Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = tapelaying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6884 KiB  
Article
Design of Computer Numerical Control System for Fiber Placement Machine Based on Siemens 840D sl
by Kun Xia, Di Zhao, Qingqing Yuan, Jingxia Wang and Aodong Shen
Sensors 2025, 25(9), 2799; https://doi.org/10.3390/s25092799 - 29 Apr 2025
Viewed by 619
Abstract
To address the manufacturing demands of large-scale aerospace composite components, this study systematically investigates the coordinated motion characteristics of multi-axis systems in fiber placement equipment. This investigation is based on the structural features and process specifications of the equipment. A comprehensive motion control [...] Read more.
To address the manufacturing demands of large-scale aerospace composite components, this study systematically investigates the coordinated motion characteristics of multi-axis systems in fiber placement equipment. This investigation is based on the structural features and process specifications of the equipment. A comprehensive motion control scheme for grid-based fiber placement machines was developed using the Siemens 840D CNC system, integrating filament-winding and tape-laying functionalities on a unified control platform while enabling 10-axis synchronous motion. To mitigate thermal-induced errors, a compensation method incorporating a BP neural network optimized by a genetic algorithm with an enhanced fitness function (GA-BP) was proposed. Experimental results demonstrate significant improvements: the maximum thermal errors of the Z-axis and X3-axis were reduced by 36.7% and 53.3%, respectively, while the core mold placement time was reduced to 61% of the specified duration, with notable enhancements in trajectory accuracy and processing efficiency. This research provides a technical framework for the design of multi-axis cooperative control systems and thermal error compensation in automated fiber placement equipment, offering critical insights for advancing manufacturing technologies in aerospace composite applications. The proposed methodology highlights practical value in balancing precision, efficiency, and system integration for complex composite component production. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

23 pages, 12050 KiB  
Article
Stiffness Retention in Cyclic-Loaded CFRP Composites Produced via Novel Automatic Tape Laying
by Ashley Blythe, Bronwyn Fox, Mostafa Nikzad, Boris Eisenbart and Boon Xian Chai
J. Compos. Sci. 2024, 8(3), 92; https://doi.org/10.3390/jcs8030092 - 3 Mar 2024
Cited by 21 | Viewed by 2108
Abstract
Sixteen-head automatic tape laying of non-crimped carbon-fibre-reinforced plastic is performed, and the fibre alignment is compared with that produced via hand laying. The effect of fibre alignment is tested via quasi-static and cyclic three-point bending tests. Using the Fill Multilayer (a 16-head tape-laying [...] Read more.
Sixteen-head automatic tape laying of non-crimped carbon-fibre-reinforced plastic is performed, and the fibre alignment is compared with that produced via hand laying. The effect of fibre alignment is tested via quasi-static and cyclic three-point bending tests. Using the Fill Multilayer (a 16-head tape-laying machine), precision fibre laying of unidirectional fabrics is performed with deliberate misalignment to examine the effect of fibre orientation and investigate the random effect on longitudinal misalignment. The automatic tape-layered coupons are compared with hand-layered carbon fibre tapes to investigate the relationship between the fibre alignment and the flexural strength. A 52% reduction in the fibre alignment scatter is achieved via the Fill Multilayer. Fibre orientation increases lead to a higher flexural strength of 16.08% for Fill Multilayer-made coupons compared with hand-layered samples. An investigation of the correlation between fibre alignment and flexural strength shows that shear-based failure increases exponentially as the alignment decreases. Fill Multilayer-made coupons have a higher void concentration due to ultrasonic welding, but also the highest modulus and flexural strength, as fibre misalignment is reduced to 1.68°, with a modulus degradation of 1.4%. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

20 pages, 15289 KiB  
Article
Processing and Analysis of Hybrid Fiber-Reinforced Polyamide Composite Structures Made by Fused Granular Fabrication and Automated Tape Laying
by Patrick Hirsch, Simon Scholz, Benjamin Borowitza, Moritz Vyhnal, Ralf Schlimper, Matthias Zscheyge, Ondrej Kotera, Michaela Stipkova and Sebastian Scholz
J. Manuf. Mater. Process. 2024, 8(1), 25; https://doi.org/10.3390/jmmp8010025 - 1 Feb 2024
Cited by 6 | Viewed by 3300
Abstract
Fused granular fabrication (FGF) is a large format additive manufacturing (LFAM) technology and focuses on cost-effective granulate-based manufacturing by eliminating the need for semifinished filaments. This allows a faster production time and a broader range of usable materials for tailored composites. In this [...] Read more.
Fused granular fabrication (FGF) is a large format additive manufacturing (LFAM) technology and focuses on cost-effective granulate-based manufacturing by eliminating the need for semifinished filaments. This allows a faster production time and a broader range of usable materials for tailored composites. In this study, the mechanical and morphological properties of FGF test structures made of polyamid 6 reinforced with 40% of short carbon fibers were investigated. For this purpose, FGF test structures with three different parameter settings were produced. The FGF printed structures show generally significant anisotropic mechanical characteristics, caused by the layer-by-layer building process. To enhance the mechanical properties and reduce the anisotropic behavior of FGF structures, continuous unidirectional fiber-reinforced tapes (UD tapes), employing automated tape laying (ATL), were subsequently applied. Thus, a significant improvement in the flexural stiffness and strength of the manufactured FGF structures was observed by hybridization with 60% glass fiber-reinforced polyamide 6 UD tapes. Since the effectiveness of UD-tape reinforcement depends mainly on the quality of the bond between the UD tape and the FGF structure, the surface quality of the FGF structure, the interface morphology, and the tape-laying process parameters were investigated. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

