Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = tactile perception

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 483 KB  
Review
The Complexity of Communication in Mammals: From Social and Emotional Mechanisms to Human Influence and Multimodal Applications
by Krzysztof Górski, Stanisław Kondracki and Katarzyna Kępka-Borkowska
Animals 2026, 16(2), 265; https://doi.org/10.3390/ani16020265 - 15 Jan 2026
Viewed by 23
Abstract
Communication in mammals constitutes a complex, multimodal system that integrates visual, acoustic, tactile, and chemical signals whose functions extend beyond simple information transfer to include the regulation of social relationships, coordination of behaviour, and expression of emotional states. This article examines the fundamental [...] Read more.
Communication in mammals constitutes a complex, multimodal system that integrates visual, acoustic, tactile, and chemical signals whose functions extend beyond simple information transfer to include the regulation of social relationships, coordination of behaviour, and expression of emotional states. This article examines the fundamental mechanisms of communication from biological, neuroethological, and behavioural perspectives, with particular emphasis on domesticated and farmed species. Analysis of sensory signals demonstrates that their perception and interpretation are closely linked to the physiology of sensory organs as well as to social experience and environmental context. In companion animals such as dogs and cats, domestication has significantly modified communicative repertoires ranging from the development of specialised facial musculature in dogs to adaptive diversification of vocalisations in cats. The neurobiological foundations of communication, including the activity of the amygdala, limbic structures, and mirror-neuron systems, provide evidence for homologous mechanisms of emotion recognition across species. The article also highlights the role of communication in shaping social structures and the influence of husbandry conditions on the behaviour of farm animals. In intensive production environments, acoustic, visual, and chemical signals are often shaped or distorted by crowding, noise, and chronic stress, with direct consequences for welfare. Furthermore, the growing importance of multimodal technologies such as Precision Livestock Farming (PLF) and Animal–Computer Interaction (ACI) is discussed, particularly their role in enabling objective monitoring of emotional states and behaviour and supporting individualised care. Overall, the analysis underscores that communication forms the foundation of social functioning in mammals, and that understanding this complexity is essential for ethology, animal welfare, training practices, and the design of modern technologies facilitating human–animal interaction. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
14 pages, 1592 KB  
Article
The Relationship Between Emotion Processing and Flexor Afferent Responses in Upper Limbs
by Gianluca Isoardo, Rita B. Ardito, Stefano Ciullo, Elena Fontana, Ilaria Stura, Giuseppe Migliaretti, Paolo Titolo, Enrico Matteoni, Andrea Calvo, Valeria Fonzo, Federica Laino and Mauro Adenzato
Sensors 2026, 26(2), 557; https://doi.org/10.3390/s26020557 - 14 Jan 2026
Viewed by 79
Abstract
Background: This study investigates the influence of emotional processing on flexor reflex responses in the upper limbs, focusing on cutaneomuscular reflexes (CMRs) and the cutaneous silent period (CSP) in patients with chronic neuropathic pain. The modulation of motor reflexes by emotions remains unclear. [...] Read more.
Background: This study investigates the influence of emotional processing on flexor reflex responses in the upper limbs, focusing on cutaneomuscular reflexes (CMRs) and the cutaneous silent period (CSP) in patients with chronic neuropathic pain. The modulation of motor reflexes by emotions remains unclear. Methods: Fifty-one patients with chronic upper limb neuropathic pain (carpal tunnel syndrome, other neuropathies, post-burn hypertrophic scars) and twenty healthy controls underwent standardized electrodiagnostic signal acquisition. Neurophysiological assessments (CMRs, CSP, standard nerve conduction tests) and psychological evaluations (anxiety, depression, emotion processing) were conducted. Neurophysiological signal acquisition included median and ulnar nerve conduction studies recorded with an electrodiagnostic system (48 kHz sampling rate; 30–3000 Hz bandpass). CSP and CMRs were recorded from the abductor pollicis brevis using surface electrodes (bipolar belly–tendon montage) and were evoked by electrical stimulation delivered through ring electrodes, with individualized perceptual-threshold calibration. Statistical analyses examined correlations between neurophysiological and psychological measures. Results: Patients showed significantly longer duration and higher intensity of CMRs and CSP than controls (p < 0.01). CMR and CSP durations correlated positively with anxiety, depression, and alexithymia scores, and negatively with facial emotion recognition. General Linear Model analyses indicated these relations were mediated by tactile and pain perception thresholds. Conclusions: The findings support that spinal reflex responses in the upper limbs are modulated by emotional and cognitive-affective processes, especially in chronic pain contexts. This highlights the complex interaction between emotion regulation and motor control in neuropathic pain conditions. Full article
(This article belongs to the Special Issue Sensors in Biomechanics, Neurophysiology and Neurorehabilitation)
Show Figures

