Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (526)

Search Parameters:
Keywords = systems microbial ecology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 15588 KB  
Article
Effect of AgNPs on PLA-Based Biocomposites with Polysaccharides: Biodegradability, Antibacterial Activity and Features
by Kristine V. Aleksanyan, Elena E. Mastalygina, Regina S. Smykovskaya, Nadezhda A. Samoilova, Viktor A. Novikov, Aleksander M. Shakhov, Yana V. Ryzhmanova, Galina A. Kochkina and Natalya E. Ivanushkina
Int. J. Mol. Sci. 2025, 26(22), 10916; https://doi.org/10.3390/ijms262210916 - 11 Nov 2025
Abstract
According to existing ecological problems, one of the promising developments is the creation of polyfunctional materials, which can be biodegradable, along with possessing antibacterial activity. The present research proposes biocomposites based on PLA with silver nanoparticles (AgNPs) and natural polysaccharides obtained in a [...] Read more.
According to existing ecological problems, one of the promising developments is the creation of polyfunctional materials, which can be biodegradable, along with possessing antibacterial activity. The present research proposes biocomposites based on PLA with silver nanoparticles (AgNPs) and natural polysaccharides obtained in a twin-screw extruder. Introduction of polysaccharides to PLA-based biocomposites with/without AgNPs led to significant decrease in the elastic modulus and tensile strength, while the elongation at break remained almost unchanged. Thanks to the presence of natural polysaccharides, there was intensified biodegradation in soil despite the AgNP availability. The maximal mass loss was 29% for the PLA–PEG1000–starch + AgNPs (80:10:10 + 0.5 wt%) biocomposite. Analyses of the systems before and after soil exposure were carried out using DSC and FTIR spectroscopy methods. According to a thermal analysis, it was found that PLA crystalline regions degrade during exposure to soil. The same feature was detected during the spectral analysis. The intensity of the characteristic absorption bands of PLA decreased. Furthermore, it was found that the dark areas on the surface of the materials are of a polysaccharide nature and may be signs of biofouling of the materials by microbial flora. The tests on fungus resistance showed that biocidal additives such as AgNPs in PLA-based biocomposites with polysaccharides did not inhibit the development of mycelial fungi–biodestructors. And the increased amount of chitosan in the films contributed to their more active destruction by the end of the observation period. It was demonstrated that such biocomposites can inhibit bacterial growth. Full article
Show Figures

Figure 1

15 pages, 2975 KB  
Article
Sustainable Polyculture of Hybrid Yellow Catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) and Chinese Olive Mussel (Solenaia oleivora) Enhances Water Quality and Modulates Bacterial Community Assembly in Pond Ecosystems
by Huan Wang, Huaxing Zhou, Feiyu Hu, Yuting Hu, Amei Liu, Ye Zhang and Guoqing Duan
Water 2025, 17(22), 3208; https://doi.org/10.3390/w17223208 - 10 Nov 2025
Abstract
Fish–mussel polyculture is a promising strategy for sustainable aquaculture. This study investigated hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) and Chinese olive mussel (Solenaia oleivora) polyculture on water quality, bacterial community structure, and fish growth performance over [...] Read more.
Fish–mussel polyculture is a promising strategy for sustainable aquaculture. This study investigated hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) and Chinese olive mussel (Solenaia oleivora) polyculture on water quality, bacterial community structure, and fish growth performance over a six-month production cycle. At harvest, polyculture fish had an 11.65% higher weight gain rate than those in monoculture. Polyculture reduced TN to 1.89–1.95 mg/L (vs. monoculture 2.74–3.44 mg/L) in July–October and kept TP at 0.29–0.73 mg/L (vs. monoculture 0.37–1.45 mg/L). The microbial α-diversity analysis revealed that the community richness and diversity of monoculture were reduced in July, whereas polyculture experienced decreased richness in October and diminished diversity in both July and October. Dominant bacterial phyla included Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, with Proteobacteria showing higher relative abundance in polyculture. Genus-level analysis revealed distinct successional patterns driven by season and cultivation mode. Notably, polyculture systems can effectively suppress potential pathogens. Redundancy analysis indicated that environmental factors played crucial roles in shaping the microbial community structure. More importantly, it provides scientific basis for optimizing freshwater polyculture models and offers practical technical support for promoting ecologically sustainable aquaculture through improved nutrient cycling and microbiome modulation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