19 pages, 22385 KiB  
Article
Load-Oriented Nonplanar Additive Manufacturing Method for Optimized Continuous Carbon Fiber Parts
by Johann Kipping and Thorsten Schüppstuhl
Materials 2023, 16(3), 998; https://doi.org/10.3390/ma16030998 - 21 Jan 2023
Cited by 21 | Viewed by 4199
Abstract
The process of the additive manufacturing (AM) of carbon-fiber-reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM) has seen considerable research in recent years, which amplifies the importance of adapted slicing and pathplanning methods. In particular, load-oriented techniques are [...] Read more.
The process of the additive manufacturing (AM) of carbon-fiber-reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM) has seen considerable research in recent years, which amplifies the importance of adapted slicing and pathplanning methods. In particular, load-oriented techniques are of high interest when employing carbon fiber materials, as classical methods, such as tape-laying and laminating, struggle with highly curved and complex geometries and require the costly production of molds. While there have been some promising propositions in this field, most have restricted themselves to a planar slicing approach, which severely limits the ability to place the fibers along stress paths. In this paper, a nonplanar slicing approach is presented that utilizes principal stress directions to construct optimized nonplanar constituting layers on which pathplanning can be carried out. These layers are oriented such that the effect of the weak interlayer adhesion is minimized. Support material is adaptively generated to enable the use of arbitrary part geometry. Furthermore, a continuous pathplanning method and post-processor are applied to yield manufacturing instructions. The approach is verified for its viability of application through experimental investigation on a multi-axis robotic 3D printer. This constitutes an important step in allowing the fabrication of CFRP parts to further utilize the possibilities of additive manufacturing. Full article
(This article belongs to the Special Issue 3D Printing: Materials, Properties, and Applications)
Show Figures

Figure 1

16 pages, 5562 KiB  
Article
Prediction of Gaps in Automated Tape Laying and Their Influence on Porosity in Consolidated Laminates
by Tobias Link, Philipp Rosenberg and Frank Henning
J. Compos. Sci. 2022, 6(7), 207; https://doi.org/10.3390/jcs6070207 - 15 Jul 2022
Cited by 3 | Viewed by 2467
Abstract
An efficient way to reduce direct operating costs in aerospace applications is to lower the overall weight. In this context, thermoplastic composites offer a high potential for weight reduction. However, their application requires time and cost-optimized process technologies. Thermoplastic tape laying with subsequent [...] Read more.
An efficient way to reduce direct operating costs in aerospace applications is to lower the overall weight. In this context, thermoplastic composites offer a high potential for weight reduction. However, their application requires time and cost-optimized process technologies. Thermoplastic tape laying with subsequent out-of-autoclave consolidation represents such a process technology. Typical process chains consist of several automated steps that can influence the component’s quality. Hence, a cross-process approach is applied to identify relevant process parameters. This paper focuses on minimizing the gaps between parallel-placed tapes and thereby reducing their influence on the laminate’s porosity. A geometrical model is developed and validated to predict the maximum gap sizes for a tape-laying process as a function of process accuracy, material accuracy, and process parameters. Based on this, a methodological approach is presented to minimize the influence of gaps on porosity. It is validated using automated tape laying and a novel low-pressure consolidation process. The findings make an important contribution to understanding the development of porosity along the process chain for the manufacture of thermoplastic composites for aerospace applications. It can be shown that the approach enables the prediction of gap sizes and allows to minimize their influence on porosity. Full article
Show Figures