Figure 1

13 pages, 7015 KB  
Article
Preload-Free Conformal Integration of Tactile Sensors on the Fingertip’s Curved Surface
by Lei Liu, Peng Ran, Yongyao Li, Tian Tang, Yun Hu, Jian Xiao, Daijian Luo, Lu Dai, Yufei Liu, Jiahu Yuan and Dapeng Wei
Biomimetics 2026, 11(1), 64; https://doi.org/10.3390/biomimetics11010064 - 12 Jan 2026
Viewed by 154
Abstract
Humans could sensitively perceive and identify objects through dense mechanoreceptors distributed on the skin of curved fingertips. Inspired by this biological structure, this study presents a general conformal integration method for flexible tactile sensors on curved fingertip surfaces. By adopting a spherical partition [...] Read more.
Humans could sensitively perceive and identify objects through dense mechanoreceptors distributed on the skin of curved fingertips. Inspired by this biological structure, this study presents a general conformal integration method for flexible tactile sensors on curved fingertip surfaces. By adopting a spherical partition design and an inverse mode auxiliary layering process, it ensures the uniform distribution of stress at different curvatures. The sensor adopts a 3 × 3 tactile array configuration, replicating the 3D curved surface distribution of human mechanoreceptors. By analyzing multi-point outputs, the sensor reconstructs contact pressure gradients and infers the softness or stiffness of touched objects, thereby realizing both structural and functional bionics. These sensors exhibit excellent linearity within 0–100 kPa (sensitivity ≈ 36.86 kPa−1), fast response (2 ms), and outstanding durability (signal decay of only 1.94% after 30,000 cycles). It is worth noting that this conformal tactile fingertip integration method not only exhibits uniform responses at each unit, but also has the preload-free advantage, and then performs well in pulse detection and hardness discrimination. This work provides a novel bioinspired pathway for conformal integration of tactile sensors, enabling artificial skins and robotic fingertips with human-like tactile perception. Full article
(This article belongs to the Special Issue Bionic Engineering Materials and Structural Design)
Show Figures

Graphical abstract

21 pages, 422 KB  
Review
Effectiveness of Wearable Devices for Posture Correction: A Systematic Review of Evidence from Randomized and Quasi-Experimental Studies
by Diogo Caixeiro, Tomás Cordeiro, Leandro Constantino, João Carreira, Rui Mendes, Cândida G. Silva and Maria António Castro
Appl. Sci. 2026, 16(1), 81; https://doi.org/10.3390/app16010081 - 21 Dec 2025
Viewed by 1311
Abstract
Introduction: The increasing development of wearable devices for postural monitoring (provide feedback on posture) or correction (mechanical or biofeedback to promote change) is partly driven by the rising prevalence of poor posture in the general population and its impact on pain perception and [...] Read more.
Introduction: The increasing development of wearable devices for postural monitoring (provide feedback on posture) or correction (mechanical or biofeedback to promote change) is partly driven by the rising prevalence of poor posture in the general population and its impact on pain perception and functional capacity. Objective: Examine the effects of wearable devices on posture correction or prevention and on related outcomes, including postural alignment, muscle activity, pain and functional performance. Methods: The review followed the PRISMA 2020 guidelines. Searches were performed in PubMed, Scopus, Web of Science, and PEDro for studies published between 2012 and 2025. Eligible studies included randomized controlled trials and quasi-experimental designs involving participants with postural deviations or at risk of developing them, who underwent interventions using wearable devices that provided vibratory, auditory, visual, or tactile biofeedback. Results: Eight studies reported immediate improvements in postural alignment, body awareness, and self-reported pain, particularly with devices providing vibratory or visual biofeedback. Functional task stability improved, and muscle activity during risky postures decreased. However, the strong heterogeneity across devices and protocols, small sample sizes, short intervention durations, and, in some cases, the lack of independent control groups limit the strength and generalizability of these findings. Conclusions: Wearable devices have potential as complementary tools in physiotherapy due to their autonomous and potentially effective nature. Nevertheless, current evidence remains insufficient to support definitive clinical recommendations. Full article
(This article belongs to the Special Issue Biomechanics and Sport Engineering: Latest Advances and Prospects)
Show Figures