35 pages, 1347 KB  
Review
Key Challenges in Plant Microbiome Research in the Next Decade
by Ayomide Emmanuel Fadiji, Adegboyega Adeniji, Adedayo Ayodeji Lanrewaju, Afeez Adesina Adedayo, Chinenyenwa Fortune Chukwuneme, Blessing Chidinma Nwachukwu, Joshua Aderibigbe and Iyabo Olunike Omomowo
Microorganisms 2025, 13(11), 2546; https://doi.org/10.3390/microorganisms13112546 - 7 Nov 2025
Viewed by 493
Abstract
The plant microbiome is pivotal to sustainable agriculture and global food security, yet some challenges hinder fully harnessing it for field-scale impact. These challenges span measurement and integration, ecological predictability and translation across environments and seasons. Key obstacles include technical challenges, notably overcoming [...] Read more.
The plant microbiome is pivotal to sustainable agriculture and global food security, yet some challenges hinder fully harnessing it for field-scale impact. These challenges span measurement and integration, ecological predictability and translation across environments and seasons. Key obstacles include technical challenges, notably overcoming the limits of current sequencing for low-abundance taxa and whole-community coverage, integrating multi-omics data to uncover functional traits, addressing spatiotemporal variability in microbial dynamics, deciphering the interplay between plant genotypes and microbial communities, and enforcing standardized controls, metadata, depth targets and reproducible workflows. The rise of synthetic biology, omics tools, and artificial intelligence offers promising avenues for engineering plant–microbe interactions, yet their adoption requires regulatory, ethical, and scalability issues alongside clear economic viability for end-users and explicit accounting for evolutionary dynamics, including microbial adaptation and horizontal gene transfer to ensure durability. Furthermore, there is a need to translate research findings into field-ready applications that are validated across various soils, genotypes, and climates, while ensuring that advances benefit diverse regions through global, interdisciplinary collaboration, fair access, and benefit-sharing. Therefore, this review synthesizes current barriers and promising experimental and computational strategies to advance plant microbiome research. Consequently, a roadmap for fostering resilient, climate-smart, and resource-efficient agricultural systems focused on benchmarked, field-validated workflows is proposed. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

