Ensuring Fish Safety Through Sustainable Aquaculture Practices
Abstract
1. Introduction
2. Water Quality Management: A Pillar for Fish Hygiene and Sustainable Aquaculture
2.1. Recirculating Aquaculture Systems (RAS)
2.2. Biofiltration and Nitrification
2.3. Effluent Treatment and Water Reuse
2.4. Integrated Multi-Trophic Aquaculture (IMTA)
2.5. Routine Monitoring and Automation
3. Pathogen Control and Disease Prevention
3.1. Biosecurity Protocols
3.2. Prophylactic Measures
3.3. Alternative Health-Promoting Agents
3.4. Environmental Management
3.5. Early Detection and Surveillance
4. Responsible Use of Veterinary Drugs
5. Feeding Practices and Product Safety: A Critical Link in Fish Hygiene and Sustainable Aquaculture
5.1. Nutritional Formulation and Fish Physiology
5.2. Feed Ingredients and Contaminant Control
5.3. Alternative Protein Sources and Sustainability
5.4. Functional Feeds and Health Promotion
6. Slaughtering and Post-Harvest Handling: Critical Stages for Ensuring Fish Hygiene
6.1. Pre-Slaughter Management and Stress Reduction
6.2. Hygienic Slaughtering Techniques
6.3. Storage and Cold Chain Integrity
6.4. Packaging
7. Monitoring Systems and Food Safety Assurance in Sustainable Aquaculture
7.1. Implementation of Hazard Analysis and Critical Control Points (HACCP)
7.2. Real-Time Environmental Monitoring
7.3. Microbiological Testing and Contaminant Screening
7.4. Traceability and Blockchain Technologies
8. Regulatory Framework and Certification: Ensuring Fish Hygiene
8.1. National and International Regulatory Standards
8.2. Veterinary Drug Regulations and Compliance
8.3. Certification Programs for Sustainable and Hygienic Production
8.4. Periodic Audits and Training
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AMR | Antimicrobial Resistance |
| AOB | Ammonia-Oxidizing Bacteria |
| ASC | Aquaculture Stewardship Council |
| BAP | Best Aquaculture Practices |
| BMPs | Best Management Practices |
| DHA | Docosahexaenoic Acid |
| DNA | Deoxyribonucleic Acid |
| EFSA | European Food Safety Authority |
| EMA | European Medicines Agency |
| EPA | Eicosapentaenoic Acid |
| FAO | Food And Agriculture Organization |
| FDA | Food And Drug Administration |
| FOS | Fructoolig Saccharides |
| GAP | Good Aquaculture Practices |
| GHG | Greenhouse Gases |
| GIS | Geographic Information Systems |
| HACCP | Hazard Analysis and Critical Control Points |
| HGT | Horizontal Gene Transfer |
| IMTA | Integrated Multi-Trophic Aquaculture |
| IoT | Internet Of Things |
| LAMP | Loop-Mediated Isothermal Amplification |
| MDA | Malondialdehyde |
| MAP | Modified Atmosphere Packaging |
| MAPA | Ministério Da Agricultura E Pecuária |
| MAR | Managed Aquifer Recharge |
| MBR | Membrane Bioreactor |
| MOS | Mannanoligosaccharides |
| MRL | Maximum Residue Limits |
| NGS | Next-Generation Sequencing |
| NOB | Nitrite-Oxidizing Bacteria |
| PCR | Polymerase Chain Reaction |
| QAOA | Quantum Approximate Optimization Algorithm |
| RAS | Recirculating Aquaculture Systems |
| RFID | Radio Frequency Identification |
| SDGs | Sustainable Development Goals |
| SPF | Specific Pathogen Free |
| TGF | Transforming Growth Factor |
| TNF | Tumor Necrosis Factor |
| UV | Ultraviolet |
| WHO | World Health Organization |
| WOAH | World Organization for Animal Health |
| WSNs | Wireless Sensor Networks |
| WTO | World Trade Organization |
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; p. 1176. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024—Financing to End Hunger, 1178 Food Insecurity and Malnutrition in All Its Forms; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T. Aquatic Food Security: Insights into Challenges and Solutions from an Analysis of Interactions between Fisheries, Aquaculture, Food Safety, Human Health, Fish and Human Welfare, Economy and Environment. Fish Fish. 2016, 17, 893–938. [Google Scholar] [CrossRef]
- Cojocaru, A.L.; Liu, Y.; Smith, M.D.; Akpalu, W.; Chávez, C.; Dey, M.M.; Dresdner, J.; Kahui, V.; Pincinato, R.B.; Tran, N. The “Seafood” System: Aquatic Foods, Food Security, and the Global South. Rev. Environ. Econ. Policy 2022, 16, 306–326. [Google Scholar] [CrossRef]
- Bjørndal, T.; Dey, M.; Tusvik, A. Economic Analysis of the Contributions of Aquaculture to Future Food Security. Aquaculture 2024, 578, 740071. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Adewale, O.; Liverpool-Tasie, L.S.O. Guidelines for Good Hygienic Practices for Fish and Fish Products; Michigan State University: East Lansing, MI, USA, 2023. [Google Scholar]
- Bunting, S.W. Principles of Sustainable Aquaculture: Promoting Social, Economic and Environmental Resilience; Routledge: Milton Park, UK, 2024; ISBN 1-003-34282-5. [Google Scholar]
- Pinto Ferreira, J.; Battaglia, D.; Dorado García, A.; Tempelman, K.; Bullon, C.; Motriuc, N.; Caudell, M.; Cahill, S.; Song, J.; LeJeune, J. Achieving Antimicrobial Stewardship on the Global Scale: Challenges and Opportunities. Microorganisms 2022, 10, 1599. [Google Scholar] [CrossRef]
- Bedane, T.D.; Agga, G.E.; Gutema, F.D. Hygienic Assessment of Fish Handling Practices along Production and Supply Chain and Its Public Health Implications in Central Oromia, Ethiopia. Sci. Rep. 2022, 12, 13910. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 1-4615-5407-1. [Google Scholar]
- Craig, C.A.; Kollaus, K.A.; Behen, K.P.; Bonner, T.H. Relationships among Spring Flow, Habitats, and Fishes within Evolutionary Refugia of the Edwards Plateau. Ecosphere 2016, 7, e01205. [Google Scholar] [CrossRef]
- Yusoff, F.M.; Umi, W.A.; Ramli, N.M.; Harun, R. Water Quality Management in Aquaculture. Camb. Prism. Water 2024, 2, e8. [Google Scholar] [CrossRef]
- Assefa, A.; Abunna, F. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Vet. Med. Int. 2018, 2018, 5432497. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Guo, X.; Huang, M.; Luo, X.; You, W.; Ke, C. Impact of Ocean Acidification on Shells of the Abalone Species Haliotis Diversicolor and Haliotis Discus Hannai. Mar. Environ. Res. 2023, 192, 106183. [Google Scholar] [CrossRef]
- Lusiastuti, A.M.; Prayitno, S.B.; Sugiani, D.; Caruso, D. Building and Improving the Capacity of Fish and Environmental Health Management Strategy in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 521, 012016. [Google Scholar]
- Hassan, S.M.; Rashid, M.S.; Muhaimeed, A.R.; Madlul, N.S.; Al-Katib, M.U.; Sulaiman, M.A. Effect of New Filtration Medias on Water Quality, Biomass, Blood Parameters and Plasma Biochemistry of Common Carp (Cyprinus carpio) in RAS. Aquaculture 2022, 548, 737630. [Google Scholar] [CrossRef]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture Wastewater Treatment Technologies and Their Sustainability: A Review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating Aquaculture Systems (RAS): Environmental Solution and Climate Change Adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological Engineering in Aquaculture—Potential for Integrated Multi-Trophic Aquaculture (IMTA) in Marine Offshore Systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Tzu, N.L.; Farha, W.A.R.W.E.; Musa, N.; Rifqi, M.M.; Hidayati, S.; Pratiwi, H.; Aris, N.A.M.; Musa, N.; Rasid, R.; Abd Aziz, M.F.H. Sensing Technologies and Automation: Revolutionizing Aquaculture Towards Sustainability and Resilience. Semarak Int. J. Agric. For. Fish. 2024, 1, 10–18. [Google Scholar]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) Analysis: Main Issues on Management and Future Challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming Different Species in RAS in Nordic Countries: Current Status and Future Perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. Growth, Digestive Activity, Welfare, and Partial Cost-Effectiveness of Genetically Improved Farmed Tilapia (Oreochromis niloticus) Cultured in a Recirculating Aquaculture System and an Indoor Biofloc System. Aquaculture 2014, 422, 1–7. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Helfrich, L.A.; Libey, G.S. Fish Farming in Recirculating Aquaculture Systems (RAS); Virginia Cooperative Extension: Yorktown, VA, USA, 1991. [Google Scholar]
- Zhang, S.-Y.; Li, G.; Wu, H.-B.; Liu, X.-G.; Yao, Y.-H.; Tao, L.; Liu, H. An Integrated Recirculating Aquaculture System (RAS) for Land-Based Fish Farming: The Effects on Water Quality and Fish Production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Ruiz, P.; Vidal, J.M.; Sepúlveda, D.; Torres, C.; Villouta, G.; Carrasco, C.; Aguilera, F.; Ruiz-Tagle, N.; Urrutia, H. Overview and Future Perspectives of Nitrifying Bacteria on Biofilters for Recirculating Aquaculture Systems. Rev. Aquac. 2020, 12, 1478–1494. [Google Scholar] [CrossRef]
- Brown, A.R.; Wilson, R.W.; Tyler, C.R. Assessing the Benefits and Challenges of Recirculating Aquaculture Systems (RAS) for Atlantic Salmon Production. Rev. Fish. Sci. Aquac. 2024, 33, 380–401. [Google Scholar] [CrossRef]
- Stenhaug, S.R. The Effect of Organic Load on the Rearing Water and Biofilter Biofilm Microbiota Across the Freshwater and Brackish Water Phases in RAS with Atlantic Salmon (Salmo salar); NTNU: Trondheim, Norway, 2023. [Google Scholar]