Figure 1

16 pages, 9716 KiB  
Article
A Set of Novel Procedures for Carbon Fiber Reinforcement on Complex Curved Surfaces Using Multi Axis Additive Manufacturing
by Johann Kipping, Zsolt Kállai and Thorsten Schüppstuhl
Appl. Sci. 2022, 12(12), 5819; https://doi.org/10.3390/app12125819 - 8 Jun 2022
Cited by 12 | Viewed by 3478
Abstract
There has been considerable research in recent years on the additive manufacturing (AM) of carbon fiber reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM). The currently-applied steps within the manufacturing pipeline, such as slicing and path planning, consider [...] Read more.
There has been considerable research in recent years on the additive manufacturing (AM) of carbon fiber reinforced polymer (CFRP) parts based on the process of fused deposition modeling (FDM). The currently-applied steps within the manufacturing pipeline, such as slicing and path planning, consider only the planar case of filament deposition and mostly make no use of the possibility to place single pre-impregnated (prepreg) filaments. Classical methods such as tape-laying and laminating struggle with highly curved and complex geometries and require the costly production of molds, whereas when using AM, these geometries can be realized more easily and molds can be created using the same process. In this paper, a set of algorithms is presented that aims to resolve these problems. Criteria are formulated which enable the goal oriented development and evaluation of the presented methods and represent metrics for future methods. The developed algorithms enable the use of both continuous and discontinuous fiber patches in a much wider range of applications in designing and manufacturing of CFRPs. This opens up new possibilities in this promising field. The developed metrics and infrastructure further constitute progress in the field of multi-axis non-planar path planning for slicing algorithms in general and the conducted evaluation proves the formal applicability of the developed algorithms. Full article
(This article belongs to the Special Issue Recent Trends on the Mechanical Properties of Additive Manufacturing)
Show Figures

Figure 1

14 pages, 1107 KiB  
Article
Temperature Control for Automated Tape Laying with Infrared Heaters Based on Reinforcement Learning
by Martin Römer, Johannes Bergers, Felix Gabriel and Klaus Dröder
Machines 2022, 10(3), 164; https://doi.org/10.3390/machines10030164 - 22 Feb 2022
Cited by 11 | Viewed by 3948
Abstract
The use of fiber-reinforced lightweight materials in the field of electromobility offers great opportunities to increase the range of electric vehicles and also enhance the functionality of the components themselves. In order to meet the demand for a high number of variants, flexible [...] Read more.
The use of fiber-reinforced lightweight materials in the field of electromobility offers great opportunities to increase the range of electric vehicles and also enhance the functionality of the components themselves. In order to meet the demand for a high number of variants, flexible production technologies are required which can quickly adapt to different component variants and thereby avoid long setup times of the required production equipment. By applying the formflexible process of automated tape laying (ATL), it is possible to build lightweight components in a variant-flexible way. Unidirectional (UD) tapes are often used to build up lightweight structures according to a predefined load path. However, the UD tape which is used to build the components is particularly sensitive to temperature fluctuations due to its low thickness. Temperature fluctuations within the production sites as well as the warming of the tape layer and the deposit surface over longer process times have an impact on the heat flow which is infused to the tape and make an adaptive control of the tape heating indispensable. At present, several model-based control strategies are available. However, these strategies require a comprehensive understanding of the ATL system and its environment and are therefore difficult to design. With the possibility of model-free reinforcement learning, it is possible to build a temperature control system that learns the common dependencies of both the process being used and its operating environment, without the need to rely on a complete understanding of the physical interrelationships. In this paper, a reinforcement learning approach based on the deep deterministic policy gradient (DDPG) algorithm is presented, with the aim to control the temperature of an ATL endeffector based on infrared emitters. The algorithm was adapted to the thermal inertia of the system and trained in a real process environment. With only a small amount of training data, the trained DDPG agent was able to reliably maintain the ATL process temperatures within a specified tolerance range. By applying this technique, UD tape can be deposited at a consistent process temperature over longer process times without the need for a cooling system. Reducing process complexity can help to increase the prevalence of lightweight components and thus contribute to lower energy consumption of electric vehicles. Full article
Show Figures

Figure 1

31 pages, 958 KiB  
Article
Modelling the Heating Process in the Transient and Steady State of an In Situ Tape-Laying Machine Head
by Jhonny de Sá Rodrigues, Paulo Teixeira Gonçalves, Luis Pina and Fernando Gomes de Almeida
J. Manuf. Mater. Process. 2022, 6(1), 8; https://doi.org/10.3390/jmmp6010008 - 11 Jan 2022
Cited by 4 | Viewed by 4177
Abstract
As the use of composite materials increases, the search for suitable automated processes gains relevance for guaranteeing production quality by ensuring the uniformity of the process, minimizing the amount of scrap generated, and reducing the time and energy consumption. Limitations on production by [...] Read more.
As the use of composite materials increases, the search for suitable automated processes gains relevance for guaranteeing production quality by ensuring the uniformity of the process, minimizing the amount of scrap generated, and reducing the time and energy consumption. Limitations on production by traditional means such as hand lay-up, vacuum bagging, and in-autoclave methods tend not to be as efficient when the size and shape complexity of the part being produced increases, motivating the search for alternative processes such as automated tape laying (ATL). This work aims to describe the process of modelling and simulating a composite ATL with in situ consolidation by characterizing the machine elements and using the finite differences method in conjunction with energy balances in order to create a digital twin of the process for further control design. The modelling approach implemented is able to follow the process dynamics when changes are made to the heating element and to predict the composite material temperature response, making it suitable for use as a digital twin of a production process using an ATL machine. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems)
Show Figures

Figure 1

Back to TopTop