read more.
As an important characteristic and horticultural crop in China, sweetpotato can be used as food, industrial raw material, vegetable, and ornamental material. Purple sweetpotato for table use is rich in anthocyanin, which leads to some bitter taste, so it needs further quality improvement. Genetic engineering technology is an effective method to improve crop traits, but there are few reports on genes that can improve sweetpotato sweetness and taste. A xylosidase gene (Ibα-XYL1) was cloned from sweetpotato variety ‘Yanshu 25’ with a fragment size of 2796 bp and encoding 932 amino acid sequences. It has a typical transmembrane domain and three functional domains, which are localized at cell membrane. Reduction in Ibα-XYL1 gene expression had no significant effect on the expansion characteristics and anthocyanin content of sweetpotato storage root (SPSR), but it could up-regulate the expression of sucrose synthesis related genes (SuS, SuPS) and promote the accumulation of soluble sugar in fresh transgenic SPSR. At the same time, it could up-regulate the expression of genes related to starch synthesis modifications (GASS, SBE) and starch decomposition (AMY and BAM), reduce the starch granule size and the starch pasting temperature, promote the conversion of starch to maltose, increase the soluble sugar content, and improve the sweetness and taste of steamed transgenic SPSR. The results are of great significance for quality improvement of sweetpotato. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding Research in Horticultural Crops)
Show Figures

Figure 1

19 pages, 888 KiB  
Article
Sweet Taste Receptors’ Genetic Variability in Advanced Potential Targets of Obesity
by Sonia Wagner-Reguero, Lara P. Fernández, Gonzalo Colmenarejo, Silvia Cruz-Gil, Isabel Espinosa, Susana Molina, María Carmen Crespo, Elena Aguilar-Aguilar, Helena Marcos-Pasero, Rocío de la Iglesia, Viviana Loria-Kohen, Ricardo Ramos Ruiz, Moisés Laparra-Llopis, Ana Ramírez de Molina and Marta Gómez de Cedrón
Nutrients 2025, 17(10), 1712; https://doi.org/10.3390/nu17101712 - 18 May 2025
Viewed by 1063
Abstract
Background: Obesity, mainly visceral obesity, causes a low-grade of chronic inflammation (meta-inflammation), associated with comorbidities such as type 2 diabetes, cardiovascular diseases, and certain cancers. Precision Nutrition aims to understand the bidirectional crosstalk between the genome and diet to improve human health. [...] Read more.
Background: Obesity, mainly visceral obesity, causes a low-grade of chronic inflammation (meta-inflammation), associated with comorbidities such as type 2 diabetes, cardiovascular diseases, and certain cancers. Precision Nutrition aims to understand the bidirectional crosstalk between the genome and diet to improve human health. Additionally, by leveraging individual data, Precision Nutrition seeks to predict how people will respond to specific foods or dietary patterns, with the ultimate goal of providing personalized nutritional recommendations tailored to their unique needs and lifestyle factors, including poor dietary habits (e.g., high intake of sugar or saturated fatty acids, alcohol consumption, etc.) and sedentary habits, exacerbate obesity in genetically predisposed individuals. Genetic, metabolic, and environmental factors can play a crucial role during obesity. Objective: To investigate the effects of genetic variability in sweet taste receptors and their downstream signaling pathways in the gut–brain axis on anthropometry, biochemistry, and lifestyle variables. Methods: A sample of 676 volunteers (mean age of 42.22 ± 12 years, ranging from 18 to 73 years) from the database of the GENYAL platform for nutritional trials at the IMDEA Food Institute were included in this study. We present a first-in-class genetic chip, Glucosensing, designed to interrogate 25 single-nucleotide polymorphisms (SNPs) located in genes encoding sweet taste receptors and components of downstream signaling pathways. These include elements of the gut–brain axis and its associated metabolic networks, enabling a comprehensive analysis of individual variability in sweet taste perception and metabolic responses. Results: Several significant associations were found after correction for multiple comparisons, representing potential targets for personalized interventions. Full article
(This article belongs to the Special Issue Gene–Diet Interactions and Obesity)
Show Figures

Figure 1

52 pages, 1790 KiB  
Review
Emotion, Motivation, Reasoning, and How Their Brain Systems Are Related
by Edmund T. Rolls
Brain Sci. 2025, 15(5), 507; https://doi.org/10.3390/brainsci15050507 - 16 May 2025
Viewed by 1437
Abstract
A unified theory of emotion and motivation is updated in which motivational states are states in which instrumental goal-directed actions are performed to obtain anticipated rewards or avoid punishers, and emotional states are states that are elicited when the (conditioned or unconditioned) instrumental [...] Read more.
A unified theory of emotion and motivation is updated in which motivational states are states in which instrumental goal-directed actions are performed to obtain anticipated rewards or avoid punishers, and emotional states are states that are elicited when the (conditioned or unconditioned) instrumental reward or punisher is or is not received. This advances our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as a sweet taste or pain, and the brain systems that learn to expect rewards or punishers and that therefore produce motivational and emotional states. It is argued that instrumental actions under the control of the goal are important for emotion, because they require an intervening emotional state in which an action is learned or performed to obtain the goal, that is, the reward, or to avoid the punisher. The primate including human orbitofrontal cortex computes the reward value, and the anterior cingulate cortex is involved in learning the action to obtain the goal. In contrast, when the instrumental response is overlearned and becomes a habit with stimulus–response associations, emotional states may be less involved. In another route to output, the human orbitofrontal cortex has effective connectivity to the inferior frontal gyrus regions involved in language and provides a route for declarative reports about subjective emotional states to be produced. Reasoning brain systems provide alternative strategies to obtain rewards or avoid punishers and can provide different goals for action compared to emotional systems. Full article
(This article belongs to the Special Issue Defining Emotion: A Collection of Current Models)
Show Figures

