Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,136)

Search Parameters:
Keywords = system stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6605 KB  
Article
Design and Finite Element Analysis of Reducer Housing Based on ANSYS
by Yingshuai Liu, Xueming Gao, Hao Huang and Jianwei Tan
Symmetry 2025, 17(10), 1663; https://doi.org/10.3390/sym17101663 (registering DOI) - 6 Oct 2025
Abstract
As a pivotal component of the single-gear reducer, the casing of the miniature car reducer not only safeguards the internal transmission system but also interfaces seamlessly with the external structure. Currently, the structural design of domestic single-stage reducers primarily leans on experience and [...] Read more.
As a pivotal component of the single-gear reducer, the casing of the miniature car reducer not only safeguards the internal transmission system but also interfaces seamlessly with the external structure. Currently, the structural design of domestic single-stage reducers primarily leans on experience and standardized specifications. To guarantee the reliable and stable operation of the casing, a high safety factor is often incorporated, which inevitably results in increased weight and necessitates secure bolting connections. This study presents an innovative scheme to design the flange with the box and realize the lightweight nature of the box by finite element analysis to reduce the manufacturing cost. Based on the working state of maximum torque and maximum speed, this study obtains the stress distribution of each bearing seat under different working conditions and carries out static and dynamic analysis combined with other coupling constraints. The analysis results show that the structure has high stiffness and strength, which is suitable for lightweight design, and that the first ten spontaneous vibration frequencies are far away from the excitation frequency of the inner and outer boundary, avoiding the resonance phenomenon. Moreover, this study proposes a new structure design method, which effectively improves the stiffness of the structure. Through the calculation of volume ratio before and after three optimizations, the optimal volume ratio of 30% is selected, unnecessary materials around the bearing seat are removed, and the layout of ribs is determined. After structural optimization, the weight of the shell is reduced by 10.2%, and both the static and dynamic characteristics meet the design requirements. Full article
Show Figures

Figure 1

15 pages, 5035 KB  
Article
Effectiveness of Dynamic Vibration Absorber on Ground-Borne Vibration Induced by Metro
by Javad Sadeghi, Alireza Toloukian and Sogand Mehravar
Vibration 2025, 8(4), 62; https://doi.org/10.3390/vibration8040062 (registering DOI) - 5 Oct 2025
Abstract
The application of dynamic vibration absorbers (DVAs) is a countermeasure to suppress vibrations induced by railway traffic. A key advantage of the DVA application is that it does not require any changes to the path of vibration propagation or the receiver of vibration. [...] Read more.
The application of dynamic vibration absorbers (DVAs) is a countermeasure to suppress vibrations induced by railway traffic. A key advantage of the DVA application is that it does not require any changes to the path of vibration propagation or the receiver of vibration. A review of the literature reveals the necessity of deriving the optimum properties of DVA to mitigate railway vibrations. To this end, the optimum DVA properties were investigated through the development of a two-dimensional finite element model of the track-tunnel-soil system. The model was validated using the results of a field test. A parametric study was made to obtain the optimum properties of DVA for different soils surrounding the tunnel. The results of the model analysis indicate that the DVA has better vibration reduction for metro tunnels built in soft soils as compared to those surrounded by medium and stiff soils. Also, the results disclose that the DVA reduces vibration radiated on the ground surface when the DVA natural frequency is tuned to a low frequency. Using the results of the parametric study, graphs are suggested to select the optimum properties of the DVA as a function of the soil around the tunnel. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
11 pages, 3165 KB  
Article
Study of the Deformation by Compression of a Premolar with and Without Ceramic Restoration Using Speckle Optical Interferometry
by Erik Baradit, Jorge Gutiérrez, Miguel Yáñez, Claudio Sumonte and Cristhian Aguilera
Appl. Sci. 2025, 15(19), 10708; https://doi.org/10.3390/app151910708 (registering DOI) - 4 Oct 2025
Abstract
This work aimed to quantify axial deformations of a human premolar during occlusion with its antagonist and to compare them with the same premolar restored with a ceramic crown. The deformations were put under stress using a mechanical press with a force ranging [...] Read more.
This work aimed to quantify axial deformations of a human premolar during occlusion with its antagonist and to compare them with the same premolar restored with a ceramic crown. The deformations were put under stress using a mechanical press with a force ranging from 1 to 100 Newtons. These deformations were quantified using the optical interferometry technique with a laser source (633 nm, 0.95 mW). Using a CMOS camera, interference fringes were obtained, stored, and subsequently processed. The premolars were restored with Cerasmart GC ceramic, using the CAD-CAM system. The average deformations of healthy premolars were found to be in a range of 0.69 to 1.74 µm, while the restored ones were deformed in a range of 0.53 to 1.10 µm. The results of this work showed that the Cerasmart ceramic material had similar properties to those of the natural tooth for small forces. However, for higher forces, the ceramics increased the coronal stiffness of the tooth. This modified the optimal combination of stiffness, strength, and resilience between the enamel and dentin, causing a decrease in the tooth’s ability to dissipate energy; therefore, the tooth could receive more stress. The observed mechanical properties lead to the conclusion that the Cerasmart material can be indicated for the restoration of anterior and premolar teeth in most cases where a fixed prosthesis is required. Full article
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