- Wang, C.-Y.; Chang, C.-Y.; Dahms, H.-U.; Lai, H.-T. Effects of Stocking Density of Tilapia on the Performance of a Membrane Filtration–Recirculating Aquaponic System. Desalination Water Treat. 2017, 96, 22–32. [Google Scholar] [CrossRef]
- Tsukuda, S.; Christianson, L.; Kolb, A.; Saito, K.; Summerfelt, S. Heterotrophic Denitrification of Aquaculture Effluent Using Fluidized Sand Biofilters. Aquac. Eng. 2015, 64, 49–59. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen Removal Techniques in Aquaculture for a Sustainable Production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef]
- Sugita, H.; Nakamura, H.; Shimada, T. Microbial Communities Associated with Filter Materials in Recirculating Aquaculture Systems of Freshwater Fish. Aquaculture 2005, 243, 403–409. [Google Scholar] [CrossRef]
- Xavier, K.B.; Bassler, B.L. LuxS Quorum Sensing: More than Just a Numbers Game. Curr. Opin. Microbiol. 2003, 6, 191–197. [Google Scholar] [CrossRef]
- Jin, D.; Zhang, X.; Zhang, X.; Zhou, L.; Zhu, Z.; Deogratias, U.K.; Wu, Z.; Zhang, K.; Ji, X.; Ju, T. A Critical Review of Comammox and Synergistic Nitrogen Removal Coupling Anammox: Mechanisms and Regulatory Strategies. Sci. Total Environ. 2024, 948, 174855. [Google Scholar] [CrossRef]
- Boyd, C.E. Guidelines for Aquaculture Effluent Management at the Farm-Level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Bryan, F.L. Diseases Transmitted by Foods Contaminated by Wastewater. J. Food Prot. 1977, 40, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Salgot, M.; Folch, M. Wastewater Treatment and Water Reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Bao, W.; Zhu, S.; Jin, G.; Ye, Z. Generation, Characterization, Perniciousness, Removal and Reutilization of Solids in Aquaculture Water: A Review from the Whole Process Perspective. Rev. Aquac. 2019, 11, 1342–1366. [Google Scholar] [CrossRef]
- Tilley, D.R.; Badrinarayanan, H.; Rosati, R.; Son, J. Constructed Wetlands as Recirculation Filters in Large-Scale Shrimp Aquaculture. Aquac. Eng. 2002, 26, 81–109. [Google Scholar] [CrossRef]
- de Jesus Gregersen, K.J.; Pedersen, P.B.; Pedersen, L.-F.; Liu, D.; Dalsgaard, J. UV Irradiation and Micro Filtration Effects on Micro Particle Development and Microbial Water Quality in Recirculation Aquaculture Systems. Aquaculture 2020, 518, 734785. [Google Scholar] [CrossRef]
- Ahmad, A.; Hassan, S.W.; Banat, F. An Overview of Microalgae Biomass as a Sustainable Aquaculture Feed Ingredient: Food Security and Circular Economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef]
- de Campos, S.X.; Soto, M. The Use of Constructed Wetlands to Treat Effluents for Water Reuse. Environments 2024, 11, 35. [Google Scholar] [CrossRef]
- Liberti, L.; Notarnicola, M.; Petruzzelli, D. Advanced Treatment for Municipal Wastewater Reuse in Agriculture. UV Disinfection: Parasite Removal and by-Product Formation. Desalination 2003, 152, 315–324. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; Caccamo, F.M.; Torretta, V.; Rada, E.C.; Sorlini, S. Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We At? Int. J. Environ. Res. Public Health 2021, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, P.; Yang, Z.; Judd, S.J. The Status of Potable Water Reuse Implementation. Water Res. 2022, 214, 118198. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Van Dyke, M.I.; Huck, P.M. Water Reuse through Managed Aquifer Recharge (MAR): Assessment of Regulations/Guidelines and Case Studies. Water Qual. Res. J. Can. 2016, 51, 357–376. [Google Scholar] [CrossRef]
- Page, D.; Vanderzalm, J.; Gonzalez, D.; Bennett, J.; Castellazzi, P. Managed Aquifer Recharge for Agriculture in Australia–History, Success Factors and Future Implementation. Agric. Water Manag. 2023, 285, 108382. [Google Scholar] [CrossRef]
- Shitu, A.; Liu, G.; Muhammad, A.I.; Zhang, Y.; Tadda, M.A.; Qi, W.; Liu, D.; Ye, Z.; Zhu, S. Recent Advances in Application of Moving Bed Bioreactors for Wastewater Treatment from Recirculating Aquaculture Systems: A Review. Aquac. Fish. 2022, 7, 244–258. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated Aquaculture: Rationale, Evolution and State of the Art Emphasizing Seaweed Biofiltration in Modern Mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Carras, M.A.; Knowler, D.; Pearce, C.M.; Hamer, A.; Chopin, T.; Weaire, T. A Discounted Cash-Flow Analysis of Salmon Monoculture and Integrated Multi-Trophic Aquaculture in Eastern Canada. Aquac. Econ. Manag. 2020, 24, 43–63. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Cabello, F.; Young, K.; Carvajal, J.; Varela, D.A.; Henríquez, L. Salmon Aquaculture and Coastal Ecosystem Health in Chile: Analysis of Regulations, Environmental Impacts and Bioremediation Systems. Ocean Coast. Manag. 2009, 52, 243–249. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, V.; Toledo-Guedes, K.; Valero-Rodriguez, J.M.; Agraso, M.d.M.; Sanchez-Jerez, P. Harvesting Amphipods Applying the Integrated Multitrophic Aquaculture (IMTA) Concept in off-Shore Areas. Aquaculture 2018, 489, 62–69. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A. An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian in-Shore Mariculture Plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Lamprianidou, F.; Telfer, T.; Ross, L.G. A Model for Optimization of the Productivity and Bioremediation Efficiency of Marine Integrated Multitrophic Aquaculture. Estuar. Coast. Shelf Sci. 2015, 164, 253–264. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the Global Potential for Marine Aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.H.; Nevejan, N.; Wille, M.; Chambers, M.D.; Chopin, T. Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–69. [Google Scholar]
- North, W.J. Oceanic Farming of Macrocystis, the Problems and Non-Problems. In Developments in Aquaculture and Fisheries Science (Netherlands); Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Fang, J.; Zhang, J.; Xiao, T.; Huang, D.; Liu, S. Integrated Multi-Trophic Aquaculture (IMTA) in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 201–205. [Google Scholar] [CrossRef]
- Rosa, J.; Lemos, M.F.; Crespo, D.; Nunes, M.; Freitas, A.; Ramos, F.; Pardal, M.Â.; Leston, S. Integrated Multitrophic Aquaculture Systems–Potential Risks for Food Safety. Trends Food Sci. Technol. 2020, 96, 79–90. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, N.; Wu, Z.; Chen, S.; Luo, J.; Christakos, G.; Wu, J. The Role of Seaweed Cultivation in Integrated Multi-Trophic Aquaculture (IMTA): The Current Status and Challenges. Rev. Aquac. 2025, 17, e70042. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.; Teletchea, F.; Tomasso, J.R., Jr. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of Things in Aquaculture: A Review of the Challenges and Potential Solutions Based on Current and Future Trends. Smart Agric. Technol. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Prapti, D.R.; Mohamed Shariff, A.R.; Che Man, H.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-based Aquaculture: An Overview of IoT Application on Water Quality Monitoring. Rev. Aquac. 2022, 14, 979–992. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Alhassan, A.-W.; Jiang, D.-N.; Li, G.-L. Sustainable Aquaculture Development: A Review on the Roles of Cloud Computing, Internet of Things and Artificial Intelligence (CIA). Rev. Aquac. 2021, 13, 2076–2091. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.; Guo, Z.; Zhou, Y.; Shen, Y. Deep learning-based intelligent precise aeration strategy for factory recirculating aquaculture systems. Artif. Intell. Agric. 2024, 12, 57–71. [Google Scholar] [CrossRef]
- Li, D.; Liu, C. Analysis and Future Prospects of Artificial Intelligence in Aquaculture. Smart Agric. 2020, 2, 1–20. [Google Scholar]
- Mandal, A.; Ghosh, A.R. Role of Artificial Intelligence (AI) in Fish Growth and Health Status Monitoring: A Review on Sustainable Aquaculture. Aquac. Int. 2024, 32, 2791–2820. [Google Scholar] [CrossRef]
- Føre, M.; Alver, M.O.; Frank, K.; Alfredsen, J.A. Advanced Technology in Aquaculture–Smart Feeding in Marine Fish Farms. In Smart Livestock Nutrition; Springer: Berlin/Heidelberg, Germany, 2023; pp. 227–268. [Google Scholar]
- Cui, M.; Liu, X.; Liu, H.; Zhao, J.; Li, D.; Wang, W. Fish Tracking, Counting, and Behaviour Analysis in Digital Aquaculture: A Comprehensive Survey. Rev. Aquac. 2025, 17, e13001. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Khabusi, S.P. Artificial Intelligence of Things (AIoT) Advances in Aquaculture: A Review. Processes 2025, 13, 73. [Google Scholar] [CrossRef]
- Shi, B.; Sreeram, V.; Zhao, D.; Duan, S.; Jiang, J. A Wireless Sensor Network-Based Monitoring System for Freshwater Fishpond Aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar] [CrossRef]
- Simbeye, D.S.; Yang, S.F. Water Quality Monitoring and Control for Aquaculture Based on Wireless Sensor Networks. J. Netw. 2014, 9, 840. [Google Scholar] [CrossRef]
- Gudding, R.; Van Muiswinkel, W.B. A History of Fish Vaccination: Science-Based Disease Prevention in Aquaculture. Fish Shellfish. Immunol. 2013, 35, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Nafiqoh, N.; Novita, H.; Sugiani, D.; Gardenia, L.; Taukhid, T.; Widyaningrum, A.; Susanti, D.R. Aeromonas hydrophila AHL 0905-2 and Streptococcus agalactiae N14G as Combined Vaccine Candidates for Nile Tilapia. HAYATI J. Biosci. 2022, 29, 137–145. [Google Scholar] [CrossRef]