Figure 1

20 pages, 2429 KB  
Article
The Effects of Pneumatic Stimulation on Human Tactile Perceptions
by Tzu-Ying Li, Tzu-Chieh Hsieh, Shana Smith, Chen-Tsai Yang, Hung-Hsien Ko and Wan-Hsin Hsieh
Appl. Sci. 2025, 15(24), 13087; https://doi.org/10.3390/app152413087 - 12 Dec 2025
Viewed by 492
Abstract
Pneumatic actuators are promising for wearable tactile interfaces, yet human perception of pneumatic stimulation is not well understood. This study examined how pressure and frequency affect tactile perception and emotional responses through three experiments. Experiment 1 measured the minimum perceivable pressure and just [...] Read more.
Pneumatic actuators are promising for wearable tactile interfaces, yet human perception of pneumatic stimulation is not well understood. This study examined how pressure and frequency affect tactile perception and emotional responses through three experiments. Experiment 1 measured the minimum perceivable pressure and just noticeable difference (JND). The perceptual threshold remained stable across low-frequency stimuli, while both upward and downward JNDs increased with pressure and frequency, indicating reduced sensitivity under stronger or faster stimulation. Experiment 2 evaluated perceived tactile intensity and found pressure to be the dominant factor, with frequency also contributing significantly. Experiment 3 examined emotional responses using the PAD model. Pressure and frequency jointly affected Pleasure and Arousal but minimally influenced Dominance. Moderate pressure and mid-range frequency (50 kPa, 5 Hz) produced the most positive, alert states; high-pressure, high-frequency stimulation (≥75 kPa, 10 Hz) generated unpleasant high-arousal responses; and low-pressure, low-frequency input (25 kPa, 1 Hz) led to low-arousal, negative affective states. These results offer quantitative and emotional insights that can inform the design of more realistic and expressive pneumatic haptic interfaces. Full article
(This article belongs to the Special Issue Emerging Technologies in Innovative Human–Computer Interactions)
Show Figures

Figure 1

17 pages, 2752 KB  
Article
Short-Time Transient Thermal Behaviour in Textile Fabrics—The Dual Phase Approach
by Gilbert De Mey, Izabela Ciesielska-Wróbel, Maria Strąkowska, Bogusław Więcek, Carla Hertleer and Lieva Van Langenhove
Textiles 2025, 5(4), 66; https://doi.org/10.3390/textiles5040066 - 8 Dec 2025
Viewed by 709
Abstract
Short-time thermal exchange (0–20 s) between human skin and textile surfaces determines initial warm–cool sensations, which influences comfort perception. Classical Fourier models predicting a √t cannot fully describe this early transient phase, particularly for porous or heterogeneous materials such as fabrics. This study [...] Read more.
Short-time thermal exchange (0–20 s) between human skin and textile surfaces determines initial warm–cool sensations, which influences comfort perception. Classical Fourier models predicting a √t cannot fully describe this early transient phase, particularly for porous or heterogeneous materials such as fabrics. This study investigates the early and short-time temperature response of a fingertip to contact with eight woven and knitted fabrics of different compositions, densities, thermal resistances, and thicknesses, measured under controlled laboratory conditions using a fine-gauge thermocouple at the skin–fabric interface. Experimental temperature–time data, when converted to the Laplace domain, exhibited slopes corresponding to time-domain exponents of t, t¼, and occasionally t, all lower than the classical diffusion exponent of ½.The dual-phase lag (DPL) model was applied to interpret these deviations through two lag times—τq (heat flux) and τT (temperature gradient)—and their ratio Z = τT/τq, which controls the slope of the Laplace-domain response. DPL curves reproduced the observed exponents without additional empirical parameters. The results show that short-time heat transfer depends strongly on textile structure: higher thickness leads to slower transient responses (“warmer” feel), whereas denser fabrics promote faster equilibration (“cooler” feel). This dual-phase interpretation bridges physical heat transfer with tactile thermal perception, providing a predictive framework for the design of textiles with thermal properties. Full article
Show Figures

