Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,149)

Search Parameters:
Keywords = tannin extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2553 KB  
Article
Biotechnological Potential of Algerian Saffron Floral Residues: Recycling Phytochemicals with Antimicrobial Activity
by Nouria Meliani, Bouchra Loukidi, Larbi Belyagoubi, Nabila Belyagoubi-Benhammou, Salim Habi, Alessia D’Agostino, Antonella Canini, Saber Nahdi, Nassima Mokhtari Soulimane, Angelo Gismondi, Abdel Halim Harrath, Erdi Can Aytar and Gabriele Di Marco
Biology 2026, 15(2), 197; https://doi.org/10.3390/biology15020197 - 21 Jan 2026
Abstract
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the [...] Read more.
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the possible interactions between saffron tepal metabolites and bacterial target proteins. In parallel, antioxidant activity was assessed using radical scavenging assays, whereas antimicrobial potential (i.e., MIC, MBC, and MFC) was tested against selected bacterial strains. Results indicated that aqueous successive and crude extracts yielded the highest concentrations of polyphenols, flavonoids, and condensed tannins. In detail, HPLC-DAD analysis specifically identified significant levels of gallic acid, epicatechin, and various anthocyanins. These extracts demonstrated robust antioxidant and antimicrobial activities. This latter evidence was corroborated by the docking analyses, which revealed that chlorogenic acid and petunidin-3-glucoside exhibited high binding affinities for 2NRK and 2NZF, whereas epicatechin and pelargonidin effectively targeted 8ACR. These findings underscore the therapeutic potential of C. sativus tepals as natural bioactive agents, suggesting a promising role in overcoming antibiotic resistance and supporting their development for pharmaceutical applications. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Graphical abstract

16 pages, 6138 KB  
Article
Influence of Phlai (Zingiber montanum) and Njui (Bombax ceiba) Extracts in Bull Semen Extender on Antioxidant Activity and Sperm Quality
by Jiraporn Laoung-on, Nopparuj Outaitaveep, Jakree Jitjumnong, Sakaewan Ounjaijean and Kongsak Boonyapranai
Molecules 2026, 31(2), 368; https://doi.org/10.3390/molecules31020368 - 20 Jan 2026
Abstract
Infertility represents a significant global health issue, and the use of antioxidants in sperm preservation techniques provides an effective strategy to improve sperm quality. This study aims to examine the phytochemical components of Phlai and Njui extracts and their antioxidant effects on enhancing [...] Read more.
Infertility represents a significant global health issue, and the use of antioxidants in sperm preservation techniques provides an effective strategy to improve sperm quality. This study aims to examine the phytochemical components of Phlai and Njui extracts and their antioxidant effects on enhancing the motility of fresh bull semen. Among the extracts, Njui contained the highest levels of total phenolics, total tannins, and lycopene contents along with the strongest DPPH, ABTS, and AOPP inhibition. Phlai contained the highest levels of total flavonoids. Njui and combined extracts showed the strongest AGE inhibition. The motility of sperm in the semen extender supplemented with Phlai, Njui, and their combination exhibited greater total motility, particularly progressive motility, compared to sperm in the normal extender after 48–72 h. Furthermore, there was a reduced generation of ROS compared to sperm in the normal extender and with vitamin E acetate supplementation after 24–72 h. In conclusion, Phlai and Njui extracts, plentiful in bioactive chemicals, showed significant antioxidant activity and enhanced sperm motility by neutralizing free radicals and strengthening antioxidant defenses. The findings indicate that Phlai and Njui, especially in combination, provide advantages for sperm preservation. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants: Extraction and Application)
Show Figures

