Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = synchrotron photoionization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2185 KB  
Article
Halogen Migration in the Photofragmentation of Halothane
by Anna Rita Casavola, Filippo Morini, Mattea Carmen Castrovilli, Jacopo Chiarinelli, Laura Carlini, Antonella Cartoni, Daniele Catone, Paola Bolognesi, Robert Richter, Bratislav Marinkovic, Sanja Tosic and Lorenzo Avaldi
Molecules 2025, 30(14), 2902; https://doi.org/10.3390/molecules30142902 - 9 Jul 2025
Viewed by 405
Abstract
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ [...] Read more.
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ and CHBrF+ ions, which involves the transfer of a F atom between the two moieties of the parent molecule, was observed. To understand the mechanisms leading to the halogen migration, a detailed theoretical study of the production of CHClF+, m/z 67+, based on DFT calculations and natural bond orbital (NBO) analysis was conducted. The results contribute to the understanding of the photochemistry of halothane, its polluting behavior in the high atmosphere, and the formation of highly reactive species. Full article
Show Figures

Figure 1

9 pages, 1256 KB  
Article
Double and Triple Photoionization of CCl4
by Antônio Carlos Fontes dos Santos, Joselito Barbosa Maciel, Alexandre Braga Rocha and Gerardo Gerson Bezerra de Souza
Atoms 2024, 12(12), 74; https://doi.org/10.3390/atoms12120074 - 21 Dec 2024
Viewed by 804
Abstract
(1) Background: Fragmentation after double and triple photoionization of the CCl4 molecule in the valence, Cl 2p, and C 1s regions have been reported; (2) Methods: We have used photoion-photoion (PIPICO) coincidence technique combined with synchrotron radiation. In addition, [...] Read more.
(1) Background: Fragmentation after double and triple photoionization of the CCl4 molecule in the valence, Cl 2p, and C 1s regions have been reported; (2) Methods: We have used photoion-photoion (PIPICO) coincidence technique combined with synchrotron radiation. In addition, ab initio quantum mechanical calculations were done at multiconfigurational self-consistent and multireference configuration interaction to describe ground and inner-shell states; (3) Results: We have observed coincidences involving singly and doubly charged fragments coming from the doubly and triply ionized molecule. We have also found a well agreement between the quantum mechanical calculations and the total ion yield spectrum. It is shown that the Cl+ ion is the predominant product resulting from the fragmentation of the doubly and triply charged CCl4 molecule. The CCl+ + Cl+ pair is the dominant coincidence in the spectra from valence up to the C 1s edge; (4) Conclusions: The kinetic energy of the fragments is compatible with the Coulomb explosion model. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

17 pages, 746 KB  
Article
Enhancement of the NORAD-Atomic-Data Database in Plasma
by Sultana N. Nahar and Guillermo Hinojosa-Aguirre
Atoms 2024, 12(4), 22; https://doi.org/10.3390/atoms12040022 - 9 Apr 2024
Cited by 3 | Viewed by 1973
Abstract
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially [...] Read more.
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially for the latest works, of the international collaborations of the Opacity Project and the Iron Project. The contents of the database are calculated values for energies, oscillator strengths, radiative decay rates, lifetimes, cross-sections for photoionization, electron-ion recombination cross-sections, and recombination rate coefficients. We have recently expanded NORAD-Atomic-Data with several enhancements over those reported earlier. They are as follows: (i) We continue to add energy levels, transition parameters, cross-sections, and recombination rates for atoms and ions with their publications. (ii) Recently added radiative atomic data contain a significant amount of transition data for photo-absorption spectral features corresponding to the X-ray resonance fluorescence effect, showing prominent wavelength regions of bio-signature elements, such as phosphorus ions, and emission bumps of heavy elements, such as of lanthanides, which may be created in a kilonova event. We are including (iii) collisional data for electron-impact-excitation, (iv) experimental data for energies and oscillator strengths for line formation, (v) experimental cross-sections for photoionization that can be applied for benchmarking and other applications, and (vi) the introduction of a web-based interactive feature to calculate spectral line ratios at various plasma temperature and density diagnostics, starting with our recently published data for P II. We presented a summary description of theoretical backgrounds for the computed data in the earlier paper. With the introduction of experimental results in the new version of NORAD, we present a summary description of measurement of high-resolution photoionization cross-sections at an Advanced Light Source of LBNL synchrotron set-up and briefly discuss other set-ups. These additions should make NORAD-Atomic-Data more versatile for various applications. For brevity, we provide information on the extensions and avoid repetition of data description of the original paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