- Derome, N.; Gauthier, J.; Boutin, S.; Llewellyn, M. Bacterial Opportunistic Pathogens of Fish. In The Rasputin Effect: When Commensals and Symbionts Become Parasitic; Springer: Berlin/Heidelberg, Germany, 2016; pp. 81–108. [Google Scholar]
- Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. South American Fish for Continental Aquaculture. Rev. Aquac. 2018, 10, 351–369. [Google Scholar] [CrossRef]
- de Andrade Belo, M.A.; de Moraes, J.R.E.; Soares, V.E.; Martins, M.L.; Brum, C.D.; deMoraes, F.R. Vitamin C and Endogenous Cortisol in Foreign-Body Inflammatory Response in Pacus. Pesqui. Agropecuária Bras. 2012, 47, 1015–1021. [Google Scholar] [CrossRef]
- Yasin, I.S.M.; Mohamad, A.; Azzam-Sayuti, M.; Saba, A.O.; Azmai, M.N.A. Disease Management in Aquaculture. Manag. Fish Dis. 2025, 437–464. [Google Scholar] [CrossRef]
- Muthu, M.P.; George, M.R.; John, R. Biosecurity Strategies in Aquaculture for Fish Health Management. J. Aquac. Trop. 2020, 35, 9–26. [Google Scholar]
- Palić, D.; Scarfe, A.D.; Walster, C.I. A Standardized Approach for Meeting National and International Aquaculture Biosecurity Requirements for Preventing, Controlling, and Eradicating Infectious Diseases. J. Appl. Aquac. 2015, 27, 185–219. [Google Scholar] [CrossRef]
- Hoebe, K.; Janssen, E.; Beutler, B. The Interface between Innate and Adaptive Immunity. Nat. Immunol. 2004, 5, 971–974. [Google Scholar] [CrossRef]
- Bohara, K.; Joshi, P.; Acharya, K.P.; Ramena, G. Emerging Technologies Revolutionising Disease Diagnosis and Monitoring in Aquatic Animal Health. Rev. Aquac. 2024, 16, 836–854. [Google Scholar] [CrossRef]
- Can, E.; Austin, B.; Steinberg, C.; Carboni, C.; Sağlam, N.; Thompson, K.; Yiğit, M.; Seyhaneyildiz Can, S.; Ergün, S. Best Practices for Fish Biosecurity, Well-Being and Sustainable Aquaculture. Sustain. Aquat. Res. 2023, 2, 221–267. [Google Scholar]
- Murray, K.N.; Clark, T.S.; Kebus, M.J.; Kent, M.L. Specific Pathogen Free–A Review of Strategies in Agriculture, Aquaculture, and Laboratory Mammals and How They Inform New Recommendations for Laboratory Zebrafish. Res. Vet. Sci. 2022, 142, 78–93. [Google Scholar] [CrossRef]
- Russell Danner, G.; Merrill, P. Disinfectants, Disinfection, and Biosecurity in Aquaculture. In Aquaculture Biosecurity: Prevention, Control, and Eradication of Aquatic Animal Disease; Wiley: Hoboken, NJ, USA, 2005; pp. 91–128. [Google Scholar]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food Safety Impacts of Antimicrobial Use and Their Residues in Aquaculture. Public Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef]
- Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S.; Akinwole, A.O. Waste Production in Aquaculture: Sources, Components and Managements in Different Culture Systems. Aquac. Fish. 2019, 4, 81–88. [Google Scholar] [CrossRef]
- Zepeda, C.; Jones, J.B.; Zagmutt, F.J. Compartmentalisation in Aquaculture Production Systems. Rev. Sci. Tech. (Int. Off. Epizoot.) 2008, 27, 229–241. [Google Scholar] [CrossRef]
- MacAulay, S.; Ellison, A.R.; Kille, P.; Cable, J. Moving towards Improved Surveillance and Earlier Diagnosis of Aquatic Pathogens: From Traditional Methods to Emerging Technologies. Rev. Aquac. 2022, 14, 1813–1829. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.M.; Fathi, M. Advancing Aquaculture Biosecurity: A Scientometric Analysis and Future Outlook for Disease Prevention and Environmental Sustainability. Aquac. Int. 2024, 32, 8763–8789. [Google Scholar] [CrossRef]
- Cruz, R.C.; Reis Costa, P.; Vinga, S.; Krippahl, L.; Lopes, M.B. A Review of Recent Machine Learning Advances for Forecasting Harmful Algal Blooms and Shellfish Contamination. J. Mar. Sci. Eng. 2021, 9, 283. [Google Scholar] [CrossRef]
- Karras, A.; Karras, C.; Sioutas, S.; Makris, C.; Katselis, G.; Hatzilygeroudis, I.; Theodorou, J.A.; Tsolis, D. An Integrated GIS-Based Reinforcement Learning Approach for Efficient Prediction of Disease Transmission in Aquaculture. Information 2023, 14, 583. [Google Scholar] [CrossRef]
- Ratan, R.; Ashwini, M.; Nagarajan, V. Artificial Intelligence in Aquaculture: Advancing Monitoring and Sustainability via Remote Sensing. In Inland Aquaculture Sustainability and Effective Water Management Strategies: Optimizing Resources for Environmental Harmony; Springer: Berlin/Heidelberg, Germany, 2025; pp. 69–85. [Google Scholar]
- Santos, L.; Ramos, F. Antimicrobial Resistance in Aquaculture: Current Knowledge and Alternatives to Tackle the Problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C. Heavy Use of Prophylactic Antibiotics in Aquaculture: A Growing Problem for Human and Animal Health and for the Environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Pruden, A.; Larsson, D.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R. Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environ. Health Perspect. 2013, 121, 878–885. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Sommerset, I.; Krossøy, B.; Biering, E.; Frost, P. Vaccines for Fish in Aquaculture. Expert Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef]
- Subasinghe, R. Disease Control in Aquaculture and the Responsible Use of Veterinary Drugs and Vaccines: The Issues, Prospects and Challenges. Options Méditerranéennes 2009, 86, 5e11. [Google Scholar]
- Kumar, A.; Middha, S.K.; Menon, S.V.; Paital, B.; Gokarn, S.; Nelli, M.; Rajanikanth, R.B.; Chandra, H.M.; Mugunthan, S.P.; Kantwa, S.M. Current Challenges of Vaccination in Fish Health Management. Animals 2024, 14, 2692. [Google Scholar] [CrossRef]
- de Andrade Belo, M.A.; Charlie-Silva, I. Teleost Fish as an Experimental Model for Vaccine Development. In Vaccine Design: Methods and Protocols, Vaccines for Veterinary Diseases; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2, pp. 175–194. [Google Scholar]
- Mondal, H.; Thomas, J. A Review on the Recent Advances and Application of Vaccines against Fish Pathogens in Aquaculture. Aquac. Int. 2022, 30, 1971–2000. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Dhama, K.; Vakharia, V.N.; Hoseinifar, S.H.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Salgado-Miranda, C.; Joshi, S.K. Advances in Aquaculture Vaccines against Fish Pathogens: Global Status and Current Trends. Rev. Fish. Sci. Aquac. 2017, 25, 184–217. [Google Scholar] [CrossRef]
- Adams, A. Progress, Challenges and Opportunities in Fish Vaccine Development. Fish Shellfish. Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Plant, K.P.; LaPatra, S.E. Advances in Fish Vaccine Delivery. Dev. Comp. Immunol. 2011, 35, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Kocour, M. Applications of Next-Generation Sequencing in Fisheries Research: A Review. Fish. Res. 2017, 186, 11–22. [Google Scholar] [CrossRef]
- Midtlyng, P.J.; Reitan, L.J.; Speilberg, L. Experimental Studies on the Efficacy and Side-Effects of Intraperitoneal Vaccination of Atlantic Salmon (Salmo salar L.) against Furunculosis. Fish Shellfish. Immunol. 1996, 6, 335–350. [Google Scholar] [CrossRef]
- Rathor, G.S.; Swain, B. Advancements in Fish Vaccination: Current Innovations and Future Horizons in Aquaculture Health Management. Appl. Sci. 2024, 14, 5672. [Google Scholar] [CrossRef]
- Pu, H.; Li, X.; Du, Q.; Cui, H.; Xu, Y. Research Progress in the Application of Chinese Herbal Medicines in Aquaculture: A Review. Engineering 2017, 3, 731–737. [Google Scholar] [CrossRef]
- Zhu, F. A Review on the Application of Herbal Medicines in the Disease Control of Aquatic Animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Van Hai, N. The Use of Medicinal Plants as Immunostimulants in Aquaculture: A Review. Aquaculture 2015, 446, 88–96. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal Biomedicines: A New Opportunity for Aquaculture Industry. Aquac. Int. 2010, 18, 403–414. [Google Scholar] [CrossRef]
- Gatesoupe, F.J. The Use of Probiotics in Aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Hai, N.V. The Use of Probiotics in Aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef]
- Ringø, E.; Olsen, R.E.; Gifstad, T.; Dalmo, R.A.; Amlund, H.; Hemre, G.-I.; Bakke, A.M. Prebiotics in Aquaculture: A Review. Aquac. Nutr. 2010, 16, 117–136. [Google Scholar] [CrossRef]
- Carbone, D.; Faggio, C. Importance of Prebiotics in Aquaculture as Immunostimulants. Effects on Immune System of Sparus aurata and Dicentrarchus labrax. Fish Shellfish. Immunol. 2016, 54, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Wee, W.; Hamid, N.K.A.; Mat, K.; Khalif, R.I.A.R.; Rusli, N.D.; Rahman, M.M.; Kabir, M.A.; Wei, L.S. The Effects of Mixed Prebiotics in Aquaculture: A Review. Aquac. Fish. 2024, 9, 28–34. [Google Scholar] [CrossRef]
- Boyd, C.E.; Schmittou, H.R. Achievement of Sustainable Aquaculture through Environmental Management. Aquac. Econ. Manag. 1999, 3, 59–69. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.; Heinsbroek, L.T.; Schneider, O.; Blancheton, J.-P.; d’Orbcastel, E.R.; Verreth, J.A.J. New Developments in Recirculating Aquaculture Systems in Europe: A Perspective on Environmental Sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Henriksson, P.J.; Dickson, M.; Allah, A.N.; Al-Kenawy, D.; Phillips, M. Benchmarking the Environmental Performance of Best Management Practice and Genetic Improvements in Egyptian Aquaculture Using Life Cycle Assessment. Aquaculture 2017, 468, 53–59. [Google Scholar] [CrossRef]
