Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = synchronous reluctance machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4843 KB  
Article
Selection of Rotor Geometry to Minimize the Contribution of Stator Slot Harmonics to the Torque Ripple of a SynRM Motor
by Zbigniew Gmyrek
Appl. Sci. 2026, 16(2), 868; https://doi.org/10.3390/app16020868 - 14 Jan 2026
Viewed by 140
Abstract
This article discusses the process of determining the shape and size of flux barriers in the rotor of a SynRM motor. This approach aims to reduce the contribution of stator slot harmonics to torque ripple. The research object was a low-power motor with [...] Read more.
This article discusses the process of determining the shape and size of flux barriers in the rotor of a SynRM motor. This approach aims to reduce the contribution of stator slot harmonics to torque ripple. The research object was a low-power motor with compact geometric dimensions, in which the previously used salient-pole rotor was modified. The study investigated the influence of the stator lamination form on the generation of higher torque harmonics, as well as the contribution of induced stator slot harmonics. The whole investigation found that by properly selecting the shape and size of the flux barriers, stator slot harmonics’ contribution to torque ripple may be significantly reduced. Full article
(This article belongs to the Collection Modeling, Design and Control of Electric Machines: Volume II)
Show Figures

Figure 1

26 pages, 17595 KB  
Article
Cogging Torque Reduction of a Flux-Intensifying Permanent Magnet-Assisted Synchronous Reluctance Machine with Surface-Inset Magnet Displacement
by Mihály Katona and Tamás Orosz
Energies 2025, 18(20), 5492; https://doi.org/10.3390/en18205492 - 17 Oct 2025
Viewed by 528
Abstract
This paper investigates the impact of permanent magnet (PM) displacement and flux barrier extension on cogging torque in flux-intensifying permanent magnet-assisted synchronous reluctance machines (FI-PMa-SynRMs) with surface-inset PMs. Unlike prior work centred on average torque, torque ripple, or inductance, we focus on cogging [...] Read more.
This paper investigates the impact of permanent magnet (PM) displacement and flux barrier extension on cogging torque in flux-intensifying permanent magnet-assisted synchronous reluctance machines (FI-PMa-SynRMs) with surface-inset PMs. Unlike prior work centred on average torque, torque ripple, or inductance, we focus on cogging torque, a key driver of noise and vibration. Four rotor configurations are evaluated via finite element analysis of ∼20,000 designs per configuration generated during NSGA-II multi-objective optimisation. To avoid bias from near-duplicate designs, we introduce Euclidean distance-based medoid filtering, which enforces a minimum separation of models within each configuration. The cross-configuration similarity is measured by Euclidean distance over common design variables. Results show that PM displacement alone does not substantially reduce cogging torque, while flux barrier extension alone yields reductions of up to ∼25%. Combining PM displacement with flux barrier extension achieves up to a ∼30% reduction in cogging torque, often maintaining average torque and lowering torque ripple. This study provides a comparative framework for mitigating cogging torque in FI-PMa-SynRMs and clarifies the trade-offs revealed by similarity-based analyses. Full article
Show Figures

Figure 1

18 pages, 15086 KB  
Article
Design of a PM-Assisted Synchronous Reluctance Motor with Enhanced Performance and Lower Cost for Household Appliances
by Yuli Bao and Chenyang Xia
Machines 2025, 13(10), 954; https://doi.org/10.3390/machines13100954 - 16 Oct 2025
Viewed by 1222
Abstract
Conventional permanent magnet-assisted synchronous reluctance machine (PMaSynRM) suffers from limited power factor and efficiency. To boost these, the use of sintered rare earth permanent magnets (PMs) is an option, with respect to sintered ferrite, resulting in a high-performance PMaSynRM (HP-PMaSynRM). However, the increasing [...] Read more.
Conventional permanent magnet-assisted synchronous reluctance machine (PMaSynRM) suffers from limited power factor and efficiency. To boost these, the use of sintered rare earth permanent magnets (PMs) is an option, with respect to sintered ferrite, resulting in a high-performance PMaSynRM (HP-PMaSynRM). However, the increasing price of rare earth PM can lead to an overall increase in machine cost. To overcome this issue, a novel HP-PMaSynRM is presented in this paper. Structurally, the proposed four-pole HP-PMaSynRM rotor is characterized by two fluid-shaped flux barriers filled with sintered ferrite, as well as a cut-off region. Based on the finite element analysis (FEA) results, the proposed HP-PMaSynRM exhibits higher performance compared with the conventional HP-PMaSynRM with rare earth PMs. It is shown that the proposed HP-PMaSynRM has higher power factor, efficiency, and better torque quality over a wide range of operating conditions. Moreover, the HP-PMaSynRM presented incurs lower cost. Finally, the proposed HP-PMaSynRM is manufactured, tested, and compared with the conventional benchmark HP-PMaSynRM, proving its advantages, including higher power factor, higher efficiency, lower torque oscillation, and lower cost. Full article
(This article belongs to the Special Issue New Advances in Synchronous Reluctance Motors)
Show Figures