Figure 1

20 pages, 1746 KB  
Article
Antimycobacterial Mechanisms and Anti-Virulence Activities of Polyphenolic-Rich South African Medicinal Plants Against Mycobacterium smegmatis
by Matsilane L. Mashilo, Mashilo M. Matotoka and Peter Masoko
Microorganisms 2026, 14(1), 239; https://doi.org/10.3390/microorganisms14010239 - 20 Jan 2026
Abstract
The rise of multidrug-resistant tuberculosis (TB) necessitates alternative therapeutic sources. This study investigated the polyphenolic content and the antioxidant, antimycobacterial, and anti-virulence activities of selected medicinal plants traditionally used to treat TB and related symptoms. Total phenolics, tannins, and flavonoids were quantified using [...] Read more.
The rise of multidrug-resistant tuberculosis (TB) necessitates alternative therapeutic sources. This study investigated the polyphenolic content and the antioxidant, antimycobacterial, and anti-virulence activities of selected medicinal plants traditionally used to treat TB and related symptoms. Total phenolics, tannins, and flavonoids were quantified using colorimetric assays. Antioxidant capacity was assessed via DPPH and ferric-reducing power assays. Antimycobacterial activity against Mycobacterium smegmatis was evaluated using broth microdilution, growth kinetics, cell constituent leakage, and respiratory chain dehydrogenase inhibition assays. Anti-virulence effects were examined using crystal violet biofilm and swarming motility assays. Tarchonanthus camphoratus showed the highest polyphenolic levels and, together with Combretum hereroense, strong antioxidant activity. Extracts of Senecio macroglossus, Nerium oleander, and Tetradenia riparia displayed potent antimycobacterial activity (MIC = 0.16 mg/mL), characterized by delayed exponential growth, membrane damage, and metabolic inhibition. Tabernaemontana elegans exhibited the weakest activity (MIC > 2.5 mg/mL). Most extracts also significantly impaired motility (12–100%) and early-stage biofilm formation. Polyphenolic-rich plant extracts demonstrated promising antimycobacterial and anti-virulence properties against M. smegmatis, highlighting their potential as leads for developing novel anti-TB agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

21 pages, 1329 KB  
Review
Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves
by Stefania Lamponi, Roberta Barletta and Annalisa Santucci
Life 2026, 16(1), 140; https://doi.org/10.3390/life16010140 - 15 Jan 2026
Viewed by 180
Abstract
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging [...] Read more.
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging from metabolic regulators to anti-virulence agents, rather than interchangeable sources of polyphenols. Although traditionally discarded, these by-products are rich sources of polyphenols, ellagitannins, and flavonoids, with promising potential for nutraceutical, cosmetic, and pharmaceutical applications. This review examines recent advances in the valorization of chestnut by-products, focusing on extraction strategies, chemical profiles, and biological activities. Shell valorization has increasingly shifted toward green extraction technologies, such as subcritical water extraction and deep eutectic solvents, which strongly influence bioactive recovery and composition. Chestnut leaves emerge as a sustainable resource enriched in hydrolysable tannins with anti-inflammatory and quorum sensing-inhibitory properties, particularly relevant for dermatological applications. Spiny burs, often the most phenolic-rich fraction, display marked antioxidant activity and the ability to potentiate conventional antibiotics against pathogens such as Helicobacter pylori. Despite these promising features, major challenges remain, including cultivar-dependent chemical variability, the predominance of in vitro evidence, and safety concerns related to the accumulation of potentially toxic elements. Overall, while chestnut by-products represent valuable resources within circular bioeconomy frameworks, their successful industrial and practical translation will require standardized extraction protocols, robust bioavailability assessments, and well-designed in vivo and clinical studies to ensure safety and efficacy. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