20 pages, 7383 KB  
Article
Pyrolysis of Cyclohexane and 1-Hexene at High Temperatures and Pressures—A Photoionization Mass Spectrometry Study
by Robert S. Tranter, Colin Banyon, Ryan E. Hawtof and Keunsoo Kim
Energies 2023, 16(24), 7929; https://doi.org/10.3390/en16247929 - 6 Dec 2023
Viewed by 2003
Abstract
Cycloalkanes are important components of a wide range of fuels. However, there are few experimental data at simultaneously high temperatures and pressures similar to those found in practical systems. Such data are necessary for developing and testing chemical kinetic models. In this study, [...] Read more.
Cycloalkanes are important components of a wide range of fuels. However, there are few experimental data at simultaneously high temperatures and pressures similar to those found in practical systems. Such data are necessary for developing and testing chemical kinetic models. In this study, data relevant to cycloalkane pyrolysis were obtained from high repetition rate shock tube experiments coupled with synchrotron-based photoionization mass spectrometry diagnostics. The pyrolysis of cyclohexane was studied over 1270–1550 K and ~9 bar, while the more reactive primary decomposition product, 1-hexene, was studied at 1160–1470 K and ~5 bar. Insights into the decomposition of the parent molecules, the formation of primary products and the production of aromatic species were gained. Simulations were performed with models for cyclohexane and 1-hexene that were based on literature models. The results indicate that over several hundred microseconds reaction time at high pressures and temperatures the pyrolysis of cyclohexane is largely dominated by reactions initiated by cyclohexyl radicals. Furthermore, good agreement between the simulations and the experiments were observed for cyclohexane and 1-hexene with a modified version of the cyclohexane model. Conversely, the 1-hexene model did not reproduce the experimental observations. Full article
(This article belongs to the Special Issue Advances in Fuels and Combustion)
Show Figures

Figure 1

9 pages, 1656 KB  
Communication
Double Photoionization of Nitrosyl Chloride by Synchrotron Radiation in the 24–70 eV Photon Energy Range
by Luca Schio, Michele Alagia, Robert Richter, Vitali Zhaunerchyk, Stefano Stranges, Fernando Pirani, Franco Vecchiocattivi, Marco Parriani and Stefano Falcinelli
Molecules 2023, 28(13), 5218; https://doi.org/10.3390/molecules28135218 - 5 Jul 2023
Viewed by 1770
Abstract
The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with [...] Read more.
The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24–70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis. ClNO molecules crossing the photon beam at right angles in the scattering region are generated by effusive expansion and randomly oriented. The threshold energy for the double ionization of ClNO (30.1 ± 0.1 eV) and six dissociation channels producing NO+/Cl+, N+/Cl+, N+/O+, O+/Cl+, ClN+/O+, NO+/Cl2+ ion pairs, with their relative abundance and threshold energies, have been measured. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