- Brander, K.M. Global Fish Production and Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709–19714. [Google Scholar] [CrossRef]
- De Silva, S.S.; Soto, D. Climate Change and Aquaculture: Potential Impacts, Adaptation and Mitigation. In Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; Volume 530, pp. 151–212. [Google Scholar]
- Boonyawiwat, V.; Patanasatienkul, T.; Kasornchandra, J.; Poolkhet, C.; Yaemkasem, S.; Hammell, L.; Davidson, J. Impact of Farm Management on Expression of Early Mortality Syndrome/Acute Hepatopancreatic Necrosis Disease (EMS/AHPND) on Penaeid Shrimp Farms in Thailand. J. Fish Dis. 2017, 40, 649–659. [Google Scholar] [CrossRef]
- Abolofia, J.; Asche, F.; Wilen, J.E. The Cost of Lice: Quantifying the Impacts of Parasitic Sea Lice on Farmed Salmon. Mar. Resour. Econ. 2017, 32, 329–349. [Google Scholar] [CrossRef]
- Pahlow, M.; Van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. Increasing Pressure on Freshwater Resources Due to Terrestrial Feed Ingredients for Aquaculture Production. Sci. Total Environ. 2015, 536, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Waite, R.; Beveridge, M.; Brummett, R.; Castine, S.; Chaiyawannakarn, N.; Kaushik, S.; Mungkung, R.; Nawapakpilai, S.; Phillips, M. Improving Productivity and Environmental Performance of Aquaculture; WorldFish: Penang, Malaysia, 2014. [Google Scholar]
- Primavera, J.H. Overcoming the Impacts of Aquaculture on the Coastal Zone. Ocean. Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, W. Balancing Growth and Sustainability in China’s Carp Aquaculture: Practices, Policies, and Sustainability Pathways. Sustainability 2025, 17, 5593. [Google Scholar] [CrossRef]
- Pomeroy, R.S.; Andrew, N. Small-Scale Fisheries Management: Frameworks and Approaches for the Developing World; CABI: Carson, CA, USA, 2011; ISBN 1-84593-608-6. [Google Scholar]
- Perumal, S.; Thirunavukkarasu, A.R.; Pachiappan, P. Advances in Marine and Brackishwater Aquaculture; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandøe, P.; Turnbull, J.F. Current Issues in Fish Welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Longshaw, M.; Lyons, B.P.; Jones, G.; Green, M.; Feist, S.W. Histopathological Biomarkers in Estuarine Fish Species for the Assessment of Biological Effects of Contaminants. Mar. Environ. Res. 2003, 55, 137–159. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Elgendy, M.Y.; Elfadadny, M.R.; Ali, S.S.; Sherif, A.H.; Abolghait, S.K. A Review of Molecular Diagnoses of Bacterial Fish Diseases. Aquac. Int. 2023, 31, 417–434. [Google Scholar] [CrossRef]
- Huver, J.R.; Koprivnikar, J.; Johnson, P.T.J.; Whyard, S. Development and Application of an eDNA Method to Detect and Quantify a Pathogenic Parasite in Aquatic Ecosystems. Ecol. Appl. 2015, 25, 991–1002. [Google Scholar] [CrossRef]
- Wittwer, C.; Stoll, S.; Strand, D.; Vrålstad, T.; Nowak, C.; Thines, M. eDNA-Based Crayfish Plague Monitoring Is Superior to Conventional Trap-Based Assessments in Year-Round Detection Probability. Hydrobiologia 2018, 807, 87–97. [Google Scholar] [CrossRef]
- Aftab, K.; Tschirren, L.; Pasini, B.; Zeller, P.; Khan, B.; Fraz, M.M. Intelligent Fisheries: Cognitive Solutions for Improving Aquaculture Commercial Efficiency through Enhanced Biomass Estimation and Early Disease Detection. Cogn. Comput. 2024, 16, 2241–2263. [Google Scholar] [CrossRef]
- Arthur, J.; Bondad-Reantaso, M.; Campbell, M.; Hewitt, C.; Phillips, M.; Subasinghe, R. Understanding and Applying Risk Analysis in Aquaculture: A Manual for Decision-Makers; CQUniversity: Rockhampton, Australia, 2009; ISBN 92-5-106414-8. [Google Scholar]
- Action, S.I. World Fisheries and Aquaculture. Food Agric. Organ. 2020, 2020, 1–244. [Google Scholar]
- Sedyaaw, P.; Bhatkar, V.R. A Review on Application of Aquaculture Drugs for Sustainable Aquaculture. J. Dev. Res. 2024, 14, 66685–66690. [Google Scholar]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Caputo, A.; Bondad-Reantaso, M.G.; Karunasagar, I.; Hao, B.; Gaunt, P.; Verner-Jeffreys, D.; Fridman, S.; Dorado-Garcia, A. Antimicrobial Resistance in Aquaculture: A Global Analysis of Literature and National Action Plans. Rev. Aquac. 2023, 15, 568–578. [Google Scholar] [CrossRef]
- Watts, J.E.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Bateman, I.J.; Hinchliffe, S.J.; Bass, D.; Hartnell, R.; Santos, E.M.; Devlin, M.J.; Feist, S.W.; Taylor, N.G.H.; Verner-Jeffreys, D.W. Sustainable Aquaculture through the One Health Lens. Nat. Food 2020, 1, 468–474. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L. Role Played by the Environment in the Emergence and Spread of Antimicrobial Resistance (AMR) through the Food Chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.-R.; Liu, S.-S.; Zhou, G.-J.; Sun, K.-F.; Zhao, J.-L.; Ying, G.-G. Antibiotics in Typical Marine Aquaculture Farms Surrounding Hailing Island, South China: Occurrence, Bioaccumulation and Human Dietary Exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, C.; Shu, C.; Liu, L.; Geng, J.; Hu, S.; Feng, J. Marine Sediment Bacteria Harbor Antibiotic Resistance Genes Highly Similar to Those Found in Human Pathogens. Microb. Ecol. 2013, 65, 975–981. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the Aquatic Environment–a Review–Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, D.T. Bacterial Zoonoses of Fishes: A Review and Appraisal of Evidence for Linkages between Fish and Human Infections. Vet. J. 2015, 203, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Torres, C.; Barros, J.; Somalo, S.; Igrejas, G.; Poeta, P. Gilthead Seabream (Sparus aurata) as Carriers of SHV-12 and TEM-52 Extended-Spectrum Beta-Lactamases-Containing Escherichia Coli Isolates. Foodborne Pathog. Dis. 2011, 8, 1139–1141. [Google Scholar] [CrossRef]
- Mog, M.; Ngasotter, S.; Tesia, S.; Waikhom, D.; Panda, P.; Sharma, S.; Varshney, S. Problems of Antibiotic Resistance Associated with Oxytetracycline Use in Aquaculture: A Review. J. Entomol. Zool. Stud. 2020, 8, 1075–1082. [Google Scholar]
- Le Curieux, F.; Gohlke, J.M.; Pronk, A.; Andersen, W.C.; Chen, G.; Fang, J.-L.; Mitrowska, K.; Sanders, P.J.; Sun, M.; Umbuzeiro, G.A. Carcinogenicity of Gentian Violet, Leucogentian Violet, Malachite Green, Leucomalachite Green, and CI Direct Blue 218. Lancet Oncol. 2021, 22, 585–586. [Google Scholar] [CrossRef]
- Gharavi-Nakhjavani, M.S.; Niazi, A.; Hosseini, H.; Aminzare, M.; Dizaji, R.; Tajdar-Oranj, B.; Mirza Alizadeh, A. Malachite Green and Leucomalachite Green in Fish: A Global Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. 2023, 30, 48911–48927. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. In The Review on Antimicrobial Resistance; HM Government: London, UK, 2015. [Google Scholar]
- Silva, Y.J.; Costa, L.; Pereira, C.; Cunha, Â.; Calado, R.; Gomes, N.C.; Almeida, A. Influence of Environmental Variables in the Efficiency of Phage Therapy in Aquaculture. Microb. Biotechnol. 2014, 7, 401–413. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, M.; Quan, C.S.; Fan, S.D. Mechanisms of Quorum Sensing and Strategies for Quorum Sensing Disruption in Aquaculture Pathogens. J. Fish Dis. 2015, 38, 771–786. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Ye, C.; Lin, W.; Zhang, M.; Chen, L.; Li, J.; Yu, X. Biofilm Processes in Treating Mariculture Wastewater May Be a Reservoir of Antibiotic Resistance Genes. Mar. Pollut. Bull. 2017, 118, 289–296. [Google Scholar] [CrossRef]
- Jefferson, K.K. What Drives Bacteria to Produce a Biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef]
- Summerfelt, S.T. Ozonation and UV Irradiation—An Introduction and Examples of Current Applications. Aquac. Eng. 2003, 28, 21–36. [Google Scholar] [CrossRef]
- Powell, A.; Scolding, J.W. Direct Application of Ozone in Aquaculture Systems. Rev. Aquac. 2018, 10, 424–438. [Google Scholar] [CrossRef]
- Chuah, L.-O.; Effarizah, M.E.; Goni, A.M.; Rusul, G. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture. Curr. Environ. Health Rep. 2016, 3, 118–127. [Google Scholar] [CrossRef]
- Tollefson, L.; Miller, M.A. Antibiotic Use in Food Animals: Controlling the Human Health Impact. J. AOAC Int. 2000, 83, 245–254. [Google Scholar] [CrossRef]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef] [PubMed]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health Concerns and Management of Select Veterinary Drug Residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Canton, L.; Lanusse, C.; Moreno, L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals 2021, 11, 2878. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Lee, H.J.; Ryu, P.D. Public Health Risks: Chemical and Antibiotic Residues-Review. Asian-Australas. J. Anim. Sci. 2001, 14, 402–413. [Google Scholar] [CrossRef]
- FDA. Approved Aquaculture Drugs. Available online: https://www.fda.gov/animal-veterinary/aquaculture/approved-aquaculture-drugs (accessed on 21 September 2025).