29 pages, 8991 KB  
Article
Exploration and Preliminary Investigation of Wiled Tinospora crispa: A Medicinal Plant with Promising Anti-Inflammatory and Antioxidant Properties
by Salma Saddeek
Curr. Issues Mol. Biol. 2026, 48(1), 70; https://doi.org/10.3390/cimb48010070 - 9 Jan 2026
Viewed by 204
Abstract
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in [...] Read more.
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in chemotype, bioactivity, and safety, and how this might support or refine traditional use. Study Objectives: This study aimed to compare wild and cultivated ecotypes of T. crispa from the Nile Delta (Egypt) in terms of quantitative and qualitative phytochemical profiles; selected in vitro biological activities (especially antioxidant and cytotoxic actions); genetic markers potentially associated with metabolic variation; and short-term oral safety in an animal model. Core Methodology: Standardized extraction of plant material from wild and cultivated ecotypes. Determination of total phenolics, total flavonoids, and major phytochemical classes (alkaloids, tannins, terpenoids). Metabolomic characterization using UHPLC-ESI-QTOF-MS, supported by NMR, to confirm key compounds such as berberine, palmatine, chlorogenic acid, rutin, and borapetoside C. In vitro bioassays including: Antioxidant activity (e.g., radical-scavenging assay with EC50 determination). Cytotoxicity against human cancer cell lines, with emphasis on HepG2 hepatoma cells and calculation of IC50 values. Targeted genetic analysis to detect single-nucleotide polymorphisms (SNPs) in the gen1 locus that differentiate ecotypes. A 14-day oral toxicity study in rats, assessing liver and kidney function markers and performing histopathology of liver and kidney tissues. Principal Results: The wild ecotype showed a 43–65% increase in total flavonoid and polyphenol content compared with the cultivated ecotype, as well as substantially higher levels of key alkaloids, particularly berberine (around 12.5 ± 0.8 mg/g), along with elevated chlorogenic acid and borapetoside C. UHPLC-MS and NMR analyses confirmed the identity of the main bioactive constituents and defined a distinct chemical fingerprint for the wild chemotype. Bioassays demonstrated stronger antioxidant activity of the wild extract than the cultivated one and selective cytotoxicity of the wild extract against HepG2 cells (IC50 ≈ 85 µg/mL), being clearly more potent than extracts from cultivated plants. Genetic profiling detected a C → T SNP within the gen1 region that differentiates the wild ecotype and may be linked to altered biosynthetic regulation. The 14-day oral toxicity study (up to 600 mg/kg) revealed no evidence of hepatic or renal toxicity, with biochemical markers remaining within physiological limits and normal liver and kidney histology. Conclusions and Future Perspectives: The wild Nile-Delta ecotype of T. crispa appears to be a stress-adapted chemotype characterized by enriched levels of multiple bioactive metabolites, superior in vitro bioactivity, and an encouraging preliminary safety margin. These findings support further evaluation of wild T. crispa as a candidate source for standardized botanical preparations targeting oxidative stress-related and hepatic pathologies, while emphasizing the need for: More comprehensive in vivo efficacy studies. Cultivation strategies that deliberately maintain or mimic beneficial stress conditions to preserve phytochemical richness. Broader geographical and genetic sampling to assess how generalizable the present chemotypic and bioactivity patterns are across the species. Full article
(This article belongs to the Special Issue Advances in Phytochemicals: Biological Activities and Applications)
Show Figures

Graphical abstract

23 pages, 7764 KB  
Article
Dose- and Time-Dependent Modulation of Cx43 and Cx45 Expression and Gap Junction Conductance by Resveratrol
by Gintarė Jančiukė, Rokas Mickus, Vytautas Raškevičius, Vytenis Arvydas Skeberdis and Ieva Sarapinienė
Antioxidants 2026, 15(1), 88; https://doi.org/10.3390/antiox15010088 - 9 Jan 2026
Viewed by 363
Abstract
Plant extracts are rich in various bioactive compounds, such as polyphenols, flavonoids, tannins, terpenoids, phenolic acids, saponins, alkaloids, and polysaccharides. Antioxidant polyphenols are increasingly attracting attention, not only as dietary components but also as valuable food industry byproducts. Resveratrol, present in a wide [...] Read more.
Plant extracts are rich in various bioactive compounds, such as polyphenols, flavonoids, tannins, terpenoids, phenolic acids, saponins, alkaloids, and polysaccharides. Antioxidant polyphenols are increasingly attracting attention, not only as dietary components but also as valuable food industry byproducts. Resveratrol, present in a wide range of plants, is well recognized for its diverse biological activities, including antioxidant, antitumor, cardioprotective, and neuroprotective effects. Given the importance of intercellular communication in these physiological processes, gap junctions (GJs) composed of connexin (Cx) family proteins are of particular interest because they provide a direct pathway for electrical and metabolic signaling and are key players in maintaining normal organ function and cell development. Aberrations of GJ intercellular communication (GJIC) may result in the progression of cardiovascular and neurological diseases and tumorigenesis. Cx43 and Cx45 play crucial roles in cardiac excitation and contraction, and alterations in their expression are associated with disrupted impulse propagation and the development of arrhythmias. In this study, for the first time, we performed a comparative analysis of the effect of resveratrol on Cx43 and Cx45 GJIC using molecular modeling, a dual whole-cell patch-clamp technique to directly measure GJ conductance (gj), and other approaches. Our results revealed that resveratrol accomplished the following: (1) inhibited GJ gj in Cx43- but enhanced it in Cx45-expressing HeLa cells; (2) exerted dose- and time-dependent changes in Cx expression and plaque size; (3) reduced cell viability and proliferation; (4) and altered Cx43 phosphorylation patterns linked to gating and plaque stability. Overall, resveratrol modulates GJIC in a dose-, time-, and connexin type-specific manner. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