20 pages, 4477 KB  
Article
L-Shell Photoionization of Magnesium-like Ions with New Results for Cl5+
by Jean-Paul Mosnier, Eugene T. Kennedy, Jean-Marc Bizau, Denis Cubaynes, Ségolène Guilbaud, Christophe Blancard, M. Fatih Hasoğlu and Thomas W. Gorczyca
Atoms 2023, 11(4), 66; https://doi.org/10.3390/atoms11040066 - 3 Apr 2023
Cited by 4 | Viewed by 2156
Abstract
This study reports on the absolute photoionization cross sections for the magnesium-like Cl5+ ion over the 190–370 eV photon energy range, corresponding to the L-shell (2s and 2p subshells) excitation regime. The experiments were performed using the Multi-Analysis Ion Apparatus (MAIA) on [...] Read more.
This study reports on the absolute photoionization cross sections for the magnesium-like Cl5+ ion over the 190–370 eV photon energy range, corresponding to the L-shell (2s and 2p subshells) excitation regime. The experiments were performed using the Multi-Analysis Ion Apparatus (MAIA) on the PLéIADES beamline at the SOLEIL synchrotron radiation storage ring facility. Single and double ionization ion yields, produced by photoionization of the 2p subshell of the Cl5+ ion from the 2p63s2 1S0 ground state and the 2p63s3p 3P0,1,2 metastable levels, were observed, as well as 2s excitations. Theoretical calculations of the photoionization cross sections using the Multi-Configuration Dirac-Fock and R-matrix approaches were carried out, and the results were compared with the experimental data. The Cl5+ results were examined within the overall evolution of L-shell excitation for the early members of the Mg-like isoelectronic sequence (Mg, Al+, Si2+, S4+, Cl5+). Characteristic photon energies for P3+ were estimated by interpolation. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

13 pages, 2204 KB  
Article
Dimeric Product of Peroxy Radical Self-Reaction Probed with VUV Photoionization Mass Spectrometry and Theoretical Calculations: The Case of C2H5OOC2H5
by Hao Yue, Cuihong Zhang, Xiaoxiao Lin, Zuoying Wen, Weijun Zhang, Sabah Mostafa, Pei-Ling Luo, Zihao Zhang, Patrick Hemberger, Christa Fittschen and Xiaofeng Tang
Int. J. Mol. Sci. 2023, 24(4), 3731; https://doi.org/10.3390/ijms24043731 - 13 Feb 2023
Cited by 10 | Viewed by 2954
Abstract
Organic peroxy radicals (RO2) as key intermediates in tropospheric chemistry exert a controlling influence on the cycling of atmospheric reactive radicals and the production of secondary pollutants, such as ozone and secondary organic aerosols (SOA). Herein, we present a comprehensive study [...] Read more.
Organic peroxy radicals (RO2) as key intermediates in tropospheric chemistry exert a controlling influence on the cycling of atmospheric reactive radicals and the production of secondary pollutants, such as ozone and secondary organic aerosols (SOA). Herein, we present a comprehensive study of the self-reaction of ethyl peroxy radicals (C2H5O2) by using advanced vacuum ultraviolet (VUV) photoionization mass spectrometry in combination with theoretical calculations. A VUV discharge lamp in Hefei and synchrotron radiation at the Swiss Light Source (SLS) are employed as the photoionization light sources, combined with a microwave discharge fast flow reactor in Hefei and a laser photolysis reactor at the SLS. The dimeric product, C2H5OOC2H5, as well as other products, CH3CHO, C2H5OH and C2H5O, formed from the self-reaction of C2H5O2 are clearly observed in the photoionization mass spectra. Two kinds of kinetic experiments have been performed in Hefei by either changing the reaction time or the initial concentration of C2H5O2 radicals to confirm the origins of the products and to validate the reaction mechanisms. Based on the fitting of the kinetic data with the theoretically calculated results and the peak area ratios in the photoionization mass spectra, a branching ratio of 10 ± 5% for the pathway leading to the dimeric product C2H5OOC2H5 is measured. In addition, the adiabatic ionization energy (AIE) of C2H5OOC2H5 is determined at 8.75 ± 0.05 eV in the photoionization spectrum with the aid of Franck-Condon calculations and its structure is revealed here for the first time. The potential energy surface of the C2H5O2 self-reaction has also been theoretically calculated with a high-level of theory to understand the reaction processes in detail. This study provides a new insight into the direct measurement of the elusive dimeric product ROOR and demonstrates its non-negligible branching ratio in the self-reaction of small RO2 radicals. Full article
Show Figures