- Faria, P.B.; Erasmus, S.W.; Bruhn, F.R.; van Ruth, S.M. An Account of the Occurrence of Residues from Veterinary Drugs and Contaminants in Animal-Derived Products: A Case Study on Brazilian Supply Chains. Food Addit. Contam. Part A 2024, 41, 365–384. [Google Scholar] [CrossRef]
- Danaher, M.; Prendergast, D.M. A European Food Safety Perspective on Residues of Veterinary Drugs and Growth-Promoting Agents. In Pathogens and Toxins in Foods: Challenges and Interventions; Wiley: Hoboken, NJ, USA, 2009; pp. 326–342. [Google Scholar]
- Padros, F.; Gourzioti, E.; Fabris, A.; Figenschou, A.; Manfrin, A.; Metselaar, M.; Palić, D.; Vesanto, S. Relevance of Pharmacovigilance in Aquatic Animal Medicine. A Perspective from Aquaculture Health Experts Attending a Focus Group Meeting at the EMA. Bull. Eur. Assoc. Fish Pathol. 2024, 44, 1–10. [Google Scholar] [CrossRef]
- De la Casa-Resino, I.; Empl, M.T.; Villa, S.; Kolar, B.; Fabrega, J.; Lillicrap, A.D.; Karamanlis, X.N.; Carapeto-García, R. Environmental Risk Assessment of Veterinary Medicinal Products Intended for Use in Aquaculture in Europe: The Need for Developing a Harmonised Approach. Environ. Sci. Eur. 2021, 33, 84. [Google Scholar] [CrossRef]
- Gravningen, K.; Sorum, H.; Horsberg, T.E. The Future of Therapeutic Agents in Aquaculture. Rev. Sci. Tech. (Int. Off. Epizoot.) 2019, 38, 641–651. [Google Scholar] [CrossRef]
- Rigos, G.; Kogiannou, D.; Padrós, F.; Cristofol, C.; Florio, D.; Fioravanti, M.; Zarza, C. Best Therapeutic Practices for the Use of Antibacterial Agents in Finfish Aquaculture: A Particular View on European Seabass (Dicentrarchus labrax) and Gilthead Seabream (Sparus aurata) in Mediterranean Aquaculture. Rev. Aquac. 2021, 13, 1285–1323. [Google Scholar] [CrossRef]
- Rico, A.; Vighi, M.; Van den Brink, P.J.; ter Horst, M.; Macken, A.; Lillicrap, A.; Falconer, L.; Telfer, T.C. Use of Models for the Environmental Risk Assessment of Veterinary Medicines in European Aquaculture: Current Situation and Future Perspectives. Rev. Aquac. 2019, 11, 969–988. [Google Scholar] [CrossRef]
- Brooks, B.W.; Ankley, G.T.; Hobson, J.F.; Lazorchak, J.M.; Meyerhoff, R.D.; Solomon, K.R. Assessing the Aquatic Hazards of Veterinary Medicines. In Effects of Veterinary Medicines in the Environment; CRC Press: Boca Raton, FL, USA, 2008; pp. 97–128. [Google Scholar]
- Olsen, M.; Petersen, K.; Lehoux, A.P.; Leppänen, M.; Schaanning, M.; Snowball, I.; Øxnevad, S.; Lund, E. Contaminated Sediments: Review of Solutions for Protecting Aquatic Environments; Nordic Council of Ministers: Copenhagen, Denmark, 2019. [Google Scholar]
- Abdelkarim, E.A.; Elsamahy, T.; El Bayomi, R.M.; Hussein, M.A.; Darwish, I.A.; El-tahlawy, A.S.; Alahmad, W.; Darling, R.J.; Hafez, A.E.-S.E.; Sobhi, M. Nanoparticle-Driven Aquaculture: Transforming Disease Management and Boosting Sustainable Fish Farming Practices. Aquac. Int. 2025, 33, 288. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Tacon, A.G.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Glencross, B.D.; Booth, M.; Allan, G.L. A Feed Is Only as Good as Its Ingredients–a Review of Ingredient Evaluation Strategies for Aquaculture Feeds. Aquac. Nutr. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of Plant Proteins in Fish Diets: Effects of Global Demand and Supplies of Fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Gatlin III, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R. Expanding the Utilization of Sustainable Plant Products in Aquafeeds: A Review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Nutritional, Physiological and Haematological Responses in Rainbow Trout (Oncorhynchus mykiss) Juveniles Fed Detoxified Jatropha Curcas Kernel Meal. Aquac. Nutr. 2011, 17, 451–467. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An Overview on Significance of Fish Nutrition in Aquaculture Industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355. [Google Scholar]
- Craig, S.R.; Helfrich, L.A.; Kuhn, D.; Schwarz, M.H. Understanding Fish Nutrition, Feeds, and Feeding; Virginia Cooperative Extension: Petersburg, VA, USA, 2017. [Google Scholar]
- Bell, J.G.; Koppe, W. Lipids in Aquafeeds. In Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; CRC Press: Boca Raton, FL, USA, 2010; Volume 1, pp. 21–59. [Google Scholar]
- Radhakrishnan, D.K.; AkbarAli, I.; Velayudhannair, K.; Kari, Z.A.; Liew, H.J. Exploring the Role of Plant Oils in Aquaculture Practices: An Overview. Aquac. Int. 2024, 32, 7719–7745. [Google Scholar] [CrossRef]
- Alhazzaa, R.; Nichols, P.D.; Carter, C.G. Sustainable Alternatives to Dietary Fish Oil in Tropical Fish Aquaculture. Rev. Aquac. 2019, 11, 1195–1218. [Google Scholar] [CrossRef]
- Hemre, G.-I.; Mommsen, T.P.; Krogdahl, Å. Carbohydrates in Fish Nutrition: Effects on Growth, Glucose Metabolism and Hepatic Enzymes. Aquac. Nutr. 2002, 8, 175–194. [Google Scholar] [CrossRef]
- Stone, D.A. Dietary Carbohydrate Utilization by Fish. Rev. Fish. Sci. 2003, 11, 337–369. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Nutrition and Health of Aquaculture Fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Chanda, S.; Paul, B.N.; Ghosh, K.; Giri, S.S. Dietary Essentiality of Trace Minerals in Aquaculture-A Review. Agric. Rev. 2015, 36, 100–112. [Google Scholar] [CrossRef]
- Antony Jesu Prabhu, P.; Schrama, J.W.; Kaushik, S.J. Mineral Requirements of Fish: A Systematic Review. Rev. Aquac. 2016, 8, 172–219. [Google Scholar] [CrossRef]
- Panteli, N.; Kousoulaki, K.; Antonopoulou, E.; Carter, C.G.; Nengas, I.; Henry, M.; Karapanagiotidis, I.T.; Mente, E. Which Novel Ingredient Should Be Considered the “Holy Grail” for Sustainable Production of Finfish Aquafeeds? Rev. Aquac. 2025, 17, e12969. [Google Scholar] [CrossRef]
- Meena, D.K.; Das, P.; Kumar, S.; Mandal, S.C.; Prusty, A.K.; Singh, S.K.; Akhtar, M.S.; Behera, B.K.; Kumar, K.; Pal, A.K. Beta-Glucan: An Ideal Immunostimulant in Aquaculture (a Review). Fish Physiol. Biochem. 2013, 39, 431–457. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Esteban, M.Á. Beneficial Roles of Feed Additives as Immunostimulants in Aquaculture: A Review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Pigott, G.M.; Tucker, B. Seafood: Effects of Technology on Nutrition; CRC press: Boca Raton, FL, USA, 2017; ISBN 0-203-74011-4. [Google Scholar]
- Sugiura, S.H.; Marchant, D.D.; Kelsey, K.; Wiggins, T.; Ferraris, R.P. Effluent Profile of Commercially Used Low-Phosphorus Fish Feeds. Environ. Pollut. 2006, 140, 95–101. [Google Scholar] [CrossRef]
- Aksnes, A.; Hjertnes, T.; Opstvedt, J. Comparison of Two Assay Methods for Determination of Nutrient and Energy Digestibility in Fish. Aquaculture 1996, 140, 343–359. [Google Scholar] [CrossRef]
- Kan, C.A.; Meijer, G.A.L. The Risk of Contamination of Food with Toxic Substances Present in Animal Feed. Anim. Feed. Sci. Technol. 2007, 133, 84–108. [Google Scholar] [CrossRef]
- Lunestad, B.T.; Nesse, L.; Lassen, J.; Svihus, B.; Nesbakken, T.; Fossum, K.; Rosnes, J.T.; Kruse, H.; Yazdankhah, S. Salmonella in Fish Feed; Occurrence and Implications for Fish and Human Health in Norway. Aquaculture 2007, 265, 1–8. [Google Scholar] [CrossRef]
- Santacroce, M.P.; Conversano, M.C.; Casalino, E.; Lai, O.; Zizzadoro, C.; Centoducati, G.; Crescenzo, G. Aflatoxins in Aquatic Species: Metabolism, Toxicity and Perspectives. Rev. Fish Biol. Fish. 2008, 18, 99–130. [Google Scholar] [CrossRef]
- Stolker, A.A.M.; Zuidema, T.; Nielen, M.W.F. Residue Analysis of Veterinary Drugs and Growth-Promoting Agents. TrAC Trends Anal. Chem. 2007, 26, 967–979. [Google Scholar] [CrossRef]
- Maule, A.G.; Gannam, A.L.; Davis, J.W. Chemical Contaminants in Fish Feeds Used in Federal Salmonid Hatcheries in the USA. Chemosphere 2007, 67, 1308–1315. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M. Aquaculture Feed and Food Safety: The Role of the Food and Agriculture Organization and the Codex Alimentarius. Ann. New York Acad. Sci. 2008, 1140, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Animal Feeding and Food Safety; Food and Nutrition Paper 69; FAO: Rome, Italy, 1998; Available online: http://www.fao.org/docrep/w8901e/w8901e00.htm (accessed on 21 September 2025).