30 pages, 1428 KB  
Review
Greening the Bond: A Narrative and Systematic Literature Review on Advancing Sustainable and Non-Toxic Adhesives for the Fiberboard Industry
by Prosper Mensah, Rafael Rodolfo de Melo, Alexandre Santos Pimenta, James Amponsah, Gladys Tuo, Fernando Rusch, Edgley Alves de Oliveira Paula, Humphrey Danso, Juliana de Moura, Márcia Ellen Chagas dos Santos Couto, Giorgio Mendes Ribeiro and Francisco Leonardo Gomes de Menezes
Adhesives 2026, 2(1), 2; https://doi.org/10.3390/adhesives2010002 - 8 Jan 2026
Viewed by 327
Abstract
The fiberboard industry remains heavily reliant on synthetic, formaldehyde-based adhesives, which, despite their cost-effectiveness and strong bonding performance, present significant environmental and human health concerns due to volatile organic compound (VOC) emissions. In response to growing sustainability imperatives and regulatory pressures, the development [...] Read more.
The fiberboard industry remains heavily reliant on synthetic, formaldehyde-based adhesives, which, despite their cost-effectiveness and strong bonding performance, present significant environmental and human health concerns due to volatile organic compound (VOC) emissions. In response to growing sustainability imperatives and regulatory pressures, the development of non-toxic, renewable, and high-performance bio-based adhesives has emerged as a critical research frontier. This review, conducted through both narrative and systematic approaches, synthesizes current advances in green adhesive technologies with emphasis on lignin, tannin, starch, protein, and hybrid formulations, alongside innovative synthetic alternatives designed to eliminate formaldehyde. The Evidence for Policy and Practice Information and Coordinating Centre (EPPI) framework was applied to ensure a rigorous, transparent, and reproducible methodology, encompassing the identification of research questions, systematic searching, keywording, mapping, data extraction, and in-depth analysis. Results reveal that while bio-based adhesives are increasingly capable of approaching or matching the mechanical strength and durability of urea–formaldehyde adhesives, challenges persist in terms of water resistance, scalability, cost, and process compatibility. Hybrid systems and novel crosslinking strategies demonstrate particular promise in overcoming these limitations, paving the way toward industrial viability. The review also identifies critical research gaps, including the need for standardized testing protocols, techno-economic analysis, and life cycle assessment to ensure the sustainable implementation of these solutions. By integrating environmental, economic, and technological perspectives, this work highlights the transformative potential of green adhesives in transitioning the fiberboard sector toward a low-toxicity, carbon-conscious future. It provides a roadmap for research, policy, and industrial innovation. Full article
(This article belongs to the Special Issue Advances in Bio-Based Wood Adhesives)
Show Figures