Graphical abstract

13 pages, 972 KB  
Article
Experimental and Theoretical Study of Photoionization of Cl III
by Sultana N. Nahar, Edgar M. Hernández, David Kilcoyne, Armando Antillón, Aaron M. Covington, Olmo González-Magaña, Lorenzo Hernández, Vernon Davis, Dominic Calabrese, Alejandro Morales-Mori, Dag Hanstorp, Antonio M. Juárez and Guillermo Hinojosa
Atoms 2023, 11(2), 28; https://doi.org/10.3390/atoms11020028 - 3 Feb 2023
Cited by 5 | Viewed by 2100
Abstract
Photoionization of Cl III ions into Cl IV was studied theoretically using the ab initio relativistic Breit–Pauli R-matrix (BPRM) method and experimentally at the Advanced Light Source (ALS) synchrotron at the Lawrence Berkeley National Laboratory. A relative-ion-yield spectrum of Cl IV was measured [...] Read more.
Photoionization of Cl III ions into Cl IV was studied theoretically using the ab initio relativistic Breit–Pauli R-matrix (BPRM) method and experimentally at the Advanced Light Source (ALS) synchrotron at the Lawrence Berkeley National Laboratory. A relative-ion-yield spectrum of Cl IV was measured with a photon energy resolution of 10 meV. The theoretical study was carried out using a large wave-function expansion of 45 levels of configurations 3s23p2, 3s3p3, 3s23p3d, 3s23p4s, 3s3p23d, and 3p4. The resulting spectra are complex. We have compared the observed spectrum with photoionization cross sections (σPI) of the ground state 3s23p3(4S3/2o) and the seven lowest excited levels 3s23p3(2D5/2o), 3s23p3(2D3/2o), 3s23p3(2P3/2o), 3s23p3(2P1/2o), 3s3p4(4P5/2), 3s3p4(4P3/2) and 3s3p4(4P1/2) of Cl III, as these can generate resonances within the energy range of the experiment. We were able to identify most of the resonances as belonging to various specific initial levels within the primary Cl III ion beam. Compared to the first five levels, resonant structures in the σPI of excited levels of 3s3p4 appear to have a weaker presence. We have also produced combined theoretical spectra of the levels by convolving the cross sections with a Gaussian profile of experimental width and summing them using statistical weight factors. The theoretical and experimental features show good agreement with the first five levels of Cl III. These features are also expected to elucidate the recent observed spectra of Cl III by Sloan Digital Scan Survey project. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

13 pages, 2524 KB  
Article
Dissociation of State-Selected Ions Studied by Fixed-Photon-Energy Double-Imaging Photoelectron Photoion Coincidence: Cases of O2+ and CH3F+
by Xiaofeng Tang, Gustavo A. Garcia and Laurent Nahon
Physchem 2022, 2(3), 261-273; https://doi.org/10.3390/physchem2030019 - 5 Aug 2022
Cited by 1 | Viewed by 2520
Abstract
This study presents the method of fixed-photon-energy double-imaging photoelectron photoion coincidence (i2PEPICO) utilized to investigate the dissociation of state-selected ions. Vacuum ultraviolet (VUV) synchrotron radiation at one fixed photon energy of hν = 21.2 eV, the He(I) atomic resonance energy, is [...] Read more.
This study presents the method of fixed-photon-energy double-imaging photoelectron photoion coincidence (i2PEPICO) utilized to investigate the dissociation of state-selected ions. Vacuum ultraviolet (VUV) synchrotron radiation at one fixed photon energy of hν = 21.2 eV, the He(I) atomic resonance energy, is employed as a light source to ionize molecules. Various dynamic information including time-of-flight (TOF) mass spectra, mass-selected photoelectron spectra (PES), and electron and ion kinetic energy correlation diagrams corresponding to each mass are obtained efficiently with the multiplexed capabilities of i2PEPICO, thereby revealing the detailed dissociation mechanisms of ions. As representative examples, dissociation of state-selected O2+ ions prepared in the b4g and B2g electronic states and CH3F+ ions in the X2E, A2A1, and B2E states were selected and investigated. Full article
(This article belongs to the Section Photophysics, Photochemistry and Photobiology)
Show Figures