Figure 1

14 pages, 4531 KB  
Article
A Permanent Magnet Synchronous Machine with Mechanically Controlled Excitation Flux
by Piotr Paplicki
Energies 2025, 18(17), 4781; https://doi.org/10.3390/en18174781 - 8 Sep 2025
Viewed by 785
Abstract
This paper presents the initial design of a permanent magnet synchronous machine with mechanically controlled excitation flux using the linear sliding motion of an additional excitation source placed inside a hollow shaft in the rotor. A new rotor design concept and assembling method [...] Read more.
This paper presents the initial design of a permanent magnet synchronous machine with mechanically controlled excitation flux using the linear sliding motion of an additional excitation source placed inside a hollow shaft in the rotor. A new rotor design concept and assembling method are described and presented in detail. On the basis of 3D-FE analysis results, the principle of adjusting reluctance, magnetic flux distribution, flux linkage, field weakening rate, no-load back EMF waveforms, electromagnetic torque, magnetic tension, and the effectiveness of the excitation adjustment of the presented machine design are discussed. The presented machine concept enables the design of permanent magnet excited machines with a good flux control range operating in changing load conditions under variable rotor speed. Full article
Show Figures

Figure 1

24 pages, 9974 KB  
Article
Mathematical Modeling and Optimal Design for HRE-Free Permanent-Magnet-Assisted Synchronous Reluctance Machine Considering Electro-Mechanical Characteristics
by Yeon-Tae Choi, Su-Min Kim, Soo-Jin Lee, Jun-Ho Jang, Seong-Won Kim, Jun-Beom Park, Yeon-Su Kim, Dae-Hyun Lee, Jang-Young Choi and Kyung-Hun Shin
Mathematics 2025, 13(17), 2858; https://doi.org/10.3390/math13172858 - 4 Sep 2025
Viewed by 1264
Abstract
This paper presents the design of a permanent-magnet-assisted synchronous reluctance motor (PMa-SynRM) for compressor applications using Sm-series injection-molded magnets that eliminate heavy rare-earth elements. The high shape flexibility of the injection-molded magnets enables the formation of a curved multi-layer flux-barrier rotor geometry based [...] Read more.
This paper presents the design of a permanent-magnet-assisted synchronous reluctance motor (PMa-SynRM) for compressor applications using Sm-series injection-molded magnets that eliminate heavy rare-earth elements. The high shape flexibility of the injection-molded magnets enables the formation of a curved multi-layer flux-barrier rotor geometry based on the Joukowski airfoil potential, optimizing magnetic flux flow under typical compressor operating conditions. Furthermore, electromagnetic performance, irreversible demagnetization behavior, and rotor stress sensitivity were analyzed with respect to key design variables to derive a model that satisfies the target performance requirements. The validity of the proposed design was confirmed through finite element method (FEM) comparisons with a conventional IPMSM using sintered NdFeB magnets, demonstrating the feasibility of HRE-free PMa-SynRM for high-performance compressor drives. Full article
Show Figures