37 pages, 522 KB  
Review
Ensuring Fish Safety Through Sustainable Aquaculture Practices
by Camila Carlino-Costa and Marco Antonio de Andrade Belo
Hygiene 2025, 5(4), 51; https://doi.org/10.3390/hygiene5040051 - 5 Nov 2025
Viewed by 346
Abstract
Sustainable aquaculture is increasingly vital to meet global protein demands while ensuring fish product safety and environmental stewardship from a One Health perspective. This review addresses fish hygiene as a comprehensive, multi-stage challenge encompassing water quality management, pathogen control, antimicrobial stewardship, feeding practices, [...] Read more.
Sustainable aquaculture is increasingly vital to meet global protein demands while ensuring fish product safety and environmental stewardship from a One Health perspective. This review addresses fish hygiene as a comprehensive, multi-stage challenge encompassing water quality management, pathogen control, antimicrobial stewardship, feeding practices, humane slaughter, post-harvest handling, and monitoring systems. We examined current practices and technologies that promote hygienic standards and reduce contamination risks across production cycles. The integration of biosecurity measures and alternative health-promoting agents contributes to disease prevention and reduces reliance on antimicrobials. Responsible drug administration aligned with regulatory frameworks minimizes residues and antimicrobial resistance. Feeding strategies incorporating sustainable and safe ingredients further support fish health and product quality. Critical control points during slaughter and post-harvest processing ensure microbial safety and prolong shelf life. Advanced monitoring and traceability systems enable real-time oversight and enhance food safety assurance. Finally, certification programs and robust regulatory policies are essential to standardize practices and facilitate access to international markets. Collectively, these strategies foster sustainable aquaculture that safeguards public health, maintains ecological integrity, and supports economic viability. This holistic approach positions fish hygiene not as a final quality check, but as an integral, continuously managed component of responsible aquaculture production. Full article
35 pages, 4852 KB  
Review
From Waste to Resource: Algal–Bacterial Systems and Immobilization Techniques in Aquaculture Effluent Treatment
by Jiangqi Qu, Ruijun Ren, Zhanhui Wu, Jie Huang and Qingjing Zhang
Clean Technol. 2025, 7(4), 97; https://doi.org/10.3390/cleantechnol7040097 - 4 Nov 2025
Viewed by 578
Abstract
The rapid expansion of global aquaculture has led to wastewater enriched with nitrogen, phosphorus, organic matter, antibiotics, and heavy metals, posing serious risks such as eutrophication, ecological imbalance, and public health threats. Conventional physical, chemical, and biological treatments face limitations including high cost, [...] Read more.
The rapid expansion of global aquaculture has led to wastewater enriched with nitrogen, phosphorus, organic matter, antibiotics, and heavy metals, posing serious risks such as eutrophication, ecological imbalance, and public health threats. Conventional physical, chemical, and biological treatments face limitations including high cost, secondary pollution, and insufficient efficiency, limiting sustainable wastewater management. Algal–bacterial symbiotic systems (ABSS) provide a sustainable alternative, coupling the metabolic complementarity of microalgae and bacteria for effective pollutant mitigation and concurrent biomass valorization. Immobilizing microbial consortia within carrier materials enhances system stability, tolerance to environmental changes, and scalability. This review systematically summarizes the pollution characteristics and ecological risks of aquaculture effluents, highlighting the limitations of conventional treatment methods. It focuses on the metabolic cooperation within ABSS, including nutrient cycling and pollutant degradation, the impact of environmental factors, and the role of immobilization carriers in enhancing system performance and biomass resource valorization. Despite their potential, ABSS still face challenges related to mass transfer limitations, complex microbial interactions, and difficulties in scale-up. Future research should focus on improving environmental adaptability, regulating microbial dynamics, designing intelligent and cost-effective carriers, and developing modular engineering systems to enable robust and scalable solutions for sustainable aquaculture wastewater treatment. Full article
(This article belongs to the Special Issue Pollutant Removal from Wastewater by Microalgae-Based Processes)
Show Figures

Figure 1

26 pages, 3160 KB  
Review
Gut Microbiota and Ferroptosis in Colorectal Cancer: A Comprehensive Review of Mechanisms and Therapeutic Strategies to Overcome Immune Checkpoint Resistance
by Yingchang Cai, Feng Zhao and Xiaofei Cheng
Biomolecules 2025, 15(11), 1546; https://doi.org/10.3390/biom15111546 - 3 Nov 2025
Viewed by 565
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Although immune checkpoint inhibitors (ICIs) have achieved striking clinical efficacy in the subset of CRCs with mismatch repair deficiency/high microsatellite instability (dMMR/MSI-H), the vast majority of patients—those with proficient mismatch repair/microsatellite-stable (pMMR/MSS) tumors—derive little benefit from current immunotherapies. Ferroptosis, an iron-dependent form of regulated cell death driven by lethal accumulation of lipid peroxides, has emerged as a promising antitumor mechanism that can interact with and modulate antitumor immunity. Concurrently, the gut microbiota exerts powerful control over host metabolism and immune tone through microbial community structure and metabolite production; accumulating evidence indicates that microbiota-derived factors can either sensitize tumors to ferroptosis (for example, via short-chain fatty acids) or confer resistance (for example, indole-3-acrylic acid produced by Peptostreptococcus anaerobius acting through the AHR→ALDH1A3→FSP1/CoQ axis). In this review we synthesize mechanistic data linking microbial ecology, iron and lipid metabolism, and immune regulation to ferroptotic vulnerability in CRC. We discuss translational strategies to exploit this “microbiota–ferroptosis” axis—including precision microbiome modulation, dietary interventions, pharmacologic ferroptosis inducers, and tumor-targeted delivery systems—and we outline biomarker frameworks and trial designs to evaluate combinations with ICIs. We also highlight major challenges, such as interindividual microbiome variability, potential collateral harm to ferroptosis-sensitive immune cells, adaptive antioxidant compensation (e.g., NRF2/FSP1 activation), and safety/regulatory issues for live biotherapeutics. In summary, this review highlights that targeting the microbiota-ferroptosis axis may represent a rational and potentially transformative approach to reprogramming the tumor microenvironment and overcoming immune checkpoint resistance in pMMR/MSS colorectal cancer; however, further research is essential to validate this concept and address existing challenges. Full article
Show Figures