- Tschirner, M.; Kloas, W. Increasing the Sustainability of Aquaculture Systems: Insects as Alternative Protein Source for Fish Diets. GAIA-Ecol. Perspect. Sci. Soc. 2017, 26, 332–340. [Google Scholar] [CrossRef]
- Gómez, B.; Munekata, P.E.; Zhu, Z.; Barba, F.J.; Toldrá, F.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Challenges and Opportunities Regarding the Use of Alternative Protein Sources: Aquaculture and Insects. Adv. Food Nutr. Res. 2019, 89, 259–295. [Google Scholar] [PubMed]
- Auzins, A.; Leimane, I.; Reissaar, R.; Brobakk, J.; Sakelaite, I.; Grivins, M.; Zihare, L. Assessing the Socio-Economic Benefits and Costs of Insect Meal as a Fishmeal Substitute in Livestock and Aquaculture. Animals 2024, 14, 1461. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in Aquafeeds for a Sustainable Aquaculture Industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, G.M.; Khan, N.R.; Khan, A.; Rehman, S.U.; Asif, H.M.; Akram, M.; Ali, Y. Transdermal Diclofenac Potassium Gels: Natural Penetration Enhancers, Can Be Effective? Lat. Am. J. Pharm. 2015, 34, 1022–1029. [Google Scholar]
- Chamodi, K.K.D.; Vu, N.T.; Domingos, J.A.; Loh, J.-Y. Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture. Biology 2025, 14, 764. [Google Scholar] [CrossRef]
- Malcorps, W.; Kok, B.; van ‘t Land, M.; Fritz, M.; van Doren, D.; Servin, K.; Van der Heijden, P.; Palmer, R.; Auchterlonie, N.A.; Rietkerk, M. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability 2019, 11, 1212. [Google Scholar] [CrossRef]
- Kader, M.A.; Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Nguyen, B.T.; Komilus, C.F. Effect of Complete Replacement of Fishmeal by Dehulled Soybean Meal with Crude Attractants Supplementation in Diets for Red Sea Bream, Pagrus Major. Aquaculture 2012, 350, 109–116. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Poolsawat, L.; Guo, Z.; Yao, W.; Zhang, C.; Leng, X. Effects of Fish Meal Replaced by Fermented Soybean Meal on Growth Performance, Intestinal Histology and Microbiota of Largemouth Bass (Micropterus salmoides). Aquac. Nutr. 2020, 26, 1058–1071. [Google Scholar] [CrossRef]
- Daniel, N. A Review on Replacing Fish Meal in Aqua Feeds Using Plant Protein Sources. Int. J. Fish. Aquat. Stud. 2018, 6, 164–179. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- Kause, A.; Kiessling, A.; Martin, S.A.; Houlihan, D.; Ruohonen, K. Genetic Improvement of Feed Conversion Ratio via Indirect Selection against Lipid Deposition in Farmed Rainbow Trout (Oncorhynchus mykiss Walbaum). Br. J. Nutr. 2016, 116, 1656–1665. [Google Scholar] [CrossRef]
- Santos, A.I.; Nguyen, N.H.; Ponzoni, R.W.; Yee, H.Y.; Hamzah, A.; Ribeiro, R.P. Growth and Survival Rate of Three Genetic Groups Fed 28% and 34% Protein Diets. Aquac. Res. 2014, 45, 353–361. [Google Scholar] [CrossRef]
- Glencross, B.; Tabrett, S.; Irvin, S.; Wade, N.; Anderson, M.; Blyth, D.; Smith, D.; Coman, G.; Preston, N. An Analysis of the Effect of Diet and Genotype on Protein and Energy Utilization by the Black Tiger Shrimp, P Enaeus Monodon–Why Do Genetically Selected Shrimp Grow Faster? Aquac. Nutr. 2013, 19, 128–138. [Google Scholar] [CrossRef]
- Hallstein, E.; Villas-Boas, S.B. Can Household Consumers Save the Wild Fish? Lessons from a Sustainable Seafood Advisory. J. Environ. Econ. Manag. 2013, 66, 52–71. [Google Scholar] [CrossRef]
- Vijayaram, S.; Sun, Y.-Z.; Zuorro, A.; Ghafarifarsani, H.; Van Doan, H.; Hoseinifar, S.H. Bioactive Immunostimulants as Health-Promoting Feed Additives in Aquaculture: A Review. Fish Shellfish. Immunol. 2022, 130, 294–308. [Google Scholar] [CrossRef]
- Yang, K.; Qi, X.; He, M.; Song, K.; Luo, F.; Qu, X.; Wang, G.; Ling, F. Dietary Supplementation of Salidroside Increases Immune Response and Disease Resistance of Crucian Carp (Carassius auratus) against Aeromonas hydrophila. Fish Shellfish. Immunol. 2020, 106, 1–7. [Google Scholar] [CrossRef]
- Magrone, T.; Fontana, S.; Laforgia, F.; Dragone, T.; Jirillo, E.; Passantino, L. Administration of a Polyphenol-enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses. Oxidative Med. Cell. Longev. 2016, 2016, 2827567. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.-Z.; Zhou, Z.; Van Doan, H.; Davies, S.J.; Harikrishnan, R. Boosting Immune Function and Disease Bio-Control through Environment-Friendly and Sustainable Approaches in Finfish Aquaculture: Herbal Therapy Scenarios. Rev. Fish. Sci. Aquac. 2020, 28, 303–321. [Google Scholar] [CrossRef]
- Gurjar, V.K.; Pal, D. Natural Compounds Extracted from Medicinal Plants and Their Immunomodulatory Activities. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 197–261. [Google Scholar]
- Mendoza Rodriguez, M.G.; Pohlenz, C.; Gatlin III, D.M. Supplementation of Organic Acids and Algae Extracts in the Diet of Red Drum Sciaenops Ocellatus: Immunological Impacts. Aquac. Res. 2017, 48, 1778–1786. [Google Scholar] [CrossRef]
- Sutili, F.J.; Gatlin III, D.M.; Heinzmann, B.M.; Baldisserotto, B. Plant Essential Oils as Fish Diet Additives: Benefits on Fish Health and Stability in Feed. Rev. Aquac. 2018, 10, 716–726. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.W.; Liu, L.L.; Cao, Y.C.; Zhu, H. Dietary Oregano Essential Oil Improved the Immune Response, Activity of Digestive Enzymes, and Intestinal Microbiota of the Koi Carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [Google Scholar] [CrossRef]
- Akter, M.N.; Zahan, K.; Zafar, M.A.; Khatun, N.; Rana, M.S.; Mursalin, M.I. Effects of Dietary Mannan Oligosaccharide on Growth Performance, Feed Utilization, Body Composition and Haematological Parameters in Asian Catfish (Clarias batrachus) Juveniles. Turk. J. Fish. Aquat. Sci. 2021, 21, 559–567. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, L. The Microbial Safety of Fish and Fish Products: Recent Advances in Understanding Its Significance, Contamination Sources, and Control Strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, A.E.; Dave, D.; Budge, S.; Brooks, M.S. Fish Spoilage Mechanisms and Preservation Techniques. Am. J. Appl. Sci. 2010, 7, 859. [Google Scholar] [CrossRef]
- Luqman, M.; Hassan, H.U.; Ghaffar, R.A.; Bilal, M.; Kanwal, R.; Raza, M.A.; Kabir, M.; Fadladdin, Y.A.J.; Ali, A.; Rafiq, N. Post-Harvest Bacterial Contamination of Fish, Their Assessment and Control Strategies. Braz. J. Biol. 2024, 84, e282002. [Google Scholar] [CrossRef] [PubMed]
- Poli, B.M.; Parisi, G.; Scappini, F.; Zampacavallo, G. Fish Welfare and Quality as Affected by Pre-Slaughter and Slaughter Management. Aquac. Int. 2005, 13, 29–49. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, L.; Xiong, S.; You, J.; Liu, R.; Xu, D.; Huang, Q.; Ma, H.; Yin, T. A Comprehensive Review of the Mechanisms on Fish Stress Affecting Muscle Qualities: Nutrition, Physical Properties, and Flavor. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13336. [Google Scholar] [CrossRef]
- Vijayan, M.M.; Pereira, C.; Grau, E.G.; Iwama, G.K. Metabolic Responses Associated with Confinement Stress in Tilapia: The Role of Cortisol. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1997, 116, 89–95. [Google Scholar] [CrossRef]
- Bermejo-Poza, R.; De la Fuente, J.; Pérez, C.; de Chavarri, E.G.; Diaz, M.T.; Torrent, F.; Villarroel, M. Determination of Optimal Degree Days of Fasting before Slaughter in Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2017, 473, 272–277. [Google Scholar] [CrossRef]