Figure 1

21 pages, 4230 KB  
Article
Magnetic Measurements of a Stator Core Under Manufacturing Influences and the Impacts on the Design Process of a Reluctance Synchronous Machine
by Martin Regnet, Michael Schmidt, Alejandro Valencia Pérez, Bernd Löhlein, Michael Reinlein, Armin Dietz, Johannes Germishuizen and Nejila Parspour
Machines 2025, 13(9), 761; https://doi.org/10.3390/machines13090761 - 25 Aug 2025
Viewed by 1369
Abstract
The magnetic properties of electrical steel sheets, crucial for efficient electrical machine performance, deteriorate through manufacturing processes. This study investigates the impact of different manufacturing steps on magnetization behavior and specific core losses in M270-50A electrical steel, and their influence on the performance [...] Read more.
The magnetic properties of electrical steel sheets, crucial for efficient electrical machine performance, deteriorate through manufacturing processes. This study investigates the impact of different manufacturing steps on magnetization behavior and specific core losses in M270-50A electrical steel, and their influence on the performance of a reluctance synchronous machine (RSM). Magnetic measurements were conducted on three material states: laser-cut strips, assembled stator cores, and press-fitted stator cores. These were integrated into finite element analysis (FEA) models, including an extended two-region stator model that separates yoke and tooth regions to reflect different manufacturing effects. Simulations examined torque characteristics and flux linkage under various loading conditions and were validated using a prototype machine. The findings of magnetic measurements indicate that manufacturing-induced stresses significantly increase magnetization demand and core losses—up to 650% and 53%, respectively. These effects lead to a 4.2% reduction in maximum air gap torque and notable changes in torque characteristic curves and d-axis flux linkage maps. Including realistic magnetic data yielded torque predictions closely aligned with experimental results and reduced discrepancy in core loss simulation by more than 50%. The study’s findings indicate that accounting for manufacturing influences in material characterization enhances modeling accuracy and enables optimized electrical machine designs and control strategies. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Magnet-Free Synchronous Motors)
Show Figures

Figure 1

20 pages, 4459 KB  
Article
Analytical Model and Feasibility Assessment of a Synchronous Reluctance Tubular Machine with an Additively Manufactured Mover
by Giada Sala, Nicola Giannotta, Mattia Vogni, Claudio Bianchini and Fabio Immovilli
Energies 2025, 18(15), 3918; https://doi.org/10.3390/en18153918 - 23 Jul 2025
Viewed by 443
Abstract
This paper presents the analytical model, feasibility assessment, and testing of a novel synchronous reluctance tubular machine, whose mover is manufactured using additive techniques. This approach enables the maximization of the machine’s saliency. The analytical model traditionally used for rotating machines was adapted [...] Read more.
This paper presents the analytical model, feasibility assessment, and testing of a novel synchronous reluctance tubular machine, whose mover is manufactured using additive techniques. This approach enables the maximization of the machine’s saliency. The analytical model traditionally used for rotating machines was adapted to match the geometric characteristics of the innovative tubular design proposed in this work. The analytical results were validated through 2D finite element analysis (FEA). Subsequently, several mock-ups were 3D-printed using iron metal powder to evaluate the manufacturing feasibility of the proposed machine. Finally, the machine was tested to verify the accuracy of the analytical model. Full article
Show Figures

Figure 1

16 pages, 2756 KB  
Article
Development of a Surface-Inset Permanent Magnet Motor for Enhanced Torque Density in Electric Mountain Bikes
by Jun Wei Goh, Shuangchun Xie, Huanzhi Wang, Shengdao Zhu, Kailiang Yu and Christopher H. T. Lee
Energies 2025, 18(14), 3709; https://doi.org/10.3390/en18143709 - 14 Jul 2025
Cited by 2 | Viewed by 1050
Abstract
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack [...] Read more.
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack reluctance torque, limiting their torque density and performance at high speeds. While interior PMSMs (IPMSMs) can overcome this limitation via reluctance torque, they require complex rotor machining and may compromise mechanical robustness. This paper proposes a surface-inset PMSM topology as a compromise between both approaches—introducing reluctance torque while maintaining a structurally simple rotor. The proposed motor features inset magnets shaped with a tapered outer profile, allowing them to remain flush with the rotor surface. This geometric configuration eliminates the need for a retaining sleeve during high-speed operation while also enabling saliency-based torque contribution. A baseline SPMSM design is first analyzed through finite element analysis (FEA) to establish reference performance. Comparative simulations show that the proposed design achieves a 20% increase in peak torque and a 33% reduction in current density. Experimental validation confirms these findings, with the fabricated prototype achieving a torque density of 30.1 kNm/m3. The results demonstrate that reluctance-assisted torque enhancement can be achieved without compromising mechanical simplicity or manufacturability. This study provides a practical pathway for improving motor performance in eMTB systems while retaining the production advantages of surface-mounted designs. The surface-inset approach offers a scalable and cost-effective solution that bridges the gap between conventional SPMSMs and more complex IPMSMs in high-demand e-mobility applications. Full article
Show Figures