15 pages, 1468 KB  
Article
Performance Comparison of Hybrid and Standalone Piezoelectric Energy Harvesters Under Vortex-Induced Vibrations
by Issam Bahadur, Hassen Ouakad, El Manaa Barhoumi, Asan Muthalif, Muhammad Hafizh, Jamil Renno and Mohammad Paurobally
Modelling 2025, 6(4), 120; https://doi.org/10.3390/modelling6040120 - 2 Oct 2025
Abstract
This study investigates the effect of incorporating an electromagnetic harvester inside the bluff body of a 2-DoF hybrid harvester in comparison to a standalone piezoelectric harvester for various external loads. The harvester is excited through a vortex-induced vibration owing to the resultant wake [...] Read more.
This study investigates the effect of incorporating an electromagnetic harvester inside the bluff body of a 2-DoF hybrid harvester in comparison to a standalone piezoelectric harvester for various external loads. The harvester is excited through a vortex-induced vibration owing to the resultant wake vortices created behind the bluff body. The coupled dynamics of the two harvester components are modeled, and numerical simulations are conducted to evaluate the system’s performance under varying electrical loads. Numerical results show that at high, optimum electrical load, the standalone piezoelectric harvester outperforms the hybrid harvester. Nevertheless, for small electrical loads, the results show that the hybrid harvester outperforms the standalone PZT harvester by up to 18% in peak power output, while reducing the bandwidth by approximately 10% compared to the standalone piezoelectric harvester. Optimal spring stiffness values were identified, with the hybrid harvester achieving its maximum output power at a spring stiffness of 83.56 N/m. These findings underscore the need for careful design considerations, as the hybrid harvester may not achieve enhanced power output and bandwidth under higher electrical loads. Full article
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