Figure 1

17 pages, 1058 KB  
Article
Impact of Drinking Water Supplemented with Complex Acidifiers on Production Performance, Egg Quality, Physiological and Biochemical Indicators, and Microbial Flora of BIAN Chickens
by Bochi Zhang, Liying Du, Tao Yu, Kai Zhang, Rui Zhao, Chunlei Yang and Xianyi Song
Life 2025, 15(11), 1700; https://doi.org/10.3390/life15111700 - 3 Nov 2025
Viewed by 303
Abstract
This study investigated the effects of dietary supplementation with composite acidifying agents containing 2-hydroxy-4-methylthiobutyric acid (≥30.0%), lactic acid (≥24.2%), and phosphoric acid (≥23.8%) on production performance, egg quality, serum biochemistry, intestinal health, and cecal microbiota in 300-day-old BIAN chickens. In a 42-day randomized [...] Read more.
This study investigated the effects of dietary supplementation with composite acidifying agents containing 2-hydroxy-4-methylthiobutyric acid (≥30.0%), lactic acid (≥24.2%), and phosphoric acid (≥23.8%) on production performance, egg quality, serum biochemistry, intestinal health, and cecal microbiota in 300-day-old BIAN chickens. In a 42-day randomized trial, 900 laying hens were randomly allocated to three groups: the control group (basal diet with tap water), test group A (basal diet with 0.05% composite acidifier in drinking water), and test group B (basal diet with 0.20% composite acidifier in drinking water). The results demonstrated that test group B exhibited a significant 4.6% increase in average egg weight compared to the control (p = 0.029), while test group A showed enhanced Haugh unit values (p = 0.010) and eggshell strength (p = 0.010). Serum biochemical analysis revealed marked improvements in immune function, with test group B showing a 65.49% increase in globulin levels (p = 0.010) and 61.76% elevation in total antioxidant capacity (T-AOC) (p = 0.010). Intestinal digestive enzyme activities were significantly enhanced, particularly in test group A with a 61.73% increase in duodenal lipase activity (p = 0.010) and 37.43% elevation in jejunal amylase activity (p = 0.036). Morphological assessment demonstrated improved intestinal architecture in test group B, with a 26.02% reduction in crypt depth (p = 0.025) and a 44.53% increase in the villus-to-crypt ratio (p = 0.030). Microbiota analysis revealed dose-dependent modulation of cecal bacterial communities, with notable increases in beneficial genera including Akkermansia (from 1.8% to 7.2% in test group A) and Lachnospiraceae (from 4.7% to 9.7% in test group B) while maintaining core microbiota stability. Principal component analysis confirmed distinct microbial ecological niches created by acidifier supplementation. These findings demonstrate that composite acidifying agents effectively enhance egg production quality, immune status, digestive function, and gut health in BIAN chickens, supporting their potential as sustainable alternatives to antibiotic growth promoters in laying hen production systems. Full article
(This article belongs to the Special Issue Advances in Livestock Breeding, Nutrition and Metabolism)
Show Figures