- Ojelade, O.C.; George, F.O.A.; Abdulraheem, I.; Akinde, A.O. Interactions between Pre-Harvest, Post-Harvest Handling and Welfare of Fish for Sustainability in the Aquaculture Sector. In Emerging Sustainable Aquaculture Innovations in Africa; Springer: Berlin/Heidelberg, Germany, 2023; pp. 525–541. [Google Scholar]
- Pongsetkul, J.; Benjakul, S.; Takeungwongtrakul, S.; Sai-ut, S. Impact of Stocking Density during Live Transportation on Meat Quality of Nile Tilapia (Oreochromis niloticus) and Their Changes during Storage. J. Food Process. Preserv. 2022, 46, e16523. [Google Scholar] [CrossRef]
- López-Cánovas, A.E.; Cabas, I.; Ros-Chumillas, M.; Navarro-Segura, L.; López-Gómez, A.; García-Ayala, A. Nanoencapsulated Clove Essential Oil Applied in Low Dose Decreases Stress in Farmed Gilthead Seabream (Sparus aurata L.) during Slaughter by Hypothermia in Ice Slurry. Aquaculture 2019, 504, 437–445. [Google Scholar] [CrossRef]
- Authority (EFSA), E.F.S. Food Safety Considerations Concerning the Species-specific Welfare Aspects of the Main Systems of Stunning and Killing of Farmed Fish. EFSA J. 2009, 7, 1190. [Google Scholar] [CrossRef]
- Sundell, E.; Brijs, J.; Gräns, A. The Quest for a Humane Protocol for Stunning and Killing Nile Tilapia (Oreochromis niloticus). Aquaculture 2024, 593, 741317. [Google Scholar] [CrossRef]
- Kumar, P.; Abubakar, A.A.; Sazili, A.Q.; Kaka, U.; Goh, Y.-M. Application of Electroencephalography in Preslaughter Management: A Review. Animals 2022, 12, 2857. [Google Scholar] [CrossRef]
- World Organization for Animal Health (OIE). Welfare Aspects of Stunning and Killing of Farmed Fish for Human Consumption. Aquatic Animal Health Code; World Organization for Animal Health: Paris, France, 2010; pp. 129–133. [Google Scholar]
- Terlouw, C.; Bourguet, C.; Deiss, V. Consciousness, Unconsciousness and Death in the Context of Slaughter. Part II. Evaluation Methods. Meat Sci. 2016, 118, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Rucinque, D.S.; Pulecio-Santos, S.L.; Viegas, E.M.M. Impact of Pre-Slaughter Methods on the Overall Quality of Nile Tilapia (Oreochromis niloticus). J. Aquat. Food Prod. Technol. 2023, 32, 447–461. [Google Scholar] [CrossRef]
- Robb, D.H.F.; Wotton, S.B.; McKinstry, J.L.; Sørensen, N.K.; Kestin, S.C.; Sørensen, N.K. Commercial Slaughter Methods Used on Atlantic Salmon: Determination of the Onset of Brain Failure by Electroencephalography. Vet. Rec. 2000, 147, 298–303. [Google Scholar] [CrossRef]
- van de Vis, J.W.; Abbink, W.; Lambooij, B.; Bracke, M.B.M. Stunning and Killing of Farmed Fish: How to Put It into Pratice? In Encyclopedia of Meat Sciences, 2nd ed.; Academic Press,: Cambridge, MA, USA, 2014; pp. 421–426. [Google Scholar]
- Roth, B.; Slinde, E.; Robb, D.H. Percussive Stunning of Atlantic Salmon (Salmo salar) and the Relation between Force and Stunning. Aquac. Eng. 2007, 36, 192–197. [Google Scholar] [CrossRef]
- Ssubi, J.A.; Mukisa, I.M.; Muyanja, C.K. Compliance of Fishery Handling Facilities to Food Safety Requirements within the Fresh Nile Perch Value Chain in Uganda. Cogent Food Agric. 2024, 10, 2419439. [Google Scholar] [CrossRef]
- Winton, J.R. Fish Health Management. Fish Hatchery Management, 2nd ed.; American Fisheries Society: Bethesda, MD, USA, 2001; pp. 559–640. [Google Scholar]
- Roy, S.M.; Beg, M.M.; Moulick, S.; Kim, T. Sustainable Aquaculture: Enhancing Food Security with Energy Efficiency. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies; Springer: Berlin/Heidelberg, Germany, 2025; pp. 363–373. [Google Scholar]
- Vo, T.T.E.; Ko, H.; Huh, J.-H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [Google Scholar] [CrossRef]
- Gorjian, S.; Kamrani, F.; Fakhraei, O.; Samadi, H.; Emami, P. Emerging Applications of Solar Energy in Agriculture and Aquaculture Systems. In Solar Energy Advancements in Agriculture and Food Production Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 425–469. [Google Scholar]
- El-Sayed, S.M.; Youssef, A.M. Eco-Friendly Biodegradable Nanocomposite Materials and Their Recent Use in Food Packaging Applications: A Review. Sustain. Food Technol. 2023, 1, 215–227. [Google Scholar] [CrossRef]
- Tsironi, T.; Houhoula, D.; Taoukis, P. Hurdle Technology for Fish Preservation. Aquac. Fish. 2020, 5, 65–71. [Google Scholar] [CrossRef]
- Navarro-Segura, L.; Ros-Chumillas, M.; Martínez-Hernández, G.B.; López-Gómez, A. A New Advanced Packaging System for Extending the Shelf Life of Refrigerated Farmed Fish Fillets. J. Sci. Food Agric. 2020, 100, 4601–4611. [Google Scholar] [CrossRef] [PubMed]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A Review of Modified Atmosphere Packaging of Fish and Fishery Products–Significance of Microbial Growth, Activities and Safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Kumar, P.; Ganguly, S. Role of Vacuum Packaging in Increasing Shelf-Life in Fish Processing Technology. Asian J. Bio Sci. 2014, 9, 109–112. [Google Scholar]
- Pavón Losada, J.A.; Ferrando, M.; Moncada, V.; Operato, L.; Gomes, L.; Rosenow, P.; Hamd, W. Food Packaging Business Models as Drivers for Sustainability in the Food Packaging Industry. Front. Sustain. Food Syst. 2025, 9, 1563904. [Google Scholar] [CrossRef]
- Lewis, S.G.; Boyle, M. The Expanding Role of Traceability in Seafood: Tools and Key Initiatives. J. Food Sci. 2017, 82, A13–A21. [Google Scholar] [CrossRef]
- Yeşilsu, A.F.; Alak, G.; Alp Erbay, E.; Sağdıç, O.; Özoğul, F.; Demirkesen, İ.; Rathod, N.B.; Bozkurt, F.; Alasalvar, C.; Benjakul, S. Sustainable Horizons: A Review on Sustainable Processing, Quality Enhancement, and Safety Assurance in Aquatic Food Products. Food Rev. Int. 2025, 41, 1709–1737. [Google Scholar] [CrossRef]
- Kamboj, S.; Gupta, N.; Bandral, J.D.; Gandotra, G.; Anjum, N. Food Safety and Hygiene: A Review. Int. J. Chem. Stud. 2020, 8, 358–368. [Google Scholar] [CrossRef]
- Awuchi, C.G. HACCP, Quality, and Food Safety Management in Food and Agricultural Systems. Cogent Food Agric. 2023, 9, 2176280. [Google Scholar] [CrossRef]
- Tzouros, N.E.; Arvanitoyannis, I.S. Implementation of Hazard Analysis Critical Control Point (HACCP) System to the Fish/Seafood Industry: A Review. Food Rev. Int. 2000, 16, 273–325. [Google Scholar] [CrossRef]
- Reilly, A.; Käferstein, F. Food Safety Hazards and the Application of the Principles of the Hazard Analysis and Critical Control Point (HACCP) System for Their Control in Aquaculture Production. Aquac. Res. 1997, 28, 735–752. [Google Scholar] [CrossRef]
- Zhang, H.; Gui, F. The Application and Research of New Digital Technology in Marine Aquaculture. J. Mar. Sci. Eng. 2023, 11, 401. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, Y.; Wei, Y.; An, D.; Liu, J. Application of Intelligent and Unmanned Equipment in Aquaculture: A Review. Comput. Electron. Agric. 2022, 199, 107201. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P. Water Quality Monitoring in Recirculating Aquaculture Systems. Aquac. Fish Fish. 2023, 3, 113–131. [Google Scholar] [CrossRef]
- Kumar, S.; Paul, T.; Sarkar, P.; Kumar, K. Environmental Factors Affecting Aquatic Animal Health. In Management of Fish Diseases; Springer: Berlin/Heidelberg, Germany, 2025; pp. 171–188. [Google Scholar]
