Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,208)

Search Parameters:
Keywords = switched

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10013 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 (registering DOI) - 2 Aug 2025
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 (registering DOI) - 2 Aug 2025
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 (registering DOI) - 1 Aug 2025
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
22 pages, 2449 KiB  
Article
Tracking Consensus for Nonlinear Multi-Agent Systems Under Asynchronous Switching and Undirected Topology
by Shanyan Hu and Mengling Wang
Sensors 2025, 25(15), 4760; https://doi.org/10.3390/s25154760 (registering DOI) - 1 Aug 2025
Abstract
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to [...] Read more.
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to address asynchronous delays during topology switching, the system operation is divided into synchronized and delayed modes based on the status of the controller and topology. Every operating mode has a corresponding control strategy. To alleviate the burden of communication and computation, an event-triggered mechanism (ETM) is introduced to reduce the number of controller updates. By constructing an augmented Lyapunov function that incorporates both matching and mismatching periods, sufficient conditions ensuring system stability are established. The required controller based on the dynamic ETM is obtained by solving Linear Matrix Inequalities (LMIs). Finally, a simulation example is conducted to verify its effectiveness. Full article
Show Figures

Figure 1

14 pages, 2889 KiB  
Article
Ensuring Reproducibility and Deploying Models with the Image2Radiomics Framework: An Evaluation of Image Processing on PanNET Model Performance
by Florent Tixier, Felipe Lopez-Ramirez, Emir A. Syailendra, Alejandra Blanco, Ammar A. Javed, Linda C. Chu, Satomi Kawamoto and Elliot K. Fishman
Cancers 2025, 17(15), 2552; https://doi.org/10.3390/cancers17152552 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A [...] Read more.
Background/Objectives: To evaluate the importance of image processing in a previously validated model for detecting pancreatic neuroendocrine tumors (PanNETs) and to introduce Image2Radiomics, a new framework that ensures reproducibility of the image processing pipeline and facilitates the deployment of radiomics models. Methods: A previously validated model for identifying PanNETs from CT images served as the reference. Radiomics features were re-extracted using Image2Radiomics and compared to those from the original model using performance metrics. The impact of nine alterations to the image processing pipeline was evaluated. Prediction discrepancies were quantified using the mean ± SD of absolute differences in PanNET probability and the percentage of classification disagreement. Results: The reference model was successfully replicated with Image2Radiomics, achieving a Cohen’s kappa coefficient of 1. Alterations to the image processing pipeline led to reductions in model performance, with AUC dropping from 0.87 to 0.71 when image windowing was removed. Prediction disagreements were observed in up to 45% of patients. Even minor changes, such as switching the library used for spatial resampling, resulted in up to 21% disagreement. Conclusions: Reproducing image processing pipelines remains challenging and limits the clinical deployment of radiomics models. While this study is limited to one model and imaging modality, the findings underscore a common risk in radiomics reproducibility. The Image2Radiomics framework addresses this issue by allowing researchers to define and share complete processing pipelines in a standardized way, improving reproducibility and facilitating model deployment in clinical and multicenter settings. Full article
Show Figures

Figure 1

19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 (registering DOI) - 1 Aug 2025
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 (registering DOI) - 1 Aug 2025
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

9 pages, 787 KiB  
Article
Real-World Efficacy and Durability of Faricimab in Aflibercept-Resistant Neovascular Age-Related Macular Degeneration
by Areum Jeong, Huiyu Liang, Seung Chul Baek and Min Sagong
J. Clin. Med. 2025, 14(15), 5412; https://doi.org/10.3390/jcm14155412 (registering DOI) - 1 Aug 2025
Abstract
Objectives: This study aimed to evaluate the 6-month real-world outcomes of switching to faricimab in patients with aflibercept-resistant neovascular age-related macular degeneration (nAMD). Methods: A retrospective review was conducted on the eyes of 60 patients with aflibercept-resistant nAMD that were switched [...] Read more.
Objectives: This study aimed to evaluate the 6-month real-world outcomes of switching to faricimab in patients with aflibercept-resistant neovascular age-related macular degeneration (nAMD). Methods: A retrospective review was conducted on the eyes of 60 patients with aflibercept-resistant nAMD that were switched to faricimab. Best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) parameters, including central subfield thickness (CST), subfoveal choroidal thickness (SFCT), and both the maximum height and width of pigment epithelial detachment (PED), at baseline and 1, 3, and 6 months after switching were evaluated. The type of PED and retinal fluid were also analyzed. Results: The results showed that BCVA remained stable at month 6 (p = 0.150), while CST significantly decreased (p = 0.020), and SFCT remained unchanged (p = 0.072). The maximum PED height significantly decreased (p = 0.030), while the maximum PED width did not change (p = 0.07). The mean injection interval significantly increased from 6.8 ± 2.4 weeks before switching to 11.2 ± 1.7 weeks after switching (p = 0.068). Furthermore, the dry macula rate was 43.3% at month 6. Conclusions: Switching to faricimab in aflibercept-resistant nAMD patients showed stable visual outcomes, significant anatomical improvements, and reduced treatment burden over 6 months in real-world clinical settings. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