Figure 1

25 pages, 1880 KB  
Article
Effects of Pollutants in Urban Wastewater on Rhizoplane Microbial Communities in Constructed Wetlands: Resistance and Resilience of Macrophyte-Associated Microbiomes
by Paolo Piccolo, Annamaria Gentile, Angela Cicatelli, Francesco Guarino and Stefano Castiglione
Environments 2025, 12(11), 414; https://doi.org/10.3390/environments12110414 - 2 Nov 2025
Viewed by 353
Abstract
The impact of pollutants in urban wastewater on Constructed Wetlands (CWs) rhizoplane microbial communities remains quite understudied. Our study explores how civil wastewater influences the structure and ecological stability of rhizoplane microbial communities associated with three macrophytes: Nerium oleander L., Arundo donax L., [...] Read more.
The impact of pollutants in urban wastewater on Constructed Wetlands (CWs) rhizoplane microbial communities remains quite understudied. Our study explores how civil wastewater influences the structure and ecological stability of rhizoplane microbial communities associated with three macrophytes: Nerium oleander L., Arundo donax L., and Juncus conglomeratus L. in simulated conditions as in the case of CWs. Therefore, a pot experiment was set up, using wastewater repeated exposure of the three macrophytes, to assess the microbial (bacteria and fungi) resistance and resilience by means of next-generation sequencing. The results showed that all three macrophytes contributed to pollutant removal; however, the effects on microbial communities were taxon-specific. In general, the rhizobacterial community exhibited moderate resilience and low resistance to wastewater, indicating a partial recovery post-disturbance. The fungal community showed high resistance (ResI = 0.99), in contrast with limited resilience (RI < 1), suggesting a stable but less dynamic response to the wastewater exposure. Effluent repeated addition positively influenced the relative abundance of certain bacteria taxonomical groups, specifically Firmicutes and Actinobacteria, but also of some fungal taxa. Our findings underscore the key role of microbial communities in CWs, where complementary resistance and resilience strategies contribute to system stability, plant health, and pollutant attenuation. Full article
Show Figures

Graphical abstract

12 pages, 537 KB  
Article
Girgentana’s Goat Milk Microbiota Investigated in an Organic Farm During Dry Season
by Giorgio Chessari, Serena Tumino, Bianca Castiglioni, Filippo Biscarini, Salvatore Bordonaro, Marcella Avondo, Donata Marletta and Paola Cremonesi
Animals 2025, 15(21), 3149; https://doi.org/10.3390/ani15213149 - 30 Oct 2025
Viewed by 362
Abstract
Milk microbiota is a complex microbial ecosystem with implications for product quality, safety, and animal health. However, limited data exist on goat milk microbiota, particularly in local breeds. This study provides the first detailed characterization of the milk microbiota of Girgentana goats, a [...] Read more.
Milk microbiota is a complex microbial ecosystem with implications for product quality, safety, and animal health. However, limited data exist on goat milk microbiota, particularly in local breeds. This study provides the first detailed characterization of the milk microbiota of Girgentana goats, a resilient Sicilian breed valued for high-quality dairy products. Illumina NovaSeq sequencing was used to analyze the 16S rRNA V3–V4 regions of 44 individual and 3 bulk milk samples. Briefly, 16S rRNA-gene sequencing produced a total of 8,135,944 high-quality reads, identifying 1134 operational taxonomic units (OTUs) across all individual samples. On average, each sample showed 864 OTUs with counts > 0. Alpha diversity metrics, based on richness estimators (Chao1: 948.1; ACE: 936.3) and diversity indices (Shannon: 4.06; Simpson: 0.95; Fisher: 118.5), indicated a heterogeneous community with both common and low-abundance taxa. Firmicutes (51%) and Proteobacteria (27%) were the predominant phyla, with Lactobacillaceae (54%) and Bifidobacteriaceae (22%) dominating at the family level. Notably, farm bulk milk profiles closely mirrored individual samples. These results establish a milk microbiota baseline for the Girgentana breed and offer valuable insights into microbial ecology in traditional dairy systems, supporting future comparisons across breeds and farming practices. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