- Baena-Navarro, R.; Carriazo-Regino, Y.; Torres-Hoyos, F.; Pinedo-López, J. Intelligent Prediction and Continuous Monitoring of Water Quality in Aquaculture: Integration of Machine Learning and Internet of Things for Sustainable Management. Water 2025, 17, 82. [Google Scholar] [CrossRef]
- Plumb, J.A.; Hanson, L.A. Health Maintenance and Principal Microbial Diseases of Cultured Fishes; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 0-8138-1693-9. [Google Scholar]
- Sapkota, A.; Sapkota, A.R.; Kucharski, M.; Burke, J.; McKenzie, S.; Walker, P.; Lawrence, R. Aquaculture Practices and Potential Human Health Risks: Current Knowledge and Future Priorities. Environ. Int. 2008, 34, 1215–1226. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy Metal Driven Co-Selection of Antibiotic Resistance in Soil and Water Bodies Impacted by Agriculture and Aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Dillon, M.; Zaczek-Moczydlowska, M.A.; Edwards, C.; Turner, A.D.; Miller, P.I.; Moore, H.; McKinney, A.; Lawton, L.; Campbell, K. Current Trends and Challenges for Rapid Smart Diagnostics at Point-of-Site Testing for Marine Toxins. Sensors 2021, 21, 2499. [Google Scholar] [CrossRef]
- Quintanilla-Villanueva, G.E.; Maldonado, J.; Luna-Moreno, D.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors 2023, 13, 90. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S. Environmental Persistence, Bioaccumulation, and Ecotoxicology of Heavy Metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Hopkins, C.R.; Roberts, S.I.; Caveen, A.J.; Graham, C.; Burns, N.M. Improved Traceability in Seafood Supply Chains Is Achievable by Minimising Vulnerable Nodes in Processing and Distribution Networks. Mar. Policy 2024, 159, 105910. [Google Scholar] [CrossRef]
- Bertolini, M.; Bevilacqua, M.; Massini, R. FMECA Approach to Product Traceability in the Food Industry. Food Control 2006, 17, 137–145. [Google Scholar] [CrossRef]
- Rahman, L.F.; Alam, L.; Marufuzzaman, M.; Sumaila, U.R. Traceability of Sustainability and Safety in Fishery Supply Chain Management Systems Using Radio Frequency Identification Technology. Foods 2021, 10, 2265. [Google Scholar] [CrossRef] [PubMed]
- Dadhaneeya, H.; Nema, P.K.; Arora, V.K. Internet of Things in Food Processing and Its Potential in Industry 4.0 Era: A Review. Trends Food Sci. Technol. 2023, 139, 104109. [Google Scholar] [CrossRef]
- Clark, L.F. The Current Status of DNA Barcoding Technology for Species Identification in Fish Value Chains. Food Policy 2015, 54, 85–94. [Google Scholar] [CrossRef]
- Di Pinto, A.; Marchetti, P.; Mottola, A.; Bozzo, G.; Bonerba, E.; Ceci, E.; Bottaro, M.; Tantillo, G. Species Identification in Fish Fillet Products Using DNA Barcoding. Fish. Res. 2015, 170, 9–13. [Google Scholar] [CrossRef]
- Thompson, M.; Sylvia, G.; Morrissey, M.T. Seafood Traceability in the United States: Current Trends, System Design, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2005, 4, 1–7. [Google Scholar] [CrossRef]
- Ta, M.D.-P.; Wendt, S.; Sigurjonsson, T.O. Applying Artificial Intelligence to Promote Sustainability. Sustainability 2024, 16, 4879. [Google Scholar] [CrossRef]
- Bottema, M.J.; Bush, S.R.; Oosterveer, P. Assuring Aquaculture Sustainability beyond the Farm. Mar. Policy 2021, 132, 104658. [Google Scholar] [CrossRef]
- Hambrey, J. The 2030 Agenda and the Sustainable Development Goals: The Challenge for Aquaculture Development and Management. In FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2017. [Google Scholar]
- Allegra, S.; Loi, G.; Garrido Gamarro, E. Analysis of Food Safety Import Notifications and Relevant Standards and Regulations for Aquaculture Products With a Focus on Antimicrobial Residues and Use. Aquac. Res. 2024, 2024, 9427435. [Google Scholar] [CrossRef]
- Shao, Z.J. Aquaculture Pharmaceuticals and Biologicals: Current Perspectives and Future Possibilities. Adv. Drug Deliv. Rev. 2001, 50, 229–243. [Google Scholar] [CrossRef]
- Rasul, M.N.; Hossain, M.T.; Haider, M.N.; Hossain, M.T.; Reza, M.S. Disease Prevalence, Usage of Aquaculture Medicinal Products and Their Sustainable Alternatives in Freshwater Aquaculture of North-Central Bangladesh. Vet. Med. Sci. 2025, 11, e70276. [Google Scholar] [CrossRef]
- Booncharoen, C.; Anal, A.K. Attitudes, Perceptions, and on-Farm Self-Reported Practices of Shrimp Farmers’ towards Adoption of Good Aquaculture Practices (GAP) in Thailand. Sustainability 2021, 13, 5194. [Google Scholar] [CrossRef]
- Kruijssen, F.; Newton, J.; Kuijpers, R.; Bah, A.; Rappoldt, A.; Nichols, E.; Kusumawati, R.; Nga, D.N. Assessment of Social Impact of GAA’s ‘Best Aquaculture Practices’ Certification. KIT R. Trop. Inst. Amst. 2021, 1–95. Available online: https://www.kit.nl/wp-content/uploads/2022/01/GAA_Report.pdf (accessed on 21 September 2025).
- Schrobback, P.; Zhang, A.; Loechel, B.; Ricketts, K.; Ingham, A. Food Credence Attributes: A Conceptual Framework of Supply Chain Stakeholders, Their Motives, and Mechanisms to Address Information Asymmetry. Foods 2023, 12, 538. [Google Scholar] [CrossRef]
- Bergleiter, S.; Meisch, S. Certification Standards for Aquaculture Products: Bringing Together the Values of Producers and Consumers in Globalised Organic Food Markets. J. Agric. Environ. Ethics 2015, 28, 553–569. [Google Scholar] [CrossRef]
- Bush, S.R.; Belton, B.; Hall, D.; Vandergeest, P.; Murray, F.J.; Ponte, S.; Oosterveer, P.; Islam, M.S.; Mol, A.P.; Hatanaka, M. Certify Sustainable Aquaculture? Science 2013, 341, 1067–1068. [Google Scholar] [CrossRef]
- Saha, C.K. Emergence and Evolution of Aquaculture Sustainability Certification Schemes. Mar. Policy 2022, 143, 105196. [Google Scholar] [CrossRef]
- Beg, M.M.; Roy, S.M.; Ramesh, P.; Moulick, S.; Tiyasha, T.; Bhagat, S.K.; Abdelrahman, H.A. Organic Aquaculture Regulation, Production, and Marketing: Current Status, Issues, and Future Prospects—A Systematic Review. Aquac. Res. 2024, 2024, 5521188. [Google Scholar] [CrossRef]
- Fleming, A.; Wise, R.M.; Hansen, H.; Sams, L. The Sustainable Development Goals: A Case Study. Mar. Policy 2017, 86, 94–103. [Google Scholar] [CrossRef]
- Powell, D.A.; Erdozain, S.; Dodd, C.; Costa, R.; Morley, K.; Chapman, B.J. Audits and Inspections Are Never Enough: A Critique to Enhance Food Safety. Food Control 2013, 30, 686–691. [Google Scholar] [CrossRef]
- Okpala, C.O.R.; Korzeniowska, M. Understanding the Relevance of Quality Management in Agro-Food Product Industry: From Ethical Considerations to Assuring Food Hygiene Quality Safety Standards and Its Associated Processes. Food Rev. Int. 2023, 39, 1879–1952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlino-Costa, C.; Belo, M.A.d.A. Ensuring Fish Safety Through Sustainable Aquaculture Practices. Hygiene 2025, 5, 51. https://doi.org/10.3390/hygiene5040051
Carlino-Costa C, Belo MAdA. Ensuring Fish Safety Through Sustainable Aquaculture Practices. Hygiene. 2025; 5(4):51. https://doi.org/10.3390/hygiene5040051
Chicago/Turabian StyleCarlino-Costa, Camila, and Marco Antonio de Andrade Belo. 2025. "Ensuring Fish Safety Through Sustainable Aquaculture Practices" Hygiene 5, no. 4: 51. https://doi.org/10.3390/hygiene5040051
APA StyleCarlino-Costa, C., & Belo, M. A. d. A. (2025). Ensuring Fish Safety Through Sustainable Aquaculture Practices. Hygiene, 5(4), 51. https://doi.org/10.3390/hygiene5040051

