Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation
Abstract
1. Introduction
- Introducing a clip-on, parametrically scalable cylindrical tactile module. A two-piece architecture—snap-fit cap and plug-in FBG sensor core—enables attachment, detachment, or resizing within seconds, supporting plug-and-play replacement.
- Developing a parametric, closed-form opto-mechanical model. A geometry-aware opto-mechanical formulation links the module’s principal dimensions (cap aperture and core wall thickness) to its wavelength-to-force coefficient, providing a rapid, script-based route to generate diameters from 10 mm to 22 mm without re-molding.
- Establishing and validating a dual sensing model, together with a quantitative performance metric. Separate analytical formulations are derived for (i) the clip-on module equipped with a Plug-in Sensor Core (PSC) and (ii) the module operated without the PSC-solid insert. Experiments conducted across different cases validate the sensing model and yield metric Q for assessing tactile force perception.
2. Clip-On Tactile Module: Design and Fabrication
2.1. Mechanical Architecture of the Clip-On Cap and Plug-In Sensor Core
2.2. Additive Manufacturing and Assembly Procedure
2.3. FBG Array Layout and Attachment Strategy
3. Experimental Evaluation
3.1. Tactile Sensing Results of 1# PSC
3.2. Tactile Sensing Results of 2# PSC
4. Tactile Sensing Model and Theory
4.1. Opto-Mechanical Modeling of the Clip-On Module
4.1.1. Modeling of Case I
4.1.2. Modeling of Case II
4.2. Parametric Analysis
4.2.1. Analysis of Case I
4.2.2. Analysis of Case II
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile Butadiene Styrene |
CC | Clip-on Cap |
EMI | Electromagnetic Interference |
FBG | Fiber Bragg Grating |
LED | Light-Emitting Diode |
PSC | Plug-in Sensor Core |
PSC-solid | Plug-in Solid Core |
Temp-FBG | Temperature-Reference FBG |
UV | Ultraviolet |
VTSs | Vision-based Tactile Sensors |
SMF | Single-Mode Fiber |
Appendix A
References
- Yoder, Z.; Rumley, E.H.; Schmidt, I.; Rothemund, P.; Keplinger, C. Hexagonal Electrohydraulic Modules for Rapidly Reconfigurable High-Speed Robots. Sci. Robot. 2024, 9, eadl3546. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Peng, Y.; Zhang, Y.; An, S.; Wang, Y.; Zhai, Z.; Xu, Y.; Jiang, H. Plug & Play Origami Modules with All-Purpose Deformation Modes. Nat. Commun. 2023, 14, 4329. [Google Scholar] [CrossRef]
- Knospler, J.; Xue, W.; Trkov, M. Reconfigurable Modular Soft Robots with Modulating Stiffness and Versatile Task Capabilities. Smart Mater. Struct. 2024, 33, 065040. [Google Scholar] [CrossRef]
- Romiti, E.; Iacobelli, F.; Ruzzon, M.; Kashiri, N.; Malzahn, J.; Tsagarakis, N. An Optimization Study on Modular Reconfigurable Robots: Finding the Task-Optimal Design. In Proceedings of the 19th IEEE International Conference on Automation Science and Engineering (CASE 2023), Auckland, New Zealand, 26–30 August 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Iqbal, Z.; Pozzi, M.; Prattichizzo, D.; Salvietti, G. Detachable Robotic Grippers for Human–Robot Collaboration. Front. Robot. AI 2021, 8, 644532. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M. Tactile Sensors Need a Greater Sense of Purpose. Sci. Robot. 2022, 7, eabn9086. [Google Scholar] [CrossRef]
- Bhirangi, R.; DeFranco, A.; Adkins, J.; Majidi, C.; Gupta, A.; Hellebrekers, T.; Kumar, V. All the Feels: A Dexterous Hand with Large-Area Tactile Sensing. IEEE Robot. Autom. Lett. 2023, 8, 8311–8318. [Google Scholar] [CrossRef]