Figure 1

21 pages, 19193 KB  
Article
Design of a Novel Nine-Phase Ferrite-Assisted Synchronous Reluctance Machine with Skewed Stator Slots
by Hongliang Guo, Tianci Wang, Hongwu Chen, Zaixin Song and Chunhua Liu
Energies 2025, 18(9), 2323; https://doi.org/10.3390/en18092323 - 2 May 2025
Viewed by 1225
Abstract
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from [...] Read more.
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from increased torque ripples and harmonic distortion, while reliance on rare-earth materials raises cost and sustainability concerns. To address these issues, the proposed design incorporates low-cost ferrite magnets embedded within the rotor flux barriers to achieve a flux-concentrated effect and enhanced torque production. The nine-phase winding configuration is utilized to improve fault tolerance, reduce harmonic distortion, and enable smoother torque output compared with conventional three-phase counterparts. In addition, the skewed stator slot design further minimizes harmonic components, reducing overall distortion. The proposed machine is validated through finite element analysis (FEA), and experimental verification is obtained by measuring the inductance characteristics and back-EMF of the nine-phase winding, confirming the feasibility of the electromagnetic design. The results demonstrate significant reductions in harmonic distortion and torque ripples, verifying the potential of this design. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

35 pages, 43715 KB  
Review
Reducing Rare-Earth Magnet Reliance in Modern Traction Electric Machines
by Oliver Mitchell Lee and Mohammadali Abbasian
Energies 2025, 18(9), 2274; https://doi.org/10.3390/en18092274 - 29 Apr 2025
Cited by 6 | Viewed by 3840
Abstract
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study [...] Read more.
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study investigates two alternative machine topologies to the conventional permanent magnet synchronous machine (PMSM): the permanent magnet-assisted synchronous reluctance machine (PMaSynRM), which reduces magnet usage, and the wound-field synchronous machine (WFSM), which eliminates magnets entirely. Additionally, the potential of ferrite and recycled NdFeB magnets as substitutes for primary NdFeB magnets is evaluated. Through detailed simulations, the study compares the performance and cost-effectiveness of these solutions against a reference permanent magnet synchronous machine (PMSM). Given their promising performance characteristics and potential to reduce or eliminate the use of rare-earth materials in next-generation electric machines, it is recommended that future research should focus on novel topologies like hybrid-excitation, axial-flux, and switched reluctance machines with an emphasis on manufacturability and also novel magnetic materials such as FeN and MnBi that are currently seeing synthesis challenges. Full article
Show Figures

Figure 1

29 pages, 2183 KB  
Article
A Study of MTPA Applied to Sensorless Control of the Synchronous Reluctance Machine (SynRM)
by Vasilios C. Ilioudis
Automation 2025, 6(1), 11; https://doi.org/10.3390/automation6010011 - 4 Mar 2025
Cited by 3 | Viewed by 2065
Abstract
The present paper proposes a new Maximum Torque Per Ampere (MTPA) algorithm applied to sensorless speed control for the Synchronous Reluctance Machine (SynRM). The SynRM mathematical model is suitably modified and expressed in the γδ estimated reference frame, which could be applied in [...] Read more.
The present paper proposes a new Maximum Torque Per Ampere (MTPA) algorithm applied to sensorless speed control for the Synchronous Reluctance Machine (SynRM). The SynRM mathematical model is suitably modified and expressed in the γδ estimated reference frame, which could be applied in sensorless implementations. In the controller–observer scheme, an MTPA controller is coupled with a sliding mode observer (SMO) of first order. The provided equivalent control inputs are directly utilized by a modified EMF observer to estimate the rotor speed and position. Also, the MTPA control, SMO, and modified EMF observer are accordingly expressed in the γδ reference frame. In the duration of the SynRM operation, the developed MTPA algorithm succeeds in adjusting both stator current components in the γ-axis and δ-axis to the maximum torque point, while the SMO converges rapidly, achieving the coincidence between the γδ and dq reference frames. In addition, a simple torque decoupling technique is used to determine the γ-axis and δ-axis reference currents connected with the Anti-Windup Controller (AWC) for stator current control. Despite conventional MTPA methods, the proposed MTPA control strategy is designed to be robust in a wide speed range, exhibiting a high dynamic performance, regardless of the presence of external torque disturbances, reference speed variation, and even current measurement noise. The performance of the overall observer–control system is examined and evaluated using MATLAB/Simulink and considering noisy current feedback. Simulation results demonstrate the robustness and effectiveness of the proposed MTPA-based control method. Full article
Show Figures