Figure 1

23 pages, 5498 KB  
Article
The Effect of a Cactus-Based Natural Coagulant on the Physical–Chemical and Bacteriological Quality of Drinking Water: Batch and Continuous Mode Studies
by Abderrezzaq Benalia, Ouiem Baatache, Kerroum Derbal, Amel Khalfaoui, Loqmen Atime, Antonio Pizzi, Gennaro Trancone and Antonio Panico
Water 2026, 18(2), 138; https://doi.org/10.3390/w18020138 - 6 Jan 2026
Viewed by 398
Abstract
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including [...] Read more.
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including Ca-J, Ca-H2O, Ca-NaOH (0.05 M), Ca-NaCl (0.5 M), and Ca-HCl (0.05 M), and their performance was evaluated using jar test experiments. The removal efficiencies of total coliforms (TC), anaerobic sulfite-reducing bacteria (ASRB), total suspended solids (TSS), and turbidity were assessed, and the most effective extract was subsequently tested in a semi-industrial pilot-scale coagulation–flocculation–settling system. The physicochemical properties of the Cactus material were characterized using FTIR, SEM, XRD, and MALDI-TOF analyses. Results revealed bioactive components, including carbohydrates, proteins, tannins, flavonoids, and glucose, with functional groups (carboxyl, hydroxyl, carbonyl) responsible for coagulation. XRD and SEM analyses showed a semi-crystalline structure and a heterogeneous surface with fiber networks, while MALDI-TOF confirmed the presence of flavonoid and tannin compounds. These features collectively contribute to the effective removal of turbidity, suspended solids, and microbial contaminants. Among the tested extracts, Ca-NaOH (0.05 M) exhibited the highest removal efficiencies, achieving 100% removal of TC and ASRB, 94.15% removal of TSS, and 70.38% turbidity reduction under laboratory conditions. Pilot-scale application of this extract resulted in a turbidity reduction of 66.65%. Additional water quality parameters, including total alkalinity (TA), total dissolved solids (TDS), pH, and electrical conductivity (EC), were monitored to evaluate process performance. Overall, the results highlight the strong potential of Cactus leaves as an effective, cost-efficient, and environmentally friendly alternative to conventional chemical coagulants. However, further research is required to enhance their scalability and commercialization. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 1671 KB  
Article
Tapirira obtusa Bark as a Natural Agent for Inflammation Reduction and Infection Control in Orotracheal Tubes
by Soraia Salman, Josy Goldoni Lazarini, Daniel Saraiva Lopes, Tatiane Tiemi Macedo, Diego Romario-Silva, Maria Ligia Rodrigues Macedo, Pedro Luiz Rosalen, Rosemary Matias, Severino Matias de Alencar and Janaina de Cássia Orlandi Sardi
Hygiene 2026, 6(1), 1; https://doi.org/10.3390/hygiene6010001 - 5 Jan 2026
Viewed by 184
Abstract
Background: Tracheostomy procedures are associated with increased risk of nosocomial infections due to microbial colonization and biofilm formation on tube surfaces. These biofilms contribute to persistent infections and hinder clinical recovery. Plant-derived products have gained interest as alternative strategies for preventing device-associated infections. [...] Read more.
Background: Tracheostomy procedures are associated with increased risk of nosocomial infections due to microbial colonization and biofilm formation on tube surfaces. These biofilms contribute to persistent infections and hinder clinical recovery. Plant-derived products have gained interest as alternative strategies for preventing device-associated infections. Methods: This study evaluated the phytochemical composition and the antimicrobial, anti-adherent, antibiofilm, anti-inflammatory, antioxidant, and toxicity properties of Tapirira obtusa bark extract (TOBE). Antimicrobial activity was determined by minimum inhibitory concentrations (MICs). Biofilm formation and microbial viability were assessed in mono- and mixed-species biofilms. Anti-inflammatory effects were evaluated by NF-κB inhibition and TNF-α quantification. Antioxidant activity was measured using the DPPH assay. Phytochemical analysis identified major bioactive groups, and toxicity was tested in the Galleria mellonella model. Results: TOBE exhibited notable antimicrobial activity, with MIC values between 3.9 and 31.25 µg/mL. At 78 µg/mL, the extract significantly reduced biofilm biomass and microbial viability (p < 0.05). TOBE also downregulated NF-κB activation and decreased TNF-α levels. Antioxidant assays confirmed radical-scavenging capacity. Phytochemical screening revealed phenolics, flavonoids, and tannins, and toxicity results indicated a safe profile. Conclusion: TOBE effectively inhibits microbial growth and biofilm development on orotracheal tube surfaces while exhibiting anti-inflammatory and antioxidant properties without detectable toxicity. These findings support its potential as a plant-based adjunct for preventing tracheostomy-related infections and improving patient outcomes. Full article
Show Figures