- Tee, B.C.K.; Chortos, A.; Dunn, R.R.; Schwartz, G.; Eason, E.; Bao, Z. Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics. Adv. Funct. Mater. 2014, 24, 5427–5434. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Peng, S.; Huang, Y.; Zhao, J.; Tang, W.; Guo, X. Silver Nanowire/Polymer Composite Soft Conductive Film Fabricated by Large-Area Compatible Coating for Flexible Pressure Sensor Array. J. Semicond. 2018, 39, 013001. [Google Scholar] [CrossRef]
- Ji, J.; Zhao, W.; Wang, Y.; Li, Q.; Wang, G. Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network. ACS Nano 2023, 17, 20153–20166. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Bao, R.; Pan, C. Innovations in Tactile Sensing: Microstructural Designs for Superior Flexible Sensor Performance. Adv. Funct. Mater. 2024, 34, 2405722. [Google Scholar] [CrossRef]
- Wang, P.; Wang, G.; Sun, G.; Bao, C.; Li, Y.; Meng, C.; Yao, Z. A flexible-integrated multimodal hydrogel-based sensing patch. Nano-Micro Lett. 2025, 17, 156. [Google Scholar] [CrossRef]
- Zou, L.; Ge, C.; Wang, Z.J.; Cretu, E.; Li, X. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review. Sensors 2017, 17, 2653. [Google Scholar] [CrossRef]
- Sagisaka, T.; Ohmura, Y.; Kuniyoshi, Y.; Nagakubo, A.; Ozaki, K. High-Density Conformable Tactile Sensing Glove. In Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2011), Bled, Slovenia, 26–28 October 2011; pp. 537–542. [Google Scholar] [CrossRef]
- Meribout, M.; Takele, N.A.; Derege, O.; Rifiki, N.; El Khalil, M.; Tiwari, V.; Zhong, J. Tactile Sensors: A Review. Measurement 2024, 238, 115332. [Google Scholar] [CrossRef]
- Kroemer, O.; Lampert, C.H.; Peters, J. Learning Dynamic Tactile Sensing with Robust Vision-Based Training. IEEE Trans. Robot. 2011, 27, 545–557. [Google Scholar] [CrossRef]
- Van Duong, L.; Ho, V.A. Large-Scale Vision-Based Tactile Sensing for Robot Links: Design, Modeling, and Evaluation. IEEE Trans. Robot. 2021, 37, 390–403. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Atkeson, C.G. Recent Progress in Tactile Sensing and Sensors for Robotic Manipulation: Can We Turn Tactile Sensing into Vision? Adv. Robot. 2019, 33, 661–673. [Google Scholar] [CrossRef]
- Fang, B.; Zhao, J.; Liu, N.; Sun, Y.; Zhang, S.; Sun, F.; Yang, Y. Force Measurement Technology of Vision-Based Tactile Sensor. Adv. Intell. Syst. 2025, 7, 2400290. [Google Scholar] [CrossRef]
- Yuan, W.; Dong, S.; Adelson, E.H. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors 2017, 17, 2762. [Google Scholar] [CrossRef]
- Ledermann, C.; Hergenhan, J.; Weede, O.; Woern, H. Combining Shape Sensor and Haptic Sensors for Highly Flexible Single Port System Using Fiber Bragg Sensor Technology. In Proceedings of the 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA 2012), Suzhou, China, 8–10 July 2012; pp. 196–201. [Google Scholar] [CrossRef]
- Yue, X.; Lu, R.; Yang, Q.; Song, E.; Jiang, H.; Ran, Y.; Guan, B.O. Flexible Wearable Optical Sensor Based on Optical Microfiber Bragg Grating. J. Light. Technol. 2023, 41, 1858–1864. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Li, X.; Tan, Y.; Zhou, Z. RSM-Based Data-Driven Optimized Design of a 3-D-Printed Building Block-Type FBG Tactile Sensor for Nursing Robots. IEEE Trans. Instrum. Meas. 2023, 72, 4006513. [Google Scholar] [CrossRef]
- Song, J.; Jiang, Q.; Huang, Y.; Li, Y.; Jia, Y.; Rong, X.; Liu, H. Research on Pressure Tactile Sensing Technology Based on Fiber Bragg Grating Array. Photonic Sens. 2015, 5, 263–272. [Google Scholar] [CrossRef]