Figure 1

24 pages, 11241 KB  
Article
Comparative Analysis of the Effect of Rotor Faults in the Performance of Low-Speed High-Torque Machines
by Carlos Madariaga-Cifuentes, Cesar Gallardo, Jose E. Ruiz-Sarrio, Juan A. Tapia and Jose A. Antonino-Daviu
Appl. Sci. 2025, 15(4), 1721; https://doi.org/10.3390/app15041721 - 8 Feb 2025
Cited by 1 | Viewed by 1643
Abstract
Several studies have focused on modeling and analyzing the impact of rotor faults in conventional low-pole-count machines, while related research on low-speed high-torque (LSHT) machines with a high pole count remains limited. In these machines, the combination of low speed, high inertia, and [...] Read more.
Several studies have focused on modeling and analyzing the impact of rotor faults in conventional low-pole-count machines, while related research on low-speed high-torque (LSHT) machines with a high pole count remains limited. In these machines, the combination of low speed, high inertia, and high torque levels presents a critical application for advanced diagnosis techniques. The present paper aims to describe and quantify the impact of rotor faults on the performance of LSHT machine types during the design stage. Specifically, 10-pole and 16-pole synchronous reluctance machines (SynRMs), permanent magnet synchronous machines (PMSMs), and squirrel-cage induction machines (SCIMs) are assessed by means of detailed 2D simulations. The effects of eccentricity, broken rotor bars, and partial demagnetization are studied, with a focus on performance variations. The results show that LSHT PMSMs are not significantly affected by the partial demagnetization of a few magnets, and the same holds true for common faults in SynRMs and SCIMs. Nonetheless, a significant increase in torque ripple was observed for all evaluated faults, with different origins and diverse effects on the torque waveform, which could be hard or invasive to analyze. Furthermore, it was concluded that specialized diagnosis techniques are effectively required for detecting the usual faults in LSHT machines, as their effect on major performance indicators is mostly minimal. Full article
Show Figures

Figure 1

26 pages, 3464 KB  
Article
A Model-Based Method Applying Sliding Mode Methodology for SynRM Sensorless Control
by Vasilios C. Ilioudis
Magnetism 2025, 5(1), 4; https://doi.org/10.3390/magnetism5010004 - 4 Feb 2025
Cited by 2 | Viewed by 2067
Abstract
In this paper, a new sensorless approach is proposed to address the speed and position estimation of the Synchronous Reluctance Machine (SynRM). The design of the sensorless control algorithm is developed on the basis of the modified SynRM mathematical model employing a simple [...] Read more.
In this paper, a new sensorless approach is proposed to address the speed and position estimation of the Synchronous Reluctance Machine (SynRM). The design of the sensorless control algorithm is developed on the basis of the modified SynRM mathematical model employing a simple sliding mode observer (SMO) and a modified EMF observer that are connected in series. All variables of the modified SynRM model are expressed in the arbitrary rotating frame, which is the so-called estimated γδ reference frame. The derived modified rotor flux terms contain angle error information in the form of trigonometric functions. Initially, the modified rotor flux is expressed as a function of saliency and the stator current id, including the angular deviation between the dq and γδ reference frames, which are rotating at synchronous and estimated speeds, respectively. A suitably designed SMO is utilized to estimate the modified stator flux components in the γδ reference frame. Once the SMO operates in sliding mode, the derived equivalent control inputs of the flux/current observer are used to obtain the required angular position and speed information of rotor by means of the modified EMF and Speed/Position observer. Only measures of stator voltages and currents are required for the speed and position estimation. In addition, Lyapunov Candidate Functions (LCFs) have been applied to determine the sliding mode existence conditions and the gains of the modified EMF observer. The SynRM observer–controller system is tested and evaluated in a wide speed range, even at very low speeds, in the presence of torque load disturbances. Simulation results demonstrate the overall efficacy and robustness of the proposed sensorless approach. Moreover, simulation tests verify the fast convergence and high performance of the modified EMF/speed/angle observer. Full article
Show Figures