20 pages, 3607 KB  
Article
Oyster Aquaculture Impacts on Environment and Microbial Taxa in Dapeng Cove
by Fei Tong, Xue Feng, Huarong Yuan, Yuxiang Chen and Pimao Chen
Microorganisms 2025, 13(11), 2480; https://doi.org/10.3390/microorganisms13112480 - 30 Oct 2025
Viewed by 355
Abstract
Environmental physicochemical factors and microorganisms play critical roles in the health of oysters. However, the impact of high-density oyster farming—a highly efficient filter-feeding bivalve system—on environmental conditions and microbial community structure and function remains poorly understood. This study conducted four-season monitoring of the [...] Read more.
Environmental physicochemical factors and microorganisms play critical roles in the health of oysters. However, the impact of high-density oyster farming—a highly efficient filter-feeding bivalve system—on environmental conditions and microbial community structure and function remains poorly understood. This study conducted four-season monitoring of the water and sediment parameters in a semi-enclosed bay commercial oyster aquaculture (OA) system and a control area (CT), coupled with 16S rRNA amplicon sequencing of the environmental microbiota. Oyster aquaculture caused negligible disruption to water column parameters but significantly increased the concentrations of total organic carbon (TOC, annual mean OA vs. CT:1.15% vs. 0.56%), sulfides (annual mean OA vs. CT:67.72 vs. 24.99 mg·kg−1), and heavy metals (Cd, Pb, Cu, Zn, and Cr) in the sediment. α-diversity (Shannon and Chao indices) exhibited minimal overall perturbation, with significant inter-regional differences observed only in winter for both water and sediment. The bacterial community structure of the water column was significantly altered only in winter, whereas sediment communities showed structural shifts in spring, summer, and autumn. Water microbiota were primarily influenced by turbidity, dissolved oxygen, salinity, the Si/N ratio, and silicates. Sediment microbiota were correlated with Pb, Cu, Zn, TOC, Cr, and sediment particle size. Water bacterial functions displayed only four significantly divergent biogeochemical processes annually (sulfur compound respiration; OA vs. CT). In contrast, sediment bacteria exhibited 29 significantly disrupted functions annually, with the greatest seasonal divergence in winter (11/67 functions). Spring, summer, and autumn sediment functions showed distinct patterns. Understanding these environmental–microbial interactions is essential for sustainable oyster aquaculture and ecological optimization. Full article
Show Figures

Figure 1

16 pages, 2204 KB  
Article
Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere
by Xinyue Chen, Yunfeng Lu, Taisheng Jiang, Peize Li, Xiaoqiang Deng, Jinming Yang, Beibei Wang and Rong Li
Agronomy 2025, 15(11), 2520; https://doi.org/10.3390/agronomy15112520 - 29 Oct 2025
Viewed by 252
Abstract
Soil-borne diseases of banana severely threaten the sustainable development of the banana industry. In the pineapple–banana rotation system, using rhizosphere microorganisms to control banana Fusarium wilt via pineapple root exudates is a promising green control strategy. However, the role of volatile organic compounds [...] Read more.
Soil-borne diseases of banana severely threaten the sustainable development of the banana industry. In the pineapple–banana rotation system, using rhizosphere microorganisms to control banana Fusarium wilt via pineapple root exudates is a promising green control strategy. However, the role of volatile organic compounds (VOCs) in mediating disease suppression remains unclear. To explore the disease-inhibiting mechanisms, this study employed in vitro assays and high-throughput sequencing to evaluate the effects of three pineapple-root-derived VOCs (decanal, nonanal, octanol). The results showed the following: (1) All three VOCs strongly inhibited the mycelial growth of Fusarium, with octanol exhibiting the highest inhibition. (2) Each VOC promoted Arabidopsis thaliana growth, and decanal was the most effective. (3) In pot experiments, these VOCs significantly altered the banana rhizosphere microbial community, facilitating the colonization of beneficial genera—characterized by reduced microbial diversity and increased beneficial genera abundance. These results delineate a VOC-mediated rhizosphere microbe–Fusarium–plant interaction network, offering a novel theoretical foundation for the ecological control of banana diseases via the rhizosphere microbiome. In conclusion, this study elucidates a new mechanism for banana disease inhibition via VOCs, highlighting the positive impacts on plant growth and rhizosphere soil health through microbiota modulation. Full article
(This article belongs to the Special Issue Soil Microbiomes and Their Roles in Soil Health and Fertility)
Show Figures