22 pages, 9122 KiB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

22 pages, 14333 KiB  
Article
A Transient Combustion Study in a Brick Kiln Using Natural Gas as Fuel by Means of CFD
by Sergio Alonso-Romero, Jorge Arturo Alfaro-Ayala, José Eduardo Frias-Chimal, Oscar A. López-Núñez, José de Jesús Ramírez-Minguela and Roberto Zitzumbo-Guzmán
Processes 2025, 13(8), 2437; https://doi.org/10.3390/pr13082437 - 1 Aug 2025
Abstract
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model [...] Read more.
A brick kiln was experimentally studied to measure the transient temperature of hot gases and the compressive strength of the bricks, using pine wood as fuel, in order to evaluate the thermal performance of the actual system. In addition, a transient combustion model based on computational fluid dynamics (CFD) was used to simulate the combustion of natural gas in the brick kiln as a hypothetical case, with the aim of investigating the potential benefits of fuel switching. The theoretical stoichiometric combustion of both pine wood and natural gas was employed to compare the mole fractions and the adiabatic flame temperature. Also, the transient hot gas temperature obtained from the experimental wood-fired kiln were compared with those from the simulated natural gas-fired kiln. Furthermore, numerical simulations were carried out to obtain the transient hot gas temperature and NOx emissions under stoichiometric, fuel-rich, and excess air conditions. The results of CO2 mole fractions from stoichiometric combustion demonstrate that natural gas may represent a cleaner alternative for use in brick kilns, due to a 44.08% reduction in emissions. Contour plots of transient hot gases temperature, velocity, and CO2 emission inside the kiln are presented. Moreover, the time-dependent emissions of CO2, H2O, and CO at the kiln outlet are shown. It can be concluded that the presence of CO mole fractions at the kiln outlet suggests that the transient combustion process could be further improved. The low firing efficiency of bricks and the thermal efficiency obtained are attributed to uneven temperatures distributions inside the kiln. Moreover, hot gas temperature and NOx emissions were found to be higher under stoichiometric conditions than under fuel-rich or excess of air conditions. Therefore, this work could be useful for improving the thermal–hydraulic and emissions performance of brick kilns, as well as for future kiln design improvements. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

19 pages, 950 KiB  
Article
How the Adoption of EVs in Developing Countries Can Be Effective: Indonesia’s Case
by Ida Nyoman Basmantra, Ngurah Keshawa Satya Santiarsa, Regina Dinanti Widodo and Caren Angellina Mimaki
World Electr. Veh. J. 2025, 16(8), 428; https://doi.org/10.3390/wevj16080428 (registering DOI) - 1 Aug 2025
Abstract
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in [...] Read more.
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in Indonesia. Using a nationwide survey (n = 986) and partial-least-squares structural-equation modeling, we test how environmental awareness, consumer expectancy, threat appraisal, and coping appraisal shape adoption both directly and through green brand image (GBI), while perceived policy incentives moderate the GBI–adoption link. The model accounts for 54% of the variance in adoption intention. These findings highlight that combining public awareness campaigns, compelling green brand messaging, and carefully calibrated policy incentives is essential for accelerating Indonesia’s transition to cleaner transport. Full article
Show Figures