Figure 1

15 pages, 3721 KiB  
Article
Integrated Analysis of the Transcriptome and Metabolome Reveals the Network Regulating Fruit Taste in Sponge Gourd (Luffa cylindrica)
by Yaqian Chai, Wenjing Qiu, Zhikun Li, Luyao Gao, Wenqi Dong, Peng Zhang, Shengjun Zhou, Xin Wang, Yuqiang Zhu and Yuyan Sun
Foods 2025, 14(10), 1753; https://doi.org/10.3390/foods14101753 - 15 May 2025
Viewed by 393
Abstract
Sponge gourd fruit is highly favored by consumers because of its nutritional and medicinal properties. Continuous increases in living standards have led to an increase in the demand for high-quality fruits and vegetables. Hence, we explored the mechanisms that regulate fruit taste development. [...] Read more.
Sponge gourd fruit is highly favored by consumers because of its nutritional and medicinal properties. Continuous increases in living standards have led to an increase in the demand for high-quality fruits and vegetables. Hence, we explored the mechanisms that regulate fruit taste development. Specifically, two sponge gourd materials, ZS203 (GT) and ZAAS-106 (BT), which differ in fruit taste, were selected for transcriptomic and metabolomic analyses. Ascorbic acid, soluble solids, and crude protein contents were significantly higher in GT than in BT. Similarly, the lysine, phenylalanine, and tryptophan contents were higher in GT than in BT (1.48-, 1.60-, and 1.38 times higher, respectively). Transcriptomic analysis of GT and BT fruits identified 1821 upregulated and 1185 downregulated differentially expressed genes (DEGs) in GT, while metabolomic analysis detected 25 upregulated differentially accumulated metabolites (DAMs) and 28 downregulated DAMs in GT. A correlation analysis suggested that DAMs and DEGs related to vitamin B6 metabolism, tryptophan metabolism, and phenylalanine metabolism contribute to the differences in sponge gourd fruit taste; a potential mechanism underlying this diversity was proposed. Additionally, expression data for the 15 DEGs were consistent between transcriptomic and qRT-PCR analyses. Notably, this study revealed a potential mechanism for regulating differences in sponge gourd fruit taste, with possible implications for breeding novel varieties with optimized fruit taste. Full article
(This article belongs to the Special Issue Application of Metabolomics in Enhancing Food Texture and Flavor)
Show Figures

Figure 1

22 pages, 2221 KiB  
Article
Luminal Sweet Sensing and Enteric Nervous System Participate in Regulation of Intestinal Glucose Transporter, GLUT2
by Andrew W. Moran, Miran Alrammahi, Kristian Daly, Darren Weatherburn, Catherine Ionescu, Alexandra Blanchard and Soraya P. Shirazi-Beechey
Nutrients 2025, 17(9), 1547; https://doi.org/10.3390/nu17091547 - 30 Apr 2025
Viewed by 686
Abstract
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence [...] Read more.
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence has shown that sensing of sweet compounds by the gut-expressed sweet taste receptor T1R2–T1R3 and glucagon-like peptide-2 receptor signalling are components of the pathway controlling SGLT1 expression, little is known about the mechanisms involved in the regulation of GLUT2. In this study, we tested the hypothesis that T1R2–T1R3 and its downstream signalling pathway participate in the regulation of intestinal GLUT2. Methods: We used in vivo and in vitro approaches employing a weaning pig model, a heterologous expression assay, and knockout mice for elucidating the regulation of GLUT2 by luminal sugars. Results: A plant-based sweetener formulation included in piglets’ diet led to a marked increase in GLUT2 expression in piglets’ intestine, compared to controls. The sweeteners that do not activate pig T1R2–T1R3 failed to upregulate GLUT2. There was a significant increase in GLUT2 expression when the sweetener sucralose, which activates T1R2–T1R3, was included in the drinking water of wild-type mice. However, in knockout mice, in which the genes for the sweet receptor subunit T1R3 and the associated G-protein gustducin were deleted, there was no upregulation of GLUT2 expression in response to sucralose supplementation. There was a notable increase in GLUT2 expression in wild-type mice fed a high-carbohydrate diet compared to when maintained on a low-carbohydrate diet. However, in GLP-2 receptor knockout mice kept on the high-carbohydrate diet, there was no enhancement in GLUT2 expression. Conclusions: The experimental evidence suggests that luminal sweet sensing via T1R2–T1R3 and the enteroendocrine-derived GLP-2 are constituents of the regulatory pathway controlling GLUT2 expression. Full article
(This article belongs to the Special Issue The Interaction Between Flavor and Diet)
Show Figures

Figure 1

Back to TopTop