Figure 1

20 pages, 993 KB  
Article
The Impact of Wooden Design on User Satisfaction in Music Halls Based on a Serial Mediation Model: The Chain Mediation Mechanism of Perceived Restorativeness and Musical Resonance
by Yuyan Chen, Siqin Wang, Haohao Yang and Ken Nah
Buildings 2025, 15(22), 4157; https://doi.org/10.3390/buildings15224157 - 18 Nov 2025
Viewed by 360
Abstract
With the widespread use of sustainable building materials and the rise of emotional design, the use of wooden elements in public large-scale architecture has garnered significant attention. In public cultural spaces, especially music halls, although previous research has explored the aesthetic value and [...] Read more.
With the widespread use of sustainable building materials and the rise of emotional design, the use of wooden elements in public large-scale architecture has garnered significant attention. In public cultural spaces, especially music halls, although previous research has explored the aesthetic value and functional applications of wood in architecture, the micro-level exploration of how wooden design influences user perception and satisfaction has not been fully addressed. Therefore, this study uses a sample of 965 offline users of wooden music halls and applies Covariance-Based Structural Equation Modeling (CB-SEM) to investigate the pathways through which wooden design perception shapes user satisfaction. The results indicate: (1) Wooden design perception positively influences user satisfaction in wooden music halls; (2) Perceived restorativeness and musical resonance independently mediate the relationship between wooden design perception and satisfaction; (3) Wooden design perception positively influences user satisfaction through the chain mediation effect of perceived restorativeness and musical resonance. This study highlights how wooden design, through visual and tactile design, creates a profound immersive experience and emotional resonance, thereby optimizing the user experience and enhancing satisfaction in music halls. This research fills the gap in emotional and sensory experience studies in the design of wooden architecture in cultural venues, innovatively combining Emotional Design Theory and Immersion Theory, and proposes a new theoretical framework for how wooden design influences user satisfaction through perceived restorativeness and musical resonance, providing a fresh perspective for the field of architectural design. This study also provides theoretical support and actionable recommendations for the design practice of wooden music halls, helping designers better integrate cultural symbolism, perceived restorativeness, and multisensory experiences in space planning, material selection, and overall design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 2278 KB  
Article
Virtual Reality and Digital Twins for Mechanical Engineering Lab Education: Applications in Composite Manufacturing
by Ali Darejeh, Guy Chilcott, Ebrahim Oromiehie and Sara Mashayekh
Educ. Sci. 2025, 15(11), 1519; https://doi.org/10.3390/educsci15111519 - 10 Nov 2025
Viewed by 947
Abstract
This study investigates the effectiveness of a virtual reality (VR) simulation for teaching the hand lay-up process in composite manufacturing within mechanical engineering education. A within-subjects experiment involving 17 undergraduate mechanical engineering students compared the VR-based training with conventional physical laboratory instruction. Task [...] Read more.
This study investigates the effectiveness of a virtual reality (VR) simulation for teaching the hand lay-up process in composite manufacturing within mechanical engineering education. A within-subjects experiment involving 17 undergraduate mechanical engineering students compared the VR-based training with conventional physical laboratory instruction. Task performance, cognitive load, and learner perceptions were measured using procedural accuracy scores, completion times, NASA-TLX workload ratings, and post-task interviews. Results indicated that while participants required more time to complete the task in VR, procedural accuracy was comparable between VR and physical labs. VR significantly reduced mental, physical, and effort-related demands but elicited higher frustration levels, primarily due to navigation challenges and motion discomfort. Qualitative feedback showed strong learner preference for VR, citing its hazard-free environment, repeatability, and step-by-step guidance. These findings suggest that VR offers a viable and pedagogically effective alternative or complement to traditional composite-manufacturing training, particularly in contexts where access to physical facilities is limited. Future work should examine long-term skill retention, incorporate haptic feedback for tactile realism, and explore hybrid models combining VR and physical practice to optimise learning outcomes. Full article
Show Figures