- Fearing, R.S.; Binford, T.O. Using a Cylindrical Tactile Sensor for Determining Curvature. In Proceedings of the 1988 IEEE International Conference on Robotics and Automation (ICRA 1988), Philadelphia, PA, USA, 24–29 April 1988; pp. 765–771. [Google Scholar] [CrossRef]
- Saccomandi, P.; Oddo, C.M.; Zollo, L.; Formica, D.; Romeo, R.A.; Massaroni, C.; Caponero, M.A.; Vitiello, N.; Guglielmelli, E.; Schena, E.; et al. Feedforward Neural Network for Force Coding of an MRI-Compatible Tactile Sensor Array Based on Fiber Bragg Grating. J. Sens. 2015, 2015, 367194. [Google Scholar] [CrossRef]
- Gomes, D.F.; Lin, Z.; Luo, S. Blocks World of Touch: Exploiting the Advantages of All-Around Finger Sensing in Robot Grasping. Front. Robot. AI 2020, 7, 541661. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Hu, Z.; Yang, Z.; Yuan, W.; Song, C.; Pan, J.; Shen, Y. Soft Magnetic Skin for Super-Resolution Tactile Sensing with Force Self-Decoupling. Sci. Robot. 2021, 6, eabc8801. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, C.; Pan, C.; Hu, H.; Ji, K.; Sun, H.; Lyu, C.; Tang, D.; Li, T.; Fu, J.; et al. Split-Type Magnetic Soft Tactile Sensor with 3D Force Decoupling. Adv. Mater. 2024, 36, 2310145. [Google Scholar] [CrossRef]
- Kong, D.; Lu, Y.; Zhou, S.; Wang, M.; Pang, G.; Wang, B.; Chen, L.; Huang, X.; Lyu, H.; Xu, K.; et al. Super-Resolution Tactile Sensor Arrays with Sparse Units Enabled by Deep Learning. Sci. Adv. 2025, 11, eadv2124. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, E.S.; Choi, S.B. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis. Sensors 2022, 22, 1085. [Google Scholar] [CrossRef] [PubMed]
- Ward-Cherrier, B.; Pestell, N.; Cramphorn, L.; Winstone, B.; Giannaccini, M.E.; Rossiter, J.; Lepora, N.F. The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies. Soft Robot. 2018, 5, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber Grating Sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Alhussein, A.N.D.; Qaid, M.R.T.M.; Agliullin, T.; Valeev, B.; Morozov, O.; Sakhabutdinov, A. Fiber Bragg Grating Sensors: Design, Applications, and Comparison with Other Sensing Technologies. Sensors 2025, 25, 2289. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, C.; Zeng, L.; Sun, L.; Li, Z.; Chen, H.; Liu, G.; Qiao, Z.; Qu, Y.; Xu, D.; et al. Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors. Sensors 2025, 25, 183. [Google Scholar] [CrossRef] [PubMed]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity, 3rd ed.; McGraw–Hill: New York, NY, USA, 1970; pp. 279–291. ISBN 978-0-07-064720-6. [Google Scholar]
- Sadd, M.H. Elasticity: Theory, Applications, and Numerics, 4th ed.; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-815987-3. [Google Scholar] [CrossRef]
Group | Symbol | Details |
---|---|---|
Case I | 1#-I-B | Responses to the impulse loads; a blue solid core inside |
1#-I-G | Responses to the impulse loads; a green solid core inside | |
1#-I-LG | Responses to the impulse loads; a light green solid core inside | |
Case II | 2#-II-1 | Responses to the impulse loads; no solid core inside |
2#-II-2 | Second responses to the impulse loads; no solid core inside |
Details | Sensitivity K11-I (pm/N) K12-I (pm/N) | Linear Correlation Coefficient R211 R212 | Maximum Time Lag Δt11max (s) Δt12max (s) | Q—Factor Q11 (pm/N·s) Q12 (pm/N·s) | |
---|---|---|---|---|---|
Experiment | |||||
Blue | K11-I-B = 0.5043 | R211 = 0.9848 | Δt11max = 0.5 | Q11-B = 0.9932 | |
K12-I-B = 0.5471 | R212 = 0.9566 | Δt12max = 0.5 | Q12-B = 1.047 | ||
Green | K11-I-G = 0.7047 | R211 = 0.9848 | Δt11max = 0.5 | Q11-G = 1.3879 | |
K12-I-G = 0.7221 | R212 = 0.9499 | Δt12max = 0.5 | Q12-G = 1.3718 | ||
Light Green | K11-I-LG = 1.407 | R211 = 0.9650 | Δt11max = 1 | Q11-LG = 1.3578 | |