Figure 1

38 pages, 3011 KB  
Review
Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture
by Younes Rezaee Danesh
Sensors 2025, 25(21), 6631; https://doi.org/10.3390/s25216631 - 29 Oct 2025
Viewed by 1003
Abstract
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve [...] Read more.
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve nutrient cycling, stress tolerance, and soil fertility thereby reducing the reliance on chemical fertilizers and pesticides. In parallel, sensor networks—including soil moisture, nutrient, environmental, and remote-sensing platforms—enable real-time, data-driven management of agroecosystems. Integrated microbe–sensor approaches have demonstrated 10–25% yield increases and up to 30% reductions in agrochemical inputs under optimized field conditions. We propose an integrative Microbe–Sensor Closed Loop (MSCL) framework in which microbial activity and sensor feedback interact dynamically to optimize inputs, monitor plant–soil interactions, and sustain productivity. Key applications include precision fertilization, stress diagnostics, and early detection of nutrient or pathogen imbalances. The review also highlights barriers to large-scale adoption, such as variable field performance of inoculants, high sensor costs, and limited interoperability of data systems. Addressing these challenges through standardization, cross-disciplinary collaboration, and farmer training will accelerate the transition toward climate-smart, self-regulating agricultural systems. Collectively, the integration of biological and technological innovations provides a clear pathway toward resilient, resource-efficient, and ecologically sound food production. Full article
Show Figures

Figure 1

17 pages, 2954 KB  
Review
Bacterial Composition Across Bat Species: A Human Health Perspective
by Julio David Soto-López, Pedro Fernández-Soto and Antonio Muro
Animals 2025, 15(21), 3126; https://doi.org/10.3390/ani15213126 - 28 Oct 2025
Viewed by 379
Abstract
Bats are widely recognized as reservoirs of diverse bacterial pathogens with important implications for human health. Recent zoonotic disease outbreaks have intensified interest in bat microbiomes, with high-throughput sequencing increasingly used to assess microbial diversity. In this article, we review literature from the [...] Read more.
Bats are widely recognized as reservoirs of diverse bacterial pathogens with important implications for human health. Recent zoonotic disease outbreaks have intensified interest in bat microbiomes, with high-throughput sequencing increasingly used to assess microbial diversity. In this article, we review literature from the past five years on bacterial species associated with bats and their potential clinical relevance. Using automated searches and manual filtering, we extracted data from 47 peer-reviewed studies. Most research has focused on guano samples, though interest in skin microbiomes is rising, particularly in relation to Pseudogymnoascus destructans, the agent of white-nose syndrome. China leads in the number of publications, followed by the United States, and amplicon sequencing remains the predominant metagenomic method. Across studies, 4700 bacterial species were reported, including several known human pathogens capable of aerosol transmission or opportunistic infections in immunocompromised individuals. Many of these taxa are classified as global priority targets for antimicrobial drug development by the World Health Organization and the U.S. Centers for Disease Control and Prevention. Given the clinical severity of diseases linked to some species, bats should be integrated into epidemiological surveillance systems. However, the lack of standardized reporting practices significantly limits the comparability and utility of bat microbiome data for robust ecological and epidemiological analyses. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

19 pages, 837 KB  
Review
Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions
by Afeez Adesina Adedayo and Mary Tomi Olorunkosebi
Biology 2025, 14(11), 1505; https://doi.org/10.3390/biology14111505 - 28 Oct 2025
Viewed by 452
Abstract
The intricate connections between plants and the microbial populations that surround them are crucial for plant development and resilience, but little is known about the evolutionary processes influencing these partnerships. Less is known about how pathogenic and beneficial microbes coevolve with their plant [...] Read more.
The intricate connections between plants and the microbial populations that surround them are crucial for plant development and resilience, but little is known about the evolutionary processes influencing these partnerships. Less is known about how pathogenic and beneficial microbes coevolve with their plant hosts over ecological and evolutionary timeframes, despite the fact that several studies identify rhizosphere and endophytic microbes that support nutrient acquisition, disease resistance, and stress tolerance. Using molecular, ecological, and evolutionary investigations from soil, rhizosphere, and endosphere habitats, this review summarizes current findings on microbial coevolution in plant–microbe systems. We look at the endosymbiotic processes that underlie the development of organelles, the mechanisms of mutualism and antagonism, and the eco-evolutionary feedbacks that affect plant health and agricultural output. The inadequate comprehension of intraspecific microbial diversity, the application of laboratory coevolution experiments to field settings, and the long-term effects of climate change on the evolutionary dynamics of plants and microbiomes are some of the major knowledge gaps. When pathogenic and beneficial microbes apply selective pressures to one another and their common host, coevolution takes place. This results in mutual genetic and physiological adaptations, such as modifications to host immunity, microbial virulence, or competitive tactics, which influence the way the two types interact over time. We conclude that understanding plants as holobiont-integrated units of hosts and their microbiomes offers fresh chances to develop microbiome-based approaches to sustainable agriculture, such as coevolutionary breeding programs, precision biofertilizers, and resilient cropping systems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

22 pages, 10792 KB  
Review
How Grazing, Enclosure, and Mowing Intensities Shape Vegetation–Soil–Microbe Dynamics of Qinghai–Tibet Plateau Grasslands: Insights for Spatially Differentiated Integrated Management
by Wei Song
Land 2025, 14(11), 2122; https://doi.org/10.3390/land14112122 - 24 Oct 2025
Viewed by 351
Abstract
Grasslands provide essential forage, fuel, and ecosystem services, underpinning regional livestock husbandry and ecological integrity. However, improper utilization drives structural degradation and functional decline of the vegetation–soil–microbe system, particularly on the ecologically sensitive and fragile Qinghai–Tibet Plateau (QTP). The differential impacts of diverse [...] Read more.
Grasslands provide essential forage, fuel, and ecosystem services, underpinning regional livestock husbandry and ecological integrity. However, improper utilization drives structural degradation and functional decline of the vegetation–soil–microbe system, particularly on the ecologically sensitive and fragile Qinghai–Tibet Plateau (QTP). The differential impacts of diverse utilization practices on QTP grasslands remain inadequately understood, limiting scientific support for differentiated sustainable management. To address this, we conducted a comprehensive meta-analysis to clarify effects of grazing, enclosure, and mowing on QTP grasslands, integrating studies from Web of Science, Google Scholar, and CNKI. We constructed disturbance intensity indicators to quantify utilization pressure and used multiple ecological metrics to characterize heterogeneous responses of the vegetation–soil–microbe system. Moderate grazing enhanced vegetation coverage, biomass, diversity, soil total phosphorus, and organic matter; high-intensity grazing reduced vegetation traits, soil bulk density, moisture, nutrients, and microbial biomass/diversity, while increasing soil pH. Early enclosure mitigated anthropogenic disturbance to improve grassland functions, but long-term enclosure exacerbated nutrient/moisture competition, lowering vegetation biomass/diversity and degrading soil properties. Moderate mowing improved vegetation communities by suppressing dominant species overexpansion; excessive mowing caused vegetation homogenization, soil carbon loss, and microbial destabilization. Impacts showed environmental heterogeneity linked to climate, soil, vegetation type, and elevation. In humid and fertile alpine meadows, moderate grazing more effectively promoted vegetation diversity and soil nutrient cycling, while in arid and nutrient-poor desert grasslands, even light grazing led to visible declines in vegetation coverage and soil moisture. Low-elevation alpine grasslands exhibited stronger positive responses to moderate grazing, whereas high-elevation alpine desert grasslands showed high vulnerability even to light grazing. Based on these mechanisms, regionally tailored strategies integrating multiple practices are required to balance ecological conservation and livestock production, promoting QTP grassland sustainability. In future research, we will strengthen quantitative exploration of how specific environmental factors regulate the magnitude and direction of grassland ecosystem responses to grazing, enclosure, and mowing, thereby providing more precise scientific basis for differentiated grassland management. Full article
Show Figures

Figure 1

Back to TopTop