25 pages, 5314 KB  
Article
Experimental Study on Bidirectional Bending Performance of Steel-Ribbed Composite Slabs for Electrical Substations
by Lin Li, Zhenzhong Wei, Yong Liu, Yunan Jiang, Haomiao Chen, Yu Zhang, Kaifa Zhang, Kunjie Rong and Li Tian
Buildings 2025, 15(19), 3540; https://doi.org/10.3390/buildings15193540 - 1 Oct 2025
Abstract
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better [...] Read more.
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better performance than triple-spliced slabs, showing a 24.5% higher ultimate load and 65.3% greater ductility, with well-developed orthogonal cracks and yielding of both longitudinal prestressing steel and transverse reinforcement. Triple-spliced slabs display partial bidirectional behavior due to reduced transverse integrity, with stresses in edge slabs concentrated at the corners. Compared with monolithic slabs, spliced slabs show nearly identical stiffness at cracking onset but progressively reduced stiffness, load capacity, and ductility in the mid-to-late loading stages. Joint-crossing reinforcement is critical for transverse load transfer, and increasing its diameter is more effective than increasing its strength in preventing premature joint-controlled failure. These findings provide significant theoretical guidance and technical support for the prefabricated construction of high-voltage substation floor systems. Full article
(This article belongs to the Section Building Structures)
23 pages, 4267 KB  
Article
A Comparative Experimental Study on Seismic Retrofitting Techniques for RC Frames: RC Jacketing, Steel Jacketing, and Base Isolation
by Weilun Wang, Mingyuan Xie, Zhiwen Xu, Jiaqi Liao, Muhammad Abdullah and Mingyang Zhang
Buildings 2025, 15(19), 3539; https://doi.org/10.3390/buildings15193539 - 1 Oct 2025
Abstract
Earthquakes can cause significant damage to structures, resulting in considerable financial and social losses. Enhancing the seismic capacity of existing structures through retrofitting is essential. Traditional seismic retrofitting techniques, such as reinforced concrete (RC) jacketing and steel jacketing, primarily aim to increase structural [...] Read more.
Earthquakes can cause significant damage to structures, resulting in considerable financial and social losses. Enhancing the seismic capacity of existing structures through retrofitting is essential. Traditional seismic retrofitting techniques, such as reinforced concrete (RC) jacketing and steel jacketing, primarily aim to increase structural resistance. But RC jacketing is intrusive and increases mass and stiffness, steel jacketing increases cost and demands careful detailing and both approaches are often inadequate for addressing the dynamic complexities of seismic loading. As an alternative, base isolation systems provide a promising solution by concentrating deformation and energy dissipation within isolation bearings, thereby protecting the superstructure from seismic forces. This study evaluates the effectiveness of base isolation compared with conventional retrofitting methods in enhancing the seismic performance of existing structures. The experimental program included cyclic testing of four RC frame structures: one control specimen and three others retrofitted with RC jacketing, steel jacketing, and lead rubber bearings (LRB). The results indicate that the base-isolated specimen demonstrates superior energy dissipation capacity due to the favorable deformation characteristics of the LRB. Moreover, structural damage is redirected from the original columns to the newly installed transition beams, effectively preserving the integrity of the primary structure. These findings highlight the advantages of base isolation in improving seismic performance and provide valuable experimental evidence supporting its application in the retrofitting of existing structures. Full article
42 pages, 6991 KB  
Review
Phenomenological Analysis of Percolation Phenomena in Porous Low-k Dielectrics
by Mungunsuvd Gerelt-Od, Md Rasadujjaman, Valerii E. Arkhincheev, Konstantin A. Vorotilov and Mikhail R. Baklanov
Coatings 2025, 15(10), 1138; https://doi.org/10.3390/coatings15101138 - 1 Oct 2025
Abstract
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores [...] Read more.
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores and defect chains, while dielectric breakdown requires system-spanning pore connectivity, resulting in a higher effective percolation threshold. Mechanical properties similarly degrade when pores coalesce into a connected network, exhibiting multiple percolation thresholds due to both chemical network modifications and porosity. Experimental trends demonstrate that leakage current increases sharply at low porosity, whereas breakdown voltage and mechanical stiffness collapse at higher porosity levels (~20%–30%). We highlight that distinct percolation classes govern transport, mechanical, and nonlinear phenomena, with correlation length and diffusion timescales providing a unified framework for understanding these effects. The analysis underscores the fundamental role of network connectivity in determining the performance of organosilicate glass-based ultra-low-k dielectrics and offers guidance for material design strategies aimed at simultaneously improving electrical, mechanical, and chemical robustness. Full article
Show Figures

Figure 1

18 pages, 4675 KB  
Article
Advancing Soil Assessment: Vision-Based Monitoring for Subgrade Quality and Dynamic Modulus
by Koohyar Faizi, Robert Evans and Rolands Kromanis
Geotechnics 2025, 5(4), 67; https://doi.org/10.3390/geotechnics5040067 - 1 Oct 2025
Abstract
Accurate evaluation of subgrade behaviour under dynamic loading is essential for the long-term performance of transport infrastructure. While the Light Weight Deflectometer (LWD) is commonly used to assess subgrade stiffness, it provides only a single stiffness value and may not fully capture the [...] Read more.
Accurate evaluation of subgrade behaviour under dynamic loading is essential for the long-term performance of transport infrastructure. While the Light Weight Deflectometer (LWD) is commonly used to assess subgrade stiffness, it provides only a single stiffness value and may not fully capture the time-dependent response of soil. This study presents an image-based vision system developed to monitor soil surface displacements during loading, enabling more detailed analysis of dynamic behaviour. The system incorporates high-speed cameras and MATLAB-based computer vision algorithms to track vertical movement of the plate during impact. Laboratory and field experiments were conducted to evaluate the system’s performance, with results compared directly to those from the LWD. A strong correlation was observed (R2 = 0.9901), with differences between the two methods ranging from 0.8% to 13%, confirming the accuracy of the vision-based measurements despite the limited dataset. The findings highlight the system’s potential as a practical and cost-effective tool for enhancing subgrade assessment, particularly in applications requiring improved understanding of ground response under repeated or transient loading. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

18 pages, 5138 KB  
Article
Model Order Reduction for Rigid–Flexible–Thermal Coupled Viscoelastic Multibody System via the Modal Truncation with Complex Global Modes
by Qinglong Tian, Chengyu Pan, Zhuo Liu and Xiaoming Chen
Actuators 2025, 14(10), 479; https://doi.org/10.3390/act14100479 - 30 Sep 2025
Abstract
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude [...] Read more.
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude of computational dimensions, computational efficiency has remained a significant bottleneck hindering their practical applications in engineering. However, due to the fact that the stiffness matrix is a highly nonlinear function of generalized coordinates, traditional methods of modal truncation are difficult to apply directly. In this study, the absolute nodal coordinate formulation (ANCF) is used to uniformly describe the modeling of rigid–flexible–thermal coupled multibody systems with large-scale motion and deformation. The constant tangent stiffness matrix and damping matrix can be obtained by locally linearizing the dynamic equation and heat transfer equations, which are based on the Taylor expansion. The dynamic and heat transfer equations obtained by reducing the order of complex modes are transformed into a unified first-order equation, which is solved simultaneously. The orthogonal complement matrix of the constraint equation is proposed to eliminate the nonlinear constraints. A strategy based on energy preservation was proposed to update the reduced-order basis vectors, which improved the calculation accuracy and efficiency. Finally, a systematic method for rigid–flexible–thermal coupled viscoelastic multibody systems via modal truncation with complex global modes is developed. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 5560 KB  
Article
Application of a Kdamper with a Magnetorheological Damper for Control of Longitudinal Vibration of Propulsion Shaft System
by Kangwei Zhu, Haiyu Zhang, Weiguo Wu and Hao Liang
Appl. Sci. 2025, 15(19), 10564; https://doi.org/10.3390/app151910564 - 30 Sep 2025
Abstract
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, [...] Read more.
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, the development of a propulsion shaft system vibration controller is an effective method. In this paper, a Kdamper with a magnetorheological damper (Kdamper-MRD) is proposed to control the longitudinal vibrations transmitted along the propulsion shaft system. The vibration characteristics of the propulsion shaft system are analyzed using the transfer matrix method and the optimal Kdamper-MRD design parameters for controlling the target modes are given. Specific structural design parameters are given as well as material selection. The magnetic field distribution and the magnitude of the output damping force of the MRD are obtained by the simulation method, and the negative stiffness characteristics of the disk spring are also discussed. An on–off current switching control strategy is proposed to further improve the vibration damping performance of the Kdamper-MRD. A comparison with the traditional DVA under simple harmonic excitation and random excitation proves that the Kdamper-MRD has better low-frequency vibration damping performance and is able to attenuate longitudinal vibration of the axle system in the whole frequency domain. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

30 pages, 5036 KB  
Article
Filtering and Fractional Calculus in Parameter Estimation of Noisy Dynamical Systems
by Alexis Castelan-Perez, Francisco Beltran-Carbajal, Ivan Rivas-Cambero, Clementina Rueda-German and David Marcos-Andrade
Actuators 2025, 14(10), 474; https://doi.org/10.3390/act14100474 - 27 Sep 2025
Abstract
The accurate estimation of parameters in dynamical systems stands for an open key research issue in modeling, control, and fault diagnosis. The presence of noise in input and output signals poses a serious challenge for accurate real-time dynamical system parameter estimation. This paper [...] Read more.
The accurate estimation of parameters in dynamical systems stands for an open key research issue in modeling, control, and fault diagnosis. The presence of noise in input and output signals poses a serious challenge for accurate real-time dynamical system parameter estimation. This paper proposes a new robust algebraic parameter estimation methodology for integer-order dynamical systems that explicitly incorporates the signal filtering dynamics within the estimator structure and enhances noise attenuation through fractional differentiation in frequency domain. The introduced estimation methodology is valid for Liouville-type fractional derivatives and can be applied to estimate online the parameters of differentially flat, oscillating or vibrating systems of multiple degrees of freedom. The parametric estimation can be thus implemented for a wide class of oscillating or vibrating, nth-order dynamical systems under noise influence in measurement and control signals. Positive values are considered for the inertia, stiffness, and viscous damping parameters of vibrating systems. Parameter identification can be also used for development of actuators and control technology. In this sense, validation of the algebraic parameter estimation is performed to identify parameters of a differentially flat, permanent-magnet direct-current motor actuator. Parameter estimation for both open-loop and closed-loop control scenarios using experimental data is examined. Experimental results demonstrate that the new parameter estimation methodology combining signal filtering dynamics and fractional calculus outperforms other conventional methods under presence of significant noise in measurements. Full article
Show Figures

Figure 1

28 pages, 4514 KB  
Article
A Comparative Study of Optimised Embodied Carbon and Cost in RC Slab Structures
by Chia Paknahad, Mosleh Tohidi, Ali Bahadori-Jahromi and Shah Room
Sustainability 2025, 17(19), 8662; https://doi.org/10.3390/su17198662 - 26 Sep 2025
Abstract
Following World War II, the rapid expansion of construction led to intensive use of natural resources, leading to resource depletion and accelerating climate change. Prioritising sustainability in structural design has therefore become essential. This study investigates three reinforced concrete (RC) slab systems typical [...] Read more.
Following World War II, the rapid expansion of construction led to intensive use of natural resources, leading to resource depletion and accelerating climate change. Prioritising sustainability in structural design has therefore become essential. This study investigates three reinforced concrete (RC) slab systems typical of office buildings: flat slab, beam and slab, and two-way joist slab, using Eurocode 2 design principles. A 3 × 3 bay model with spans from 4 m to 14 m and three concrete grades (C25/30, C32/40, C40/50) was analysed through nonlinear finite element modelling. The methodology uniquely combines structural optimisation with embodied carbon and cost assessments across multiple slab typologies and span configurations, an approach rarely addressed in prior research. Results show that two-way joist slabs achieve the most favourable balance, reducing embodied carbon by 25–35% and construction cost by up to 15% compared to flat and beam and slab systems. This advantage is particularly evident at spans of 10 m or more, where the ribbed geometry significantly reduces concrete volume. Flat slabs are cost-efficient for short spans of up to 8 m but incur up to 40% higher carbon at longer spans due to increased thickness and punching shear reinforcement requirements. Beam and slab systems consistently recorded the highest cost and carbon values, offering limited environmental benefits despite their structural stiffness. The findings provide practical guidance for span-sensitive slab selection in early design, enabling the delivery of reinforced concrete buildings that are both cost-effective and environmentally responsible. Full article
Show Figures

Figure 1

Back to TopTop