K12-I-LG = 1.487 | R212 = 0.9520 | Δt12max = 1 | Q12-LG = 1.4156 |
Details | Sensitivity K21-II (pm/N) K22-II (pm/N) | Linear Correlation Coefficient R221 R222 | Maximum Time Lag Δt21max (s) Δt22max (s) | Q—Factor Q21 (pm/N·s) Q22 (pm/N·s) | |
---|---|---|---|---|---|
Experiment | |||||
First | K21-II-1 = −1.179 | R221 = 0.955 | Δt21max = 1 | Q21 = 1.1259 | |
K22-II-1 = −1.458 | R222 = 0.949 | Δt22max = 1 | Q22 = 1.3836 | ||
Second | K21-II-2 = −1.962 | R221 = 0.988 | Δt21max = 0.5 | Q21 = 3.8769 | |
K22-II-2 = −2.469 | R222 = 0.947 | Δt22max = 1 | Q22 = 2.3381 |
Symbol | Description | Symbol | Description |
---|---|---|---|
E0 | Young’s modulus of FBG | r0 | Radius of FBG |
F | External concentrated force | F10 | Load on the top grooved block of the spherical cap of the clip-on cap |
F′10 | Load on the top of the PSC-solid | E1 | Young’s modulus of the plug-in sensor core |
A1 | Cylindrical cross-sectional area of the plug-in sensor core | rλ | Center distance of the through-hole |
r1 | Outer radius of the plug-in sensor core | r′ | Radius of alignment pillar on the plug-in sensor core |
r10 | Inner radius of the plug-in sensor core | E2 | Young’s modulus of the clip-on cap |
A2 | Cylindrical cross-sectional area of the clip-on cap | r2 | Outer radius of the clip-on cap |
r20 | Inner radius of the clip-on cap | ES | Young’s modulus of the PSC-solid |
As | Cross-sectional area of the PSC-solid |
Type | Case I | Case II | |
---|---|---|---|
Parameters | |||
λ (nm) | λ11 = 1546.295 | λ21 = 1540.060 | |
λ12 = 1524.570 | λ22 = 1530.701 | ||
pe | 0.22 | 0.22 | |
r0 (μm) | 62.5 | 62.5 | |
r10 (mm) | 9 | 9 | |
r1 (mm) | 10.5 | 10.5 | |
rλ (mm) | 12 | 12 | |
r20 (mm) | 15.5 | 15.5 | |
r2 (mm) | 17 | 17 | |
E0 (Pa) | 7.4 × 1010 | 7.4 × 1010 | |
E1 (Pa) | 3.2 × 106 | 1.4 × 106 | |
E2 (Pa) | 44 × 106 | 44 × 106 | |
Es (Pa) | ES-B = 2.0 × 109 | — | |
ES-G = 7.2 × 108 | — | ||
ES-LG = 3.0 × 107 | — |
Aspect | Prior FBG-Based Tactile Sensors | This Work |
---|---|---|
Modularity & serviceability | Laminated skins; hot-swap rare [21,23,25] | Clip-on two-piece (CC + PSC); swap in seconds. |
Form factor focus | Planar/dome/palm; cylindrical tip modules uncommon [21,22,23,25] | Cylindrical, tip-mounted |
Temperature compensation | Reference FBG often omitted [22,25] | Integrated Temp-FBG in PSC |
Scalable, closed-form modeling | No cross-geometry closed form [20,21,23] | Geometry-aware closed form; scriptable sizing 10–22 mm |
Configurations & validation | — | Two cases (PSC-solid/hollow PSC); model error < 8% |
Performance trade-off metric | — | Quality metric Q balances sensitivity, linearity, and lag |
Quantified performance outcomes | — | Case II sensitivity ≈ 2 × Case I; Case I R2 > 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Feng, Y.; Xu, M.; Li, Y.; Zhang, H. Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation. Sensors 2025, 25, 5943. https://doi.org/10.3390/s25195943
Zhao F, Feng Y, Xu M, Li Y, Zhang H. Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation. Sensors. 2025; 25(19):5943. https://doi.org/10.3390/s25195943
Chicago/Turabian StyleZhao, Fengzhi, Yan Feng, Min Xu, Yaxi Li, and Hua Zhang. 2025. "Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation" Sensors 25, no. 19: 5943. https://doi.org/10.3390/s25195943
APA StyleZhao, F., Feng, Y., Xu, M., Li, Y., & Zhang, H. (2025). Design of a Clip-On Modular Tactile Sensing Attachment Based on Fiber Bragg Gratings: Theoretical Modeling and Experimental Validation. Sensors, 25(19), 5943. https://doi.org/10.3390/s25195943