Figure 1

20 pages, 1448 KB  
Review
Valorization and Environmental Impacts of Pecan Waste: A Critical Review
by Jean Louis Yannick Omotonoko, Michael Polozola, Andrej Svyantek and Zhuoyu Wang
Foods 2026, 15(1), 168; https://doi.org/10.3390/foods15010168 - 4 Jan 2026
Viewed by 410
Abstract
Pecan (Carya illinoinensis) cultivation generates a substantial number of byproducts, particularly nutshells, which are often discarded despite being rich in bioactive and structural compounds. These agro-industrial residues, comprising nearly 50% of the total nut mass, contain high levels of phenolics, flavonoids, [...] Read more.
Pecan (Carya illinoinensis) cultivation generates a substantial number of byproducts, particularly nutshells, which are often discarded despite being rich in bioactive and structural compounds. These agro-industrial residues, comprising nearly 50% of the total nut mass, contain high levels of phenolics, flavonoids, dietary fiber, and lignocellulosic matter, making them suitable for circular economy applications. This review critically evaluates the potential of pecan shell waste for value-added applications in environmental remediation, food and pharmaceutical formulations, and green materials production. It explores innovative green extraction techniques, such as ultrasound-assisted, microwave-assisted, and subcritical water extraction, to recover valuable compounds like ellagic acid and tannins with high efficiency and minimal environmental impact. Moreover, the review highlights the conversion of pecan shells into activated carbon for wastewater treatment and soil remediation. Pecan byproducts have been used as sustainable feedstocks for catalyst support, contributing to energy conversion and biomass catalysis. The bioactive compounds also offer therapeutic properties, including antioxidant, anti-inflammatory, and antimicrobial effects, supporting their inclusion in nutraceutical and cosmetic applications. Through a comprehensive synthesis of recent studies, this work highlights the role of pecan shell valorization in reducing waste, improving public health, and increasing economic resilience within agro-industrial systems. By aligning with sustainable development and circular economies, the utilization of pecan byproducts provides a low-cost, eco-innovative pathway to mitigate environmental pollution and promote sustainable development. Full article
Show Figures