Figure 1

15 pages, 11616 KB  
Article
Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism
by Zhiyi Lun, Lunlun Gong, Zhongxin Zhang, Yurui Deng, Yong Zhou, Yuelei Pan and Xudong Cheng
Gels 2022, 8(3), 141; https://doi.org/10.3390/gels8030141 - 23 Feb 2022
Cited by 24 | Viewed by 5581
Abstract
A simple heat treatment method was used to optimize the three-dimensional network structure of the hydrophobic aerogel, and during the heat treatment process at 200–1000 °C, the thermal conductivity of the aerogel reached the lowest to 0.02240 W/m·K between 250 °C and 300 [...] Read more.
A simple heat treatment method was used to optimize the three-dimensional network structure of the hydrophobic aerogel, and during the heat treatment process at 200–1000 °C, the thermal conductivity of the aerogel reached the lowest to 0.02240 W/m·K between 250 °C and 300 °C, which was mainly due to the optimization of microstructure and pyrolysis of surface groups. Further Fluent heat-transfer simulation also confirmed the above results. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to finely measure the pyrolysis process of aerogels, and the pyrolysis process of aerogel was divided into four stages. (I) Until 419 °C, as the temperature continued to rise, surface methyl groups were oxidized to form hydroxyl. (II) As the temperature reached to 232 °C, the oxidation proceeded. In addition, inside the aerogel, because of lacking oxygen, the reaction produced CH4 and C–Si bonds would form. (III) After 283 °C, Si–OH groups began to condense to form Si–O–Si, which optimized the three-dimensional network structures to be beneficial to improve the thermal insulation performance of silica aerogel. (IV) When it reached 547 °C, the chemical reaction was terminated, and all the primary particles gradually fused into secondary particles and sintered to form clusters. Full article
(This article belongs to the Special Issue Preparation and Application of Aerogel and its Composite Materials)
Show Figures

Graphical abstract

16 pages, 4110 KB  
Article
Study of the Synchrotron Photoionization Oxidation of Alpha-Angelica Lactone (AAL) Initiated by O(3P) at 298, 550, and 700 K
by Golbon Rezaei and Giovanni Meloni
Molecules 2021, 26(13), 4070; https://doi.org/10.3390/molecules26134070 - 3 Jul 2021
Cited by 1 | Viewed by 2565
Abstract
In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of [...] Read more.
In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of natural substances and have many advantages over bioethanol. In this study, the oxidation of alpha-angelica lactone initiated by ground-state atomic oxygen, O(3P), was studied at 298, 550, and 700 K using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the Lawrence Berkeley National Lab (LBNL). Photoionization spectra and kinetic time traces were measured to identify the primary products. Ketene, acetaldehyde, methyl vinyl ketone, methylglyoxal, dimethyl glyoxal, and 5-methyl-2,4-furandione were characterized as major reaction products, with ketene being the most abundant at all three temperatures. Possible reaction pathways for the formation of the observed primary products were computed using the CBS–QB3 composite method. Full article
Show Figures

Graphical abstract

18 pages, 2416 KB  
Article
Photoionization Cross-Sections of Carbon-Like N+ Near the K-Edge (390–440 eV)
by Jean-Paul Mosnier, Eugene T. Kennedy, Jean-Marc Bizau, Denis Cubaynes, Ségolène Guilbaud, Christophe Blancard and Brendan M. McLaughlin
Atoms 2021, 9(2), 27; https://doi.org/10.3390/atoms9020027 - 11 May 2021
Cited by 5 | Viewed by 3902
Abstract
High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility [...] Read more.
High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398–403 eV, 1s2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415–440 eV photon region 1s(1s2s22p2 4P)np and 1s(1s2s22p2 2P)np resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout. Full article
(This article belongs to the Special Issue Interaction of Ionizing Photons with Atomic and Molecular Ions)
Show Figures