Figure 1

19 pages, 3106 KB  
Article
Haptic Reproduction of Virtual Textures Based on Ultrasonic Interference Principle
by Si Chen, Weijie Feng, Aijia Liu, Yansong Wang, Kuo Li, Weimin Ru, Kan Feng, Sai Zhang and Ning Yang
Appl. Sci. 2025, 15(21), 11742; https://doi.org/10.3390/app152111742 - 4 Nov 2025
Viewed by 926
Abstract
Ultrasonic phased arrays have shown promise in generating virtual texture haptics through haptics feedback points. However, factors such as skin vibration speed, amplitude variations, acoustic interference, and energy loss can influence textural haptics. In this study, using Spatiotemporal Modulation (STM), virtual textures are [...] Read more.
Ultrasonic phased arrays have shown promise in generating virtual texture haptics through haptics feedback points. However, factors such as skin vibration speed, amplitude variations, acoustic interference, and energy loss can influence textural haptics. In this study, using Spatiotemporal Modulation (STM), virtual textures are produced through movement of the focal point. The acoustic field of the ultrasonic phased array as well as the stress and strain experienced by the skin during texture perception are simulated by numerical analysis. At the same time, psychophysical experiments are conducted by volunteers to evaluate these textures. The experimental results indicate that as the focal rotation frequency increases, regions closer to the center experience more significant shear wave effects, resulting in longer shear wave propagation, reduced tangential stress amplitude, and a larger affected area. Moreover, as the frequency of the shear wave interference shifts, it results in increasingly complex textural representations. Full article
Show Figures

Figure 1

17 pages, 2247 KB  
Article
Artistic Experience of the Visually Impaired: A Qualitative Study on the Process of Creating Clay Media Artworks for Low Vision in Indonesia
by Nur Fajrie, Imaniar Purbasari, Slamet Khoeron, Ika Yuni Purnama and Hendri Pratama
Disabilities 2025, 5(4), 98; https://doi.org/10.3390/disabilities5040098 - 27 Oct 2025
Viewed by 1026
Abstract
This study explores the artistic experiences of individuals with low vision in creating clay-based artworks at the Pandawa Social Home for Blind Sensory Disabilities in Kudus Regency, Indonesia. The research used a qualitative, descriptive-exploratory design, and fifteen participants with varying levels of visual [...] Read more.
This study explores the artistic experiences of individuals with low vision in creating clay-based artworks at the Pandawa Social Home for Blind Sensory Disabilities in Kudus Regency, Indonesia. The research used a qualitative, descriptive-exploratory design, and fifteen participants with varying levels of visual impairment were involved. Data were obtained through in-depth interviews, observations, and analysis of their clay creations. The findings reveal that clay, with its tactile qualities, serves as an effective medium for creative expression, enabling participants to explore form through touch and pressure. This process supported the development of fine motor skills, creativity, and self-confidence while fostering emotional well-being and social interaction. Participants relied on memory, imagination, and sensory perception to produce artworks that held personal and aesthetic meaning, despite differing from conventional visual standards. The study underscores the therapeutic benefits of clay art and highlights the crucial role of supportive environments—families, educators, and art communities—in nurturing creativity and enhancing the quality of life for individuals with visual impairments. The limitations of this study include its small sample size, its single-institution approach, and its focus on clay. Future research should expand the participant pool, explore other accessible art media, and examine the long-term impact on psychosocial development. Full article
Show Figures

Figure 1

15 pages, 595 KB  
Article
The Impact of Sustainable Aesthetics: A Qualitative Analysis of the Influence of Visual Design and Materiality of Green Products on Consumer Purchase Intention
by Ana-Maria Nicolau and Petruţa Petcu
Sustainability 2025, 17(20), 9082; https://doi.org/10.3390/su17209082 - 14 Oct 2025
Cited by 1 | Viewed by 1169
Abstract
The transition to a circular economy depends on the widespread adoption of sustainable products by consumers. However, the point-of-sale purchase decision is a complex process, influenced not only by ethical arguments but also by sensory cues. This study investigates how the aesthetics (visual [...] Read more.
The transition to a circular economy depends on the widespread adoption of sustainable products by consumers. However, the point-of-sale purchase decision is a complex process, influenced not only by ethical arguments but also by sensory cues. This study investigates how the aesthetics (visual design) and materiality (tactile sensation) of green products shape value perception and purchase intention. Using a qualitative methodology based on a focus group, the research directly compares consumer reactions to green products (e.g., a bamboo toothbrush) versus their conventional alternatives (e.g., plastic). Thematic analysis of the data reveals a fundamental dichotomy among consumers: while one segment associates high-tech aesthetics and perfect finishes with quality and hygiene, another segment values natural materials and their “imperfections” as signs of authenticity and responsibility. The results demonstrate that there is no single, universally accepted “sustainable aesthetic” and highlight the need for designers and marketers to align the visual and tactile language of products with the value system of the target consumer segment. The study provides a framework for understanding how design can act as either a barrier to or a catalyst for the adoption of sustainable products. Full article
Show Figures