Figure 1

12 pages, 18318 KB  
Article
Performance Analysis of a Synchronous Reluctance Generator with a Slitted-Rotor Core for Off-Grid Wind Power Generation
by Samuel Adjei-Frimpong and Mbika Muteba
Electricity 2025, 6(1), 2; https://doi.org/10.3390/electricity6010002 - 8 Jan 2025
Cited by 2 | Viewed by 2173
Abstract
In this paper, the performance of a Dual-Stator Winding Synchronous Reluctance Generator (SynRG) suitability for off-grid wind power generation is analyzed. The rotor of the SynRG has a slitted-rotor core to improve selected vital performance parameters. The SynRG with a slitted-rotor core was [...] Read more.
In this paper, the performance of a Dual-Stator Winding Synchronous Reluctance Generator (SynRG) suitability for off-grid wind power generation is analyzed. The rotor of the SynRG has a slitted-rotor core to improve selected vital performance parameters. The SynRG with a slitted-rotor core was modeled using a two-dimensional (2D) Finite Element Method (FEM) to study the electromagnetic performance of key parameters of interest. To validate the FEA results, a prototype of the SynRG with a slitted rotor was tested in the laboratory for no-load operation and load operation for unity, lagging, and leading power factors. To evaluate the capability of the SynRG with a slitted-rotor core to operate in a wind turbine environment, the machine was modeled and simulated in Matlab/Simulink (R2023a) for dynamic responses. The FEA results reveal that the SynRG with a slitted-rotor core, compared with the conventional SynRG with the same ratings and specifications, reduces the torque ripple by 24.51%, 29.72%, and 13.13% when feeding 8 A to a load with unity, lagging, and leading power factors, respectively. The FEA results also show that the induced voltage on no-load of the SynRG with a slitted-rotor core, compared with the conventional SynRG of the same ratings and specifications, increases by 10.77% when the auxiliary winding is fed by a capacitive excitation current of 6 A. Furthermore, the same results show that with a fixed excitation capacitive current of 6 A, the effect of armature reaction of the SynRG with a slitted-rotor core is demagnetizing when operating with load currents having a lagging power factor, and magnetizing when operating with load currents having unity and leading power factors. The same patterns have been observed in the experimental results for different excitation capacitance values. The Matlab/Simulink results show that the SynRG with a slitted-rotor core has a quicker dynamic response than the conventional SynRG. However, a well-designed pitch-control mechanism for the wind turbine is necessary to account for changes in wind speeds. Full article
Show Figures

Figure 1

23 pages, 1477 KB  
Article
Sensitivity Analysis of MTPA Control to Angle Errors for Synchronous Reluctance Machines
by Martin Petrun and Jernej Černelič
Mathematics 2025, 13(1), 38; https://doi.org/10.3390/math13010038 - 26 Dec 2024
Cited by 2 | Viewed by 1506
Abstract
This study investigated the sensitivity of maximum torque per ampere (MTPA) control in synchronous reluctance machines (SynRMs) to angle errors, examining specifically how deviations in the reference control trajectory affected performance. Analytical and numerical methods were employed to analyze this sensitivity systematically, including [...] Read more.
This study investigated the sensitivity of maximum torque per ampere (MTPA) control in synchronous reluctance machines (SynRMs) to angle errors, examining specifically how deviations in the reference control trajectory affected performance. Analytical and numerical methods were employed to analyze this sensitivity systematically, including the impact of magnetic saturation. Two MTPA control implementation schemes were evaluated, with torque and current amplitude as the reference variables, using a template SynRM from the open-source simulation tool SyR-e. The results indicated that performance sensitivity to angle errors was moderately low near the MTPA trajectory, allowing for significant angle deviations with minimal performance loss. Although magnetic saturation increased this sensitivity slightly, reducing the allowable error range by up to 25%, the maximum angle deviation for up to 1% of the performance decrease still corresponded to approximately ±3 around the MTPA trajectory. The findings of this study suggest potential for simplifying control implementations, reducing component costs through less precise position determination (sensor-based or sensorless), and achieving additional control objectives such as torque ripple reduction. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

Back to TopTop