Figure 1

11 pages, 2377 KB  
Article
Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams
by Francis Penent, Denis Cubaynes, Pascal Lablanquie, Jérôme Palaudoux, Ségolène Guilbaud, Olivier Moustier, Jérôme Guigand and Jean-Marc Bizau
Atoms 2020, 8(4), 63; https://doi.org/10.3390/atoms8040063 - 25 Sep 2020
Cited by 2 | Viewed by 3207
Abstract
An existing cylindrical mirror analyzer (CMA) that was initially equipped with eight channeltrons detectors has been modified to install large micro-channel plate detectors to perform parallel detection of electrons on an energy range corresponding to ~12% of the mean pass energy. This analyzer [...] Read more.
An existing cylindrical mirror analyzer (CMA) that was initially equipped with eight channeltrons detectors has been modified to install large micro-channel plate detectors to perform parallel detection of electrons on an energy range corresponding to ~12% of the mean pass energy. This analyzer is dedicated to photoelectron spectroscopy of ions ionized by synchrotron radiation. The overall detection efficiency is increased by a factor of ~20 compared to the original analyzer. A proof of principle of the efficiency of the analyzer has been done for Xe5+ and Si+ ions and will allow photoelectron spectroscopy on many other ionic species. Full article
(This article belongs to the Special Issue Interaction of Ionizing Photons with Atomic and Molecular Ions)
Show Figures

Figure 1

17 pages, 2879 KB  
Review
Photoionization of Astrophysically Relevant Atomic Ions at PIPE
by Stefan Schippers and Alfred Müller
Atoms 2020, 8(3), 45; https://doi.org/10.3390/atoms8030045 - 18 Aug 2020
Cited by 14 | Viewed by 3774
Abstract
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRA III synchrotron radiation source operated by [...] Read more.
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRA III synchrotron radiation source operated by DESY in Hamburg, Germany. Our results on single and multiple L-shell photoionization of Fe+, Fe2+, and Fe3+ ions, and on single and multiple K-shell photoionization of C, C+, C4+, Ne+, and Si2+ ions are discussed in astrophysical contexts. Moreover, these experimental results bear witness of the fact that the implementation of the photon-ion merged-beams method at one of the world’s brightest synchrotron light sources has led to a breakthrough for the experimental study of atomic inner-shell photoionization processes with ions. Full article
(This article belongs to the Special Issue Interaction of Ionizing Photons with Atomic and Molecular Ions)
Show Figures

Figure 1

10 pages, 1865 KB  
Article
Hydration of Nucleobase as Probed by Electron Emission of Uridine-5′-Mono-Phosphate (UMP) in Aqueous Solution Induced by Nitrogen K-Shell Ionization
by Yasuaki Takeda, Hiroyuki Shimada, Ryosuke Miura, Masatoshi Ukai, Kentaro Fujii, Yoshihiro Fukuda and Yuji Saitoh
Quantum Beam Sci. 2020, 4(1), 10; https://doi.org/10.3390/qubs4010010 - 11 Feb 2020
Cited by 1 | Viewed by 3129
Abstract
To identify the precise early radiation processes of DNA lesions, we measure electron kinetic energy spectra emitted from uridine-5′ monophosphate (UMP) in aqueous solution for the photoionization of the N 1s orbital electron and for the following Auger effect using a monochromatic soft [...] Read more.
To identify the precise early radiation processes of DNA lesions, we measure electron kinetic energy spectra emitted from uridine-5′ monophosphate (UMP) in aqueous solution for the photoionization of the N 1s orbital electron and for the following Auger effect using a monochromatic soft X-ray synchrotron radiation at energies above the nitrogen K-shell ionization threshold. The change of photoelectron spectra for UMP in aqueous solutions at different proton concentrations (pH = 7.5 and 11.3) is ascribed to the chemical shift of the N3 nitrogen atom in uracil moiety of canonical and deprotonated forms. The lowest double ionization potentials for aqueous UMP at different pH obtained from the Auger electron spectra following the N 1s photoionization values show the electrostatic aqueous interaction of uracil moiety of canonical (neutral) and deprotonated (negatively charged) forms with hydrated water molecules. Full article
Show Figures

Graphical abstract

Back to TopTop