Figure 1

28 pages, 9273 KB  
Article
Antifouling Epoxy Coatings with Scots Pine Bark Extracts
by Tomasz Szmechtyk, Magdalena Efenberger-Szmechtyk and Agata Czyżowska
Molecules 2026, 31(1), 137; https://doi.org/10.3390/molecules31010137 - 31 Dec 2025
Viewed by 213
Abstract
Antifouling coatings have to provide antibacterial performance combined with good mechanical and chemical properties. The good anticorrosive performance of tannins on steel surfaces and antibacterial activity of phytochemicals from conifers could provide a solution in the form of Scots pine bark extract. In [...] Read more.
Antifouling coatings have to provide antibacterial performance combined with good mechanical and chemical properties. The good anticorrosive performance of tannins on steel surfaces and antibacterial activity of phytochemicals from conifers could provide a solution in the form of Scots pine bark extract. In this study, epoxy compositions with different ratios of the characterised extract (TPC, HPLC analysis of phytochemicals) were tested physically (density), mechanically (Shore D hardness, three-point bending test, Charpy impact test), chemically (DSC curing analysis, FTIR spectroscopy, chemical resistance), and microbiologically (antibacterial activity). The results were analysed and the performance of the composites was evaluated. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 17168 KB  
Article
A New Dimension of the Hericium erinaceus Mycelium Cultivation Technique for the Future Intensification of the Valuable Fungicidal Substances Synthesis in Laboratory Conditions
by Katarzyna Nawrot-Chorabik, Małgorzata Osmenda and Robert Jankowiak
Forests 2026, 17(1), 51; https://doi.org/10.3390/f17010051 - 30 Dec 2025
Viewed by 328
Abstract
Hericium erinaceus is a fungus that, in addition to its health-promoting properties (including regenerative properties for gastrointestinal membranes and support for neuronal regeneration in neurodegenerative diseases such as Parkinson’s disease), has the ability to synthesize valuable metabolites, such as flavonoids (polyphenols) and terpenoids. [...] Read more.
Hericium erinaceus is a fungus that, in addition to its health-promoting properties (including regenerative properties for gastrointestinal membranes and support for neuronal regeneration in neurodegenerative diseases such as Parkinson’s disease), has the ability to synthesize valuable metabolites, such as flavonoids (polyphenols) and terpenoids. These compounds possess strong biocidal properties. These substances provide the growing H. erinaceus mycelium with protection against colonization by other species of rot fungi, such as Trametes versicolor. For these reasons, the biological compounds produced by H. erinaceus can be used to produce ecological fungicides, which will find innovative applications in protecting forest tree seedlings. It should also be emphasized that valuable fungal substances are synthesized primarily by the mycelium of H. erinaceus during the initial stages of its development. Therefore, we undertook to develop an updated and modernized methodology for cultivating H. erinaceus mycelium in the laboratory, with the goal of commercializing the production of this mycelium, which will be used to isolate fungicidal substances metabolized by the fungus cultures. The biocidal substances obtained will be used to produce innovative fungicides in order to protect forest tree seedlings. The studies were conducted using various types of nutrient media, including Potato Dextrose Agar (PDA), Malt Extract Agar (MEA), and wort medium, at various temperatures ranging from 15 °C to 25 °C. Simultaneously, experiments were conducted using solidified media with a pH ranging from 4.0 to 7.0. The research was also expanded to include the growth and execution of experiments using a processed wood substrate, namely, sawdust made from individual structural wood elements. The sawdust was prepared from the bark, sapwood, and heartwood of sessile oak. The PDA medium was more favourable to the mycelium growth of H. erinaceus at 25 °C. It was also found that an acidic pH in the range of 4.0–5.0 significantly influenced the changes in the growth rate of the mycelium species and their phenotype. It was observed that mycelial growth on a substrate of oak sawdust made from sapwood resulted in intensive mycelial growth and a significant reduction in the wood substrate compared to sawdust made from bark, heartwood, and a mixture of all types of sawdust. The reason for the low mycelial growth, low mass reduction and slight reduction in the mass of sawdust made from bark, heartwood, and a mixture of all types of sawdust was the presence of high levels of tannins, which inhibited the fungal growth. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 843 KB  
Article
Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cake Powder: Chemical Characterization and In Vitro Bioactivity for Sustainable Applications
by Valeria Guarrasi, Barbara Prandi, Tullia Tedeschi, Benedetta Chiancone, Andrea Di Fazio, Raffaella Barbieri, Debora Baroni, Marilú Roxana Soto-Vásquez, Silvia Vilasi, Francesca Falco, Martina Cirlini and Daniel Paredes-López
Molecules 2026, 31(1), 117; https://doi.org/10.3390/molecules31010117 - 29 Dec 2025
Viewed by 300
Abstract
Sacha inchi (P. volubilis L.), an ancient oilseed crop native to the Amazon, is gaining attention for its high nutritional value particularly due to its ω-3-, -6-, -9-rich oil. However, most research has focused mainly on oil characterization, neglecting the potential of [...] Read more.
Sacha inchi (P. volubilis L.), an ancient oilseed crop native to the Amazon, is gaining attention for its high nutritional value particularly due to its ω-3-, -6-, -9-rich oil. However, most research has focused mainly on oil characterization, neglecting the potential of its by-products, such as the Sacha inchi oil-press cake (i.e., the solid residue after oil extraction). This study explores the chemical composition of Sacha inchi oil press-cake powder, focusing on fatty acid and amino acid profiles, antinutrient factors, total phenolic content, antioxidant activity, and the bioactivity of its extracts on cellular models. Fatty acid analysis revealed a high proportion of polyunsaturated fatty acids, especially α-linolenic acid (42.52%), making it a valuable resource for health-promoting applications. The protein content was also significant (41.86%), with a balanced amino acid composition, including essential amino acids such as leucine, valine, and isoleucine, which are vital for muscle protein synthesis and energy metabolism, in food and/or feed applications. Antinutritional factors were detected, including saponins (1050.1 ± 1.1 mg/100 g), alkaloids (2.1 ± 0.5 mg/100 g), and tannins (6.2 ± 0.9 mg/100 g). While these phytotoxins could limit their use in food applications, their potential antimicrobial activity highlights promising pharmacological opportunities. Total phenolic content (TPC) and antioxidant activity (AO) were evaluated using two extract mixtures differing in composition and polarity, with the acetone/water/acetic acid solvent (80/19/1 v/v/v) showing the highest antioxidant properties. The extract obtained showed cytotoxic effects against Panc-1 cancer cells, highlighting its potential in nutraceutical and pharmaceutical applications. This study underscores the unexploited potential of Sacha inchi by-products, such as the oil press-cake, as a sustainable resource of bioactive compounds for functional products, supporting circular bio-economy strategies by plant-based waste and local biodiversity valorization. Full article
Show Figures

Graphical abstract

18 pages, 3043 KB  
Article
Antibacterial and Antioxidant Performance of Natural Textile Dyes for Children’s Wear
by Diana Santiago, Behnaz Mehravani, Cátia Alves, Isabel Cabral, Joana Cunha, Andrea Zille and Jorge Padrão
Appl. Sci. 2026, 16(1), 307; https://doi.org/10.3390/app16010307 - 28 Dec 2025
Viewed by 288
Abstract
Children’s skin is highly sensitive and prone to irritation, allergies, and infections, requiring special consideration in textile selection. Although clothing serves as a protective barrier, it can also pose a risk when dyed with toxic chemical colourants. This study explores the potential of [...] Read more.
Children’s skin is highly sensitive and prone to irritation, allergies, and infections, requiring special consideration in textile selection. Although clothing serves as a protective barrier, it can also pose a risk when dyed with toxic chemical colourants. This study explores the potential of multifunctional natural dyes as safer alternatives for children’s clothing, particularly for those with dermatological conditions. Cotton knitted fabrics were dyed through exhaustion with extracts of madder root (Rubia tinctorum L.), pomegranate peel (Ppe, Punica granatum L.), oxidised logwood (Logox, Haematoxylum campechianum L.), and tannin from quebracho (Schinopsis lorentzii Griseb.), both individually and in various combinations with or without potassium aluminium sulphate dodecahydrate (alum). The combination of madder and Ppe demonstrated the most promising multifunctional performance, being classified as a weak disinfectant against S. aureus (3.7 log reduction) and showing the highest antioxidant activity (92.6 ± 2.56% 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical reduction), while maintaining excellent results after washing. Moreover, these natural formulations expanded the achievable colour palette from each dye while maintaining moderate wash fastness. The results highlight the relevance of these findings to textile and fashion designers, offering sustainable tools for creating health-conscious, visually appealing garments. This research reinforces the potential of natural dyes and biomordants in developing functional textiles that support children’s wellbeing and environmental responsibility. Full article
Show Figures

Graphical abstract

15 pages, 278 KB  
Article
Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti
by Clara Barragán-Avilez, Paula Pareja-Loaiza, Katherine Girón Domínguez, Beatriz López-Monroy, Adriana E. Flores, Martha Sánchez-Bolívar, Jaime Luna-Carrascal, Leonardo C. Pacheco-Londoño, Nataly J. Galán-Freyle, Elkin Navarro Quiroz, Karina Castellanos-Romero, Ronald Maestre-Serrano, Roger Valle-Molinares and Fabián Espitia-Almeida
Insects 2026, 17(1), 34; https://doi.org/10.3390/insects17010034 - 25 Dec 2025
Viewed by 600
Abstract
Dengue is a mosquito-borne viral disease transmitted by Aedes aegypti, the main vector in the Americas. The lack of effective antiviral treatments, limited vaccine coverage, and the increasing resistance of mosquitoes to conventional insecticides emphasize the need for alternative vector control strategies. [...] Read more.
Dengue is a mosquito-borne viral disease transmitted by Aedes aegypti, the main vector in the Americas. The lack of effective antiviral treatments, limited vaccine coverage, and the increasing resistance of mosquitoes to conventional insecticides emphasize the need for alternative vector control strategies. Plant-derived larvicides represent a promising and eco-friendly approach. This study characterized the phytochemical profile of Persea americana Mill. (var. Lorena) and evaluated its larvicidal activity against Ae. aegypti (Rockefeller strain). The phytochemical profile was assessed through qualitative screening, UV-Vis spectrophotometry, and UHPLC analysis. Larvicidal activity was evaluated against third-instar larvae of Ae. aegypti (Rockefeller strain) and the median lethal concentration (LC50) values were determined. Preliminary screening of ethanolic extracts revealed the presence of various secondary metabolites of pharmacological relevance, including alkaloids, coumarins, tannins, flavonoids, saponins, triterpenes/sterols, and quinones. UV-Vis spectra displayed distinct absorption patterns, with a prominent peak near 260 nm, consistent with the presence of aromatic compounds. UHPLC profiling revealed high chemical diversity across different plant parts, with 70, 98, 71, and 52 peaks (above 1 × 105 intensity) detected in seed, flower, pulp, and leaf extracts, respectively. Larvicidal bioassays showed significant activity, particularly in the seed extract, with LC50 values (µg/mL) of 3.8 (3.3–4.1) for seeds, 22.4 (21.8–23.9) for flowers, 23.0 (21.5–24.6) for pulp, and 29.7 (28.1–31.2) for leaves. This study highlights the larvicidal potential of ethanolic extracts from P. americana (var. Lorena), with the seed extract exhibiting the highest chemical diversity and bioactivity against Ae. aegypti larvae. The detection of key secondary metabolites, including flavonoids, alkaloids, and saponins, supports the development of an effective, plant-based larvicide for sustainable vector control strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Back to TopTop