Figure 1

40 pages, 29429 KB  
Review
Innovations in Multidimensional Force Sensors for Accurate Tactile Perception and Embodied Intelligence
by Jiyuan Chen, Meili Xia, Pinzhen Chen, Binbin Cai, Huasong Chen, Xinkai Xie, Jun Wu and Qiongfeng Shi
AI Sens. 2025, 1(2), 7; https://doi.org/10.3390/aisens1020007 - 29 Sep 2025
Cited by 1 | Viewed by 6570
Abstract
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, [...] Read more.
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, the inherent complexity of tactile information coupling, combined with stringent demands for miniaturization, robustness, and low cost in practical applications, makes high-performance and reliable multidimensional sensing and decoupling a major challenge. This drives ongoing innovation in sensor structural design and sensing mechanisms. Various structural strategies have demonstrated significant advantages in improving sensor performance, simplifying decoupling algorithms, and enhancing adaptability—attributes that are essential in scenarios requiring fine physical interactions. From this perspective, this article reviews recent advances in multidimensional force sensing technology, with a focus on the operating principles and performance characteristics of sensors with different structural designs. It also highlights emerging trends toward multimodal sensing and the growing integration with system architectures and artificial intelligence, which together enable higher-level intelligence. These developments support a wide range of applications, including intelligent robotic manipulation, natural human–computer interaction, wearable health monitoring, and precision automation in agriculture and industry. Finally, the article discusses remaining challenges and future opportunities in the development of multidimensional force sensors. Full article
Show Figures

Figure 1

16 pages, 1756 KB  
Article
The Effects of Vibrotactile Stimulation of the Upper Extremity on Sensation and Perception: A Study for Enhanced Ergonomic Design
by Abeer Abdel Khaleq, Yash More, Brody Skaufel and Mazen Al Borno
Theor. Appl. Ergon. 2025, 1(2), 8; https://doi.org/10.3390/tae1020008 - 29 Sep 2025
Viewed by 1504
Abstract
Vibrotactile stimulation has applications in a variety of fields, including medicine, virtual reality, and human–computer interaction. Eccentric Rotating Mass (ERM) vibrating motors are widely used in wearable haptic devices owing to their small size, low cost, and low-energy features. User experience with vibrotactile [...] Read more.
Vibrotactile stimulation has applications in a variety of fields, including medicine, virtual reality, and human–computer interaction. Eccentric Rotating Mass (ERM) vibrating motors are widely used in wearable haptic devices owing to their small size, low cost, and low-energy features. User experience with vibrotactile stimulation is an important factor in ergonomic design for these applications. The effects of ERM motor vibrations on upper-extremity sensation and perception, which are important in the design of better wearable haptic devices, have not been thoroughly studied previously. Our study focuses on the relationship between user sensation and perception and on different vibration parameters, including frequency, location, and number of motors. We conducted experiments with vibrotactile stimulation on 15 healthy participants while the subjects were both at rest and in motion to capture different use cases of haptic devices. Eight motors were placed on a consistent set of muscles in the subjects’ upper extremities, and one motor was placed on their index fingers. We found a significant correlation between voltage and sensation intensity (r = 0.39). This finding is important in the design and safety of customized haptic devices. However, we did not find a significant aggregate-level correlation with the perceived pleasantness of the simulation. The sensation intensity varied based on the location of the vibration on the upper extremities (with the lowest intensities on the triceps brachii and brachialis) and slightly decreased (5.9 ± 2.9%) when the participants performed reaching movements. When a single motor was vibrating, the participants’ accuracy in identifying the motor without visual feedback increased as the voltage increased, reaching up to 81.4 ± 14.2%. When we stimulated three muscles simultaneously, we found that most participants were able to identify only two out of three vibrating motors (41.7 ± 32.3%). Our findings can help identify stimulation parameters for the ergonomic design of haptic devices. Full article
Show Figures