Figure 1

15 pages, 2737 KiB  
Article
Thermogenic Activation of Adipose Tissue by Caffeine During Strenuous Exercising and Recovery: A Double-Blind Crossover Study
by Dany Alexis Sobarzo Soto, Diego Ignácio Valenzuela Pérez, Mateus Rossow de Souza, Milena Leite Garcia Reis, Naiara Ribeiro Almeida, Bianca Miarka, Esteban Aedo-Muñoz, Armin Isael Alvarado Oyarzo, Manuel Sillero-Quintana, Andreia Cristiane Carrenho Queiroz and Ciro José Brito
Metabolites 2025, 15(8), 517; https://doi.org/10.3390/metabo15080517 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This [...] Read more.
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This is a randomized, double-blind crossover study in which 35 highly-trained males [HBAT-CAF, HBAT-PLA (Placebo), LBAT-CAF, LBAT-PLA] performed 30-min treadmill HIIE. Infrared thermography (IRT) assessed BAT activity by measuring supraclavicular skin temperature (SST). Breath-by-breath ergospirometry measured EE (kcal/min) and carbohydrate (CHO), lipid (LIP), and protein (PTN) oxidation. We applied second- and third-order polynomial regression models to depict the temporal trajectories of metabolic responses. Results: HBAT groups showed 25% higher sustained EE versus LBAT (p < 0.001), amplified by CAF. CHO oxidation exhibited biphasic kinetics: HBAT had 40% higher initial rates (0.75 ± 0.05 vs. 0.45 ± 0.04 g/min; p < 0.001) with accelerated decline (k = −0.21 vs. −0.15/min; p = 0.01). LIP oxidation peaked later in LBAT (40 vs. 20 min in HBAT), with CAF increasing oxidation by 18% in LBAT (p = 0.01). HBAT-CAF uniquely showed transient PTN catabolism (peak: 0.045 g/min at 10 min; k = −0.0033/min; p < 0.001). Conclusions: BAT status determines EE magnitude and substrate-specific kinetic patterns, while CAF exerts divergent modulation, potentiating early glycogenolysis in HBAT and lipolysis in LBAT. The HBAT-CAF synergy triggers acute proteolysis, revealing BAT-mediated metabolic switching. Full article
(This article belongs to the Special Issue Energy Metabolism in Brown Adipose Tissue)
Show Figures

Figure 1

12 pages, 2261 KiB  
Communication
Technological Challenges for a 60 m Long Prototype of Switched Reluctance Linear Electromagnetic Actuator
by Jakub Rygał, Roman Rygał and Stan Zurek
Actuators 2025, 14(8), 380; https://doi.org/10.3390/act14080380 (registering DOI) - 1 Aug 2025
Abstract
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on [...] Read more.
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on the magnet-free switched-reluctance principle, having six effective energised stator “teeth” and four passive mover parts (4:6 ratio). Various aspects and challenges encountered during the manufacturing, transport, and assembly are discussed. Thermal expansion of steel contributed to the decision of the modular design, with each module having 1.3 m in length, with a 2 mm longitudinal dilatation gap. The initial prototype was tested with a 10.6 m length, with plans to extend the test track to 60 m, which was fully achievable due to the modular design and required 29 tons of electrical steel to be built. The stator laminations were cut by a bespoke progressive tool with stamping, and other parts by a CO2 laser. Mounting was based on welding (back of the stator) and clamping plates (through insulated bolts). The linear longitudinal force was on the order of 8 kN, with the main air gap of 7.5–10 mm on either side of the mover. The lateral forces could exceed 40 kN and were supported by appropriate construction steel members bolted to the concrete floor. The overall mechanical tolerances after installation remained below 0.5 mm. The technology used for constructing this prototype demonstrated the cost-effective way for a semi-industrial manufacturing scale. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

27 pages, 10397 KiB  
Article
Methods for Measuring and Computing the Reference Temperature in Newton’s Law of Cooling for External Flows
by James Peck, Tom I-P. Shih, K. Mark Bryden and John M. Crane
Energies 2025, 18(15), 4074; https://doi.org/10.3390/en18154074 (registering DOI) - 31 Jul 2025
Abstract
Newton’s law of cooling requires a reference temperature (Tref) to define the heat-transfer coefficient (h). For external flows with multiple temperatures in the freestream, obtaining Tref is a challenge. One widely used method, [...] Read more.
Newton’s law of cooling requires a reference temperature (Tref) to define the heat-transfer coefficient (h). For external flows with multiple temperatures in the freestream, obtaining Tref is a challenge. One widely used method, referred to as the adiabatic-wall (AW) method, obtains Tref by requiring the surface of the solid exposed to convective heat transfer to be adiabatic. Another widely used method, referred to as the linear-extrapolation (LE) method, obtains Tref by measuring/computing the heat flux (qs) on the solid surface at two different surface temperatures (Ts) and then linearly extrapolating to qs=0. A third recently developed method, referred to as the state-space (SS) method, obtains Tref by probing the temperature space between the highest and lowest in the flow to account for the effects of Ts or qs on Tref. This study examines the foundation and accuracy of these methods via a test problem involving film cooling of a flat plate where qs switches signs on the plate’s surface. Results obtained show that only the SS method could guarantee a unique and physically meaningful Tref where Ts=Tref on a nonadiabatic surface qs=0. The AW and LE methods both assume Tref to be independent of Ts, which the SS method shows to be incorrect. Though this study also showed the adiabatic-wall temperature, TAW, to be a good approximation of Tref (<10% relative error), huge errors can occur in h about the solid surface where |TsTAW| is near zero because where Ts=TAW, qs0. Full article
Show Figures

Figure 1

Back to TopTop