Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. SPME and GC-MS Were Used in Combination to Collect and Identify Volatile Organic Compounds from Pineapple Roots
2.2. The Effects of Three VOCs on the Mycelium Growth of the Fusarium
2.3. Growth Promotion Experiments in a Model Crop (Arabidopsis thaliana) Treated with VOCs
2.4. A Pot Experiment Design for Adding VOCs to the Soil of Banana Seedlings
2.5. Data Analysis
3. Results
3.1. Collection and Component Identification of Volatile Substances from Pineapple Root Systems
3.2. The Effects of Three Types of VOCs on the Mycelial Growth of Fusarium
3.3. Study on the Promoting Effects of Different VOCs on Model Crops—Arabidopsis thaliana
3.4. The Influence of Different VOCs Added on the Microbial Community of Banana Rhizosphere
3.4.1. The Influence of VOCs on the Alpha Diversity of the Microbial Community in the Rhizosphere of Banana
3.4.2. Analysis of the Beta Diversity of Microbial Communities in the Rhizosphere of Banana
3.4.3. Analysis of the Microbial Community Composition in the Rhizosphere of Banana
3.4.4. LEfSe Analysis of the Microbial Community in the Rhizosphere of Banana
3.4.5. Analysis of the Relative Abundance of Three Beneficial Genera in the Microbial Community of the Banana Rhizosphere
3.4.6. Collinear Network Analysis of Microbial Communities in the Rhizosphere of Banana Roots
3.4.7. Linear Models (LMs) for the Relationship of Microbial Indicators with Relative Abundance of Fusarium and the Relative Importance of Each Predictor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawarkar, A.N.; Kirti, N.; Tagade, A.; Tekade, S.P. Bioethanol from various types of banana waste: A review. Bioresour. Technol. Rep. 2022, 18, 101092. [Google Scholar] [CrossRef]
- Tamang, P.; Kumar, P.; Chauhan, A.; Rastogi, S.; Srivastava, S.; Jena, S.N. Molecular insights into the variability and pathogenicity of Fusarium odoratissimum, the causal agent of Panama wilt disease in banana. Microb. Pathog. 2024, 190, 106594. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, Q.; Wang, Y.; Chen, X.; Gao, W.; Zhao, Y.; Wang, B.; Ruan, Y. Suppression of banana fusarium wilt disease with soil microbial mechanisms via pineapple rotation and residue amendment. Agronomy 2023, 13, 377. [Google Scholar] [CrossRef]
- Yang, J.; Ren, X.; Liu, M.; Fan, P.; Ruan, Y.; Zhao, Y.; Wang, B. Suppressing soil-borne Fusarium pathogens of bananas by planting different cultivars of pineapples, with comparisons of the resulting bacterial and fungal communities. Appl. Soil Ecol. 2022, 169, 104211. [Google Scholar] [CrossRef]
- Gong, A.D.; Li, H.P.; Shen, L.; Zhang, J.B.; Wu, A.B.; He, W.J.; Yuan, Q.S.; He, J.D.; Liao, Y.C. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Front. Microbiol. 2015, 6, 1091. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, J.; Khashi u Rahman, M.; Wu, F. The impact of root exudates, volatile organic compounds, and common mycorrhizal networks on root system architecture in root-root interactions. J. Plant Interact. 2022, 17, 685–694. [Google Scholar] [CrossRef]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Raza, W.; Safdar, A.; Huang, Z.; Rajer, F.U.; Gao, X. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol. 2017, 17, 133. [Google Scholar] [CrossRef]
- Rizaludin, M.S.; Stopnisek, N.; Raaijmakers, J.M.; Garbeva, P. The chemistry of stress: Understanding the ‘cry for help’ of plant roots. Metabolites 2021, 11, 357. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, M.; Li, R.; Huang, Q.; Raza, W.; Rensing, C.; Shen, Q. Microbial volatile compounds alter the soil microbial community. Environ. Sci. Pollut. Res. 2017, 24, 22485–22493. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhao, Y.; Feng, J.; Chen, Y.; Li, K.; Zhang, M.; Qi, D.; Zhou, D.; Wei, Y.; et al. Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides. Food Chem. 2024, 437, 137938. [Google Scholar] [CrossRef]
- Liu, D.; Chen, L.; Chen, C.; Zhou, Y.; Xiao, F.; Wang, Y.; Li, Q. Effect of plant VOCs and light intensity on growth and reproduction performance of an invasive and a native Phytolacca species in China. Ecol. Evol. 2022, 12, e8522. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, V.; Marcianò, D.; Sargolzaei, M.; Maddalena, G.; Maghradze, D.; Tirelli, A.; Casati, P.; Bianco, P.A.; Failla, O.; Fracassetti, D.; et al. From plant resistance response to the discovery of antimicrobial compounds: The role of volatile organic compounds (VOCs) in grapevine downy mildew infection. Plant Physiol. Biochem. 2021, 160, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Naznin, H.A.; Kiyohara, D.; Kimura, M.; Miyazawa, M.; Shimizu, M.; Hyakumachi, M. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 2014, 9, e86882. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Huang, J.A.; Huang, J.; Wu, W.; Tong, T.; Liu, S.; Zhou, L.; Liu, Z.; Zhang, S. Identification of volatile and odor-active compounds in Hunan black tea by SPME/GC-MS and multivariate analysis. Lwt-Food. Sci. Technol. 2022, 164, 113656. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Y.; Chen, Y.; Xiao, L.; Zhang, X.; Yang, C.; Li, Z.; Zhu, M.; Liu, Z.; Wang, Y. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS–SPME/GC–MS and HS–GC–IMS. Curr. Res. Food Sci. 2022, 5, 1788–1807. [Google Scholar] [CrossRef]
- Leschevin, M.; Ismael, M.; Quero, A.; San Clemente, H.; Roulard, R.; Bassard, S.; Maicelo, P.; Pageau, K.; Elisabeth, J.; Rayon, C. Physiological and biochemical traits of two major Arabidopsis accessions, Col-0 and Ws, under salinity. Front. Plant Sci. 2021, 12, 639154. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.T.; Chung, F.Y.; Moyle, P.M.; Eltanahy, E.G.; Schenk, P.M. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci. Total Environ. 2019, 692, 267–280. [Google Scholar] [CrossRef]
- Ji, X.Y.; Ye, C.; Kang, W.; Luan, W.; Liu, Y.; He, X.; Yang, M.; Sun, L.; Sun, W.; Huang, H.; et al. Interspecific allelopathic interaction primes direct and indirect resistance in neighboring plants within agroforestry systems. Plant Commun. 2025, 6, 1. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Shi, J.; Khashi u Rahman, M.; Liu, H.; Wei, Z.; Wu, F.; Dini-Andreote, F. Volatile-Mediated Interspecific Plant Interaction Promotes Root Colonization by Beneficial Bacteria via Induced Shifts in Root Exudation. Microbiome 2024, 12, 207. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, X.; Ye, B.; Shi, L.; Bai, X.; Lai, T. Effects of essential oil decanal on growth and transcriptome of the postharvest fungal pathogen Penicillium expansum. Postharvest Biol. Technol. 2018, 145, 203–212. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Hpoo, M.K.; Mishyna, M.; Prokhorov, V.; Arie, T.; Takano, A.; Oikawa, Y.; Fujii, Y. Potential of Octanol and Octanal from Heracleum sosnowskyi Fruits for the Control of Fusarium oxysporum f. sp. lycopersici. Sustainabllity 2020, 12, 9334. [Google Scholar] [CrossRef]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, V.; Huber, M.; Förster, C.; Huang, W.; Köllner, T.G.; Erb, M. Root volatiles in plant–plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours. Plant Cell Environ. 2019, 42, 1950–1963. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Paramasivan, M.; Sahayarayan, J.J. Microbial volatile organic compounds: An alternative for chemical fertilizers in sustainable agriculture development. Microorganisms 2022, 11, 42. [Google Scholar] [CrossRef]
- Ninkovic, V.; Markovic, D.; Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 2021, 44, 1030–1043. [Google Scholar] [CrossRef]
- Tyagi, S.; Mulla, S.I.; Lee, K.J.; Chae, J.C.; Shukla, P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit. Rev. Biotechnol. 2018, 38, 1277–1296. [Google Scholar] [CrossRef]
- Tahir, H.A.; Gu, Q.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Colman, M.V.; Gao, X. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 2017, 8, 171. [Google Scholar] [CrossRef]
- de Boer, W.; Li, X.; Meisner, A.; Garbeva, P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol. Ecol. 2019, 95, fiz105. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Li, Y.B.; Qi, L.; Wan, X.C. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea. J. Agric. Food Chem. 2006, 54, 3936–3940. [Google Scholar] [CrossRef]
- Jalali, F.; Zafari, D.; Salari, H. Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. Fungal Ecol. 2017, 29, 67–75. [Google Scholar] [CrossRef]
- Ledger, T.; Rojas, S.; Timmermann, T.; Pinedo, I.; Poupin, M.J.; Garrido, T.; Richter, P.; Tamayo, J.; Donoso, R. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front. Microbiol. 2016, 7, 1838. [Google Scholar] [CrossRef]
- Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014, 19, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Brettell, L.E. Brettell. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 2019, 24, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Lin, T.; Liu, D.; Wang, Y.; Xu, X.; Xu, Y.; Siemann, E.; Li, B. Changes in Soil Microbiome Mediated by Root Volatiles Enhanced Manganese Tolerance of an Invasive Plant Species. Plant Cell Environ. 2025, 48, 6605–6617. [Google Scholar] [CrossRef] [PubMed]
- Ling, N.; Deng, K.; Song, Y.; Wu, Y.; Zhao, J.; Raza, W.; Huang, Q.; Shen, Q. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol. Res. 2014, 169, 570–578. [Google Scholar] [CrossRef]
- Anwer, M.A.; Khan, M.R. Aspergillus niger as tomato fruit (Lycopersicum esculentum Mill.) quality enhancer and plant health promoter. J. Postharvest Technol. 2013, 1, 36–51. [Google Scholar]
- Bei, Q.; Reitz, T.; Schädler, M.; Hodgskiss, L.H.; Peng, J.; Schnabel, B.; Buscot, F.; Eisenhauer, N.; Schleper, C.; Heintz-Buschart, A. Metabolic potential of Nitrososphaera-associated clades. ISME J. 2024, 18, wrae086. [Google Scholar] [CrossRef]
- Liu, R.; Li, R.; Li, Y.; Li, M.; Ma, W.; Zheng, L.; Wang, C.; Zhang, K.; Tong, Y.; Huang, G.; et al. Benzoic acid facilitates ANF in monocot crops by recruiting nitrogen-fixing Paraburkholderia. ISME J. 2024, 18, wrae210. [Google Scholar] [CrossRef]
- Asensio, D.; Yuste, J.C.; Mattana, S.; Ribas, À.; Llusià, J.; Peñuelas, J. Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant Soil 2012, 360, 163–174. [Google Scholar] [CrossRef]
- Werner, S.; Polle, A.; Brinkmann, N. Belowground communication: Impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl. Microbiol. Biotechnol. 2016, 100, 8651–8665. [Google Scholar] [CrossRef]
- Murali-Baskaran, R.K.; Mooventhan, P.; Das, D.; Dixit, A.; Sharma, K.C.; Senthil-Nathan, S.; Kaushal, P.; Ghosh, P.K. The future of plant volatile organic compounds (pVOCs) research: Advances and applications for sustainable agriculture. Environ. Exp. Bot. 2022, 200, 104912. [Google Scholar] [CrossRef]








| Treatment Name | Treatment | 
|---|---|
| 10G | Add 10 μg/g decanal | 
| 100G | Add 100 μg/g decanal | 
| 10R | Add 10 μg/g nonanal | 
| 100R | Add 100 μg/g nonanal | 
| 10X | Add 10 μg/g octanol | 
| 100X | Add 100 μg/g octanol | 
| CK | Add equal volume of sterile water | 
| VOC Name | Retention Time (min) | Peak Area Percentage (%) | 
|---|---|---|
| Hexamethyl-cyclotrisiloxane | 3.96, 21.27 | 49.91 | 
| Methoxy-phenyl-Oxime | 8.69 | 48.39 | 
| Octamethyl-cyclopentasiloxane | 15.08, 31.82 | 31.37 | 
| Octanol | 16.64 | 4.30 | 
| Decamethyl-cyclopentasiloxane | 26.32, 36.98, 39.38 | 15.38 | 
| Nonanal | 21.98 | 2.19 | 
| Naphthalene | 26.86 | 7.83 | 
| Dodecane | 28.8 | 3.94 | 
| Decanal | 29.14 | 1.50 | 
| Dodecamethyl-cyclohexasiloxane | 36.98 | 3.69 | 
| Tris (1-chloropropan-2-yl) phosphate | 50.06 | 19.50 | 
| Bis (1-chloro-2-propyl) (3-chloropropyl) phosphate | 50.18 | 3.56 | 
| Phthalandione | 51.3 | 1.42 | 
| Network Properties | CK | G10 | G100 | R10 | R100 | X10 | X100 | 
|---|---|---|---|---|---|---|---|
| Nodes_num | 131 | 183 | 137 | 149 | 150 | 179 | 152 | 
| Edges_num | 1156 | 1329 | 668 | 1218 | 889 | 1031 | 863 | 
| Positive.cor_num (%) | 86.59 | 90.74 | 80.39 | 81.12 | 72.1 | 84.48 | 80.42 | 
| Negative.cor_num (%) | 13.41 | 9.26 | 19.61 | 18.88 | 27.9 | 15.52 | 19.58 | 
| Average degree | 17.649 | 14.525 | 9.752 | 16.349 | 11.853 | 11.52 | 11.355 | 
| Average_weight_degree | 20.992 | 24.284 | 12.934 | 19.818 | 13.773 | 16.358 | 15.566 | 
| Average path length | 3.446 | 3.654 | 3.818 | 3.566 | 3.581 | 3.772 | 4.02 | 
| Network diameter | 8 | 8 | 9 | 9 | 8 | 8 | 12 | 
| Network density | 0.136 | 0.08 | 0.072 | 0.11 | 0.08 | 0.065 | 0.075 | 
| Clustering_coefficient | 0.664 | 0.872 | 0.774 | 0.649 | 0.707 | 0.8 | 0.789 | 
| Modularity | 0.481 | 0.778 | 0.808 | 0.635 | 0.702 | 0.831 | 0.802 | 
| Network Properties | CK | G10 | G100 | R10 | R100 | X10 | X100 | 
|---|---|---|---|---|---|---|---|
| Nodes_num | 322 | 355 | 318 | 320 | 314 | 337 | 324 | 
| Edges_num | 7824 | 5361 | 4817 | 9956 | 7941 | 5956 | 5270 | 
| Positive.cor_num (%) | 85.54 | 65.1 | 60.31 | 93.01 | 94.18 | 58.14 | 59.72 | 
| Negative.cor_num (%) | 14.46 | 34.9 | 39.69 | 6.99 | 5.82 | 41.86 | 40.28 | 
| Average degree | 48.596 | 30.203 | 30.296 | 62.225 | 50.58 | 35.347 | 32.531 | 
| Average_weight_degree | 59.584 | 35.583 | 35.679 | 77.206 | 61.287 | 41.78 | 38.617 | 
| Average path length | 3.073 | 3.507 | 3.418 | 2.916 | 3.13 | 3.319 | 3.394 | 
| Network diameter | 9 | 7 | 7 | 8 | 7 | 6 | 6 | 
| Network density | 0.151 | 0.085 | 0.096 | 0.195 | 0.162 | 0.105 | 0.101 | 
| Clustering_coefficient | 0.675 | 0.598 | 0.58 | 0.678 | 0.648 | 0.604 | 0.585 | 
| Modularity | 0.539 | 0.641 | 0.573 | 0.479 | 0.462 | 0.563 | 0.554 | 
| Fusarium Relative Abundance | df | F Value | Pr (>F) | r | Relative Importance | 
|---|---|---|---|---|---|
| RA of Pseudomonas | 1 | 0.517 | 0.487 | −0.19 | 8.85% | 
| RA of Bacillus | 1 | 20.694 | <0.001 | 0.25 | 24.38% | 
| RA of Talaromyces | 1 | 0.542 | 0.478 | −0.28 | 2.86% | 
| bac_Chao | 1 | 1.504 | 0.246 | 0.70 | 13.03% | 
| fun_Richness | 1 | 0.360 | 0.561 | 0.69 | 7.80% | 
| fun_Ace | 1 | 17.07 | <0.001 | 0.69 | 15.53% | 
| Residuals | 14 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Lu, Y.; Jiang, T.; Li, P.; Deng, X.; Yang, J.; Wang, B.; Li, R. Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere. Agronomy 2025, 15, 2520. https://doi.org/10.3390/agronomy15112520
Chen X, Lu Y, Jiang T, Li P, Deng X, Yang J, Wang B, Li R. Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere. Agronomy. 2025; 15(11):2520. https://doi.org/10.3390/agronomy15112520
Chicago/Turabian StyleChen, Xinyue, Yunfeng Lu, Taisheng Jiang, Peize Li, Xiaoqiang Deng, Jinming Yang, Beibei Wang, and Rong Li. 2025. "Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere" Agronomy 15, no. 11: 2520. https://doi.org/10.3390/agronomy15112520
APA StyleChen, X., Lu, Y., Jiang, T., Li, P., Deng, X., Yang, J., Wang, B., & Li, R. (2025). Three Pineapple Root VOCs Affect Soil Health via Microbial Changes in Banana Rhizosphere. Agronomy, 15(11), 2520. https://doi.org/10.3390/agronomy15112520
 
         
                                                
 
       