Figure 1

12 pages, 4847 KB  
Article
Surformer v1: Transformer-Based Surface Classification Using Tactile and Vision Features
by Manish Kansana, Elias Hossain, Shahram Rahimi and Noorbakhsh Amiri Golilarz
Information 2025, 16(10), 839; https://doi.org/10.3390/info16100839 - 27 Sep 2025
Viewed by 787
Abstract
Surface material recognition is a key component in robotic perception and physical interaction, particularly when leveraging both tactile and visual sensory inputs. In this work, we propose Surformer v1, a transformer-based architecture designed for surface classification using structured tactile features and Principal Component [...] Read more.
Surface material recognition is a key component in robotic perception and physical interaction, particularly when leveraging both tactile and visual sensory inputs. In this work, we propose Surformer v1, a transformer-based architecture designed for surface classification using structured tactile features and Principal Component Analysis (PCA)-reduced visual embeddings extracted via ResNet 50. The model integrates modality-specific encoders with cross-modal attention layers, enabling rich interactions between vision and touch. Currently, state-of-the-art deep learning models for vision tasks have achieved remarkable performance. With this in mind, our first set of experiments focused exclusively on tactile-only surface classification. Using feature engineering, we trained and evaluated multiple machine learning models, assessing their accuracy and inference time. We then implemented an encoder-only Transformer model tailored for tactile features. This model not only achieves the highest accuracy, but also demonstrated significantly faster inference time compared to other evaluated models, highlighting its potential for real-time applications. To extend this investigation, we introduced a multimodal fusion setup by combining vision and tactile inputs. We trained both Surformer v1 (using structured features) and a Multimodal CNN (using raw images) to examine the impact of feature-based versus image-based multimodal learning on classification accuracy and computational efficiency. The results showed that Surformer v1 achieved 99.4% accuracy with an inference time of 0.7271 ms, while the Multimodal CNN achieved slightly higher accuracy but required significantly more inference time. These findings suggest that Surformer v1 offers a compelling balance between accuracy, efficiency, and computational cost for surface material recognition. The results also underscore the effectiveness of integrating feature learning, cross-modal attention and transformer-based fusion in capturing the complementary strengths of tactile and visual modalities. Full article
(This article belongs to the Special Issue AI-Based Image Processing and Computer Vision)
Show Figures

Figure 1

20 pages, 7286 KB  
Article
Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation
by Fengzhi Zhao, Yan Feng, Min Xu, Yaxi Li and Hua Zhang
Sensors 2025, 25(19), 5943; https://doi.org/10.3390/s25195943 - 23 Sep 2025
Viewed by 684
Abstract
Despite widespread modular tooling in robots and automated systems, tactile sensing lags behind, constrained by custom and non-interchangeable sensors. To close this gap, we developed a clip-on cylindrical tactile module that combines a snap-fit Clip-on Cap (CC) with a plug-in Sensor Core (PSC) [...] Read more.
Despite widespread modular tooling in robots and automated systems, tactile sensing lags behind, constrained by custom and non-interchangeable sensors. To close this gap, we developed a clip-on cylindrical tactile module that combines a snap-fit Clip-on Cap (CC) with a plug-in Sensor Core (PSC) hosting an array of force sensing and temperature-reference fiber Bragg gratings (FBGs). An opto-mechanical model relates Bragg wavelength shifts to external forces through parameterized dimensions and remains applicable across varied module sizes. Two loading configurations are examined: Case I, a PSC fitted with a compliant PSC-solid insert, and Case II, a hollow PSC. Experiments across both configurations validate the model, with prediction errors below 8%. Case II offers up to twice the force sensitivity of Case I, whereas Case I maintains slightly higher linearity (R2 > 0.95). We propose a metric, Q, for assessing the trade-off among sensitivity, linearity, and dynamic lag; analyses with this metric establish that softer solid inserts enhance tactile force perception. The CC–PSC pair can be rapidly swapped or detached to meet diverse application needs. These results provide a transferable design and modeling framework for equipping robots—or other automated systems—with universally deployable, clip-on tactile perception. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop