Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,523)

Search Parameters:
Keywords = sustainable water resources system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2515 KB  
Article
Water Scarcity Footprint and Economic Feasibility of Precision Irrigation in Short Rotation Coppice for Energy in Italy
by Giulio Sperandio, Alessandro Suardi, Mauro Pagano, Vincenzo Civitarese, Carla Cedrola, Roberto Tomasone and Andrea Acampora
Sustainability 2026, 18(2), 678; https://doi.org/10.3390/su18020678 - 9 Jan 2026
Abstract
Effective water resource management in agriculture is a pivotal challenge for environmental sustainability and the economic viability of crop production. The present study, conducted at the CREA research station (Monterotondo, Italy), analyzed a precision irrigation strategy based on an automated drip irrigation system [...] Read more.
Effective water resource management in agriculture is a pivotal challenge for environmental sustainability and the economic viability of crop production. The present study, conducted at the CREA research station (Monterotondo, Italy), analyzed a precision irrigation strategy based on an automated drip irrigation system with soil moisture sensors, applied to a 15-year-old high-density poplar plantation for energy production. Five treatments were compared: a non-irrigated control (T0) and four irrigation levels based on soil moisture thresholds (T1 ≤ 20%, T2 ≤ 30%, T3 ≤ 40%, T4 ≤ 50%). The aim of this study was to assess the economic feasibility of irrigated poplar plantations, considering expected increases in biomass production and related environmental impacts. The economic evaluation used the Life Cycle Costing (LCC) method, while the environmental assessment applied Life Cycle Assessment (LCA) with the AWARE indicator to quantify the water scarcity footprint. Finally, an integrated assessment using the TOPSIS multi-criteria method was performed to identify the most sustainable treatment. Over the 15-year period, T0 (no irrigation) was the preferred option (Preferred Index Pi = 1.000), followed by T3 (Pi = 0.637) and T4 (Pi = 0.586), considering equal weighting of economic and environmental impacts. Conversely, the low irrigation treatment (T1) was the least sustainable (Pi = 0.379), followed by T2 (Pi = 0.486). While irrigation appears unviable if environmental impacts are prioritized, higher biomass value can improve the economic sustainability of treatments with greater water use (T3 and T4) when economic factors dominate. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

19 pages, 776 KB  
Opinion
Climate-Informed Water Allocation in Central Asia: Leveraging Decision Support System
by Jingshui Huang, Zakaria Bashiri and Markus Disse
Water 2026, 18(2), 161; https://doi.org/10.3390/w18020161 - 8 Jan 2026
Abstract
As the impacts of climate change intensify, water resource conflicts are escalating globally, particularly in regions with uneven water distribution, such as Central Asia. Long-standing disputes over water allocation persist between Kyrgyzstan and Uzbekistan. This paper aims to examine the conflicts and challenges [...] Read more.
As the impacts of climate change intensify, water resource conflicts are escalating globally, particularly in regions with uneven water distribution, such as Central Asia. Long-standing disputes over water allocation persist between Kyrgyzstan and Uzbekistan. This paper aims to examine the conflicts and challenges in water allocation between the two countries and explore the potential of Decision Support Systems (DSSs) as a viable solution. The paper begins by reviewing the historical evolution of water allocation in Central Asia, analyzing upstream–downstream disputes and notable cooperation efforts, with a focus on key water agreements. It then outlines the definitions, development, and classifications of DSSs in the context of water allocation and presents two illustrative case studies—the Tarim River Basin in Xinjiang, China, and the Nile River Basin in Africa. These cases demonstrate the applicability of DSSs in water-scarce regions with similar socio-ecological dynamics and complex multi-country, cross-sectoral water demands. Building on these insights, the paper analyzes the key challenges to implementing DSSs for transboundary water allocation in Central Asia, including limited data availability and sharing, insufficient technical capacity, chronic funding shortages, socio-political complexities, climate change impacts, and the inherent difficulty of modeling complex systems. In response, a set of targeted pragmatic recommendations is proposed. While acknowledging its limitations, the paper argues that establishing a structured, system-based decision-making framework—namely DSSs—can help stakeholders enhance climate-informed strategic planning and foster cooperation, ultimately contributing to more equitable and sustainable water resource allocation in the region. Full article
(This article belongs to the Special Issue Advances in Water Management and Water Policy Research, 2nd Edition)
Show Figures

Figure 1

24 pages, 1753 KB  
Article
Valorization of Produced Water from Oilfields for Microbial Exopolysaccharide Synthesis in Stirred Tank Bioreactors
by Igor Carvalho Fontes Sampaio, Pamela Dias Rodrigues, Isabela Viana Lopes de Moura, Maíra dos Santos Silva, Luiz Fernando Widmer, Cristina M. Quintella, Elias Ramos-de-Souza and Paulo Fernando de Almeida
Fermentation 2026, 12(1), 39; https://doi.org/10.3390/fermentation12010039 - 8 Jan 2026
Abstract
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming [...] Read more.
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming PW from an industrial waste into a useful resource. In this context, bacterial exopolysaccharides (EPS) have gained attention due to their diverse functional properties and applicability in bioremediation, bioprocessing and petroleum-related operations. This study evaluated the potential of Lelliottia amnigena to synthesize EPS using oilfield PW as a component of the culture medium in stirred-tank bioreactors. Three conditions were assessed: a control using distilled water (dW), PW diluted to 25% (PW25%) and dialyzed PW (DPW). Batch experiments were conducted for 24 h, during which biomass growth, EPS accumulation and dissolved oxygen dynamics were monitored. Post-cultivation analyses included elemental and monosaccharide composition, scanning electron microscopy and rheological characterization of purified EPS solutions. EPS production varied among treatments, with dW and DPW yielding approximately 9.6 g L−1, while PW25% achieved the highest productivity (17.55 g L−1). The EPS samples contained fucose, glucose and mannose, with compositional differences reflecting the influence of PW-derived minerals. Despite reduced apparent viscosity under PW25% and DPW conditions, the EPS exhibited physicochemical properties suitable for biotechnological applications, including potential use in fucose recovery, drilling fluids and lubrication systems in the petroleum sector. The EPS also demonstrated substantial adsorption capacity, incorporating salts from PW and contributing to contaminant removal. This study demonstrates that PW can serve both as a substrate and as a source of functional inorganic constituents for microbial EPS synthesis, supporting an integrated approach to PW valorization. These findings reinforce the potential of EPS-based bioprocesses as sustainable green technologies that simultaneously promote waste mitigation and the production of high-value industrial bioproducts. Full article
Show Figures

Figure 1

11 pages, 1027 KB  
Article
Clustering-Based Characterization of Mixed Herds and the Influence of Pasture Fertilization in High-Andean Livestock Systems
by Jesus Nuñez, Felimon Paxi-Meneses, Wilder Cruz and Richard Estrada
Ruminants 2026, 6(1), 5; https://doi.org/10.3390/ruminants6010005 - 8 Jan 2026
Abstract
Livestock production in the high Andes is vital for rural livelihoods and food security but is limited by poor pasture quality, environmental variability, and restricted resources. Pasture improvement, achieved through management practices and particularly through fertilization, may enhance productivity and sustainability in high-Andean [...] Read more.
Livestock production in the high Andes is vital for rural livelihoods and food security but is limited by poor pasture quality, environmental variability, and restricted resources. Pasture improvement, achieved through management practices and particularly through fertilization, may enhance productivity and sustainability in high-Andean livestock systems. This study aimed to characterize mixed herds composed of domestic sheep (Ovis aries), alpacas (Vicugna pacos), llamas (Lama glama), and domestic cattle (Bos taurus) and to evaluate the role of pasture fertilization on herd composition and livestock size. Primary data were collected through structured questionnaires administered to 88 randomly selected livestock producers, complemented by direct field observations of grazing areas, corrals, shelters, and water sources. The survey documented herd structure, grazing management, pasture conservation, fertilization practices, and farm infrastructure. Data from multiple farms were analyzed using a clustering approach to group production units with similar characteristics, and statistical models were applied to assess the effects of fertilization, pasture area, and water sources. Three distinct clusters were identified: one dominated by alpacas, another by sheep, and a third by llamas with the most uniform stocking density. Pasture fertilization was most common in the sheep-dominated cluster and was significantly associated with higher sheep numbers, while no significant effects were detected for alpacas, llamas, or cattle. Farms without fertilization showed slightly higher overall livestock size; however, a strong negative interaction between pasture area and lack of fertilization indicated that expanding grazing land alone could not offset low forage quality. These findings suggest that targeted fertilization, when combined with sustainable grazing practices, may contribute to improved herd performance and long-term resilience in heterogeneous Andean livestock systems. Full article
Show Figures

Figure 1

24 pages, 11322 KB  
Article
Analysis of the Long-Term Trend of Eutrophication Development in Dal Lake, India
by Irfan Ali and Elena Neverova Dziopak
Sustainability 2026, 18(2), 630; https://doi.org/10.3390/su18020630 - 8 Jan 2026
Abstract
The Dal Lake ecosystem is a vital freshwater body situated in the heart of Srinagar, Kashmir, India. It is not only a natural asset but also a cornerstone of environmental health, economic vitality, cultural heritage, and urban sustainability. In the last few decades, [...] Read more.
The Dal Lake ecosystem is a vital freshwater body situated in the heart of Srinagar, Kashmir, India. It is not only a natural asset but also a cornerstone of environmental health, economic vitality, cultural heritage, and urban sustainability. In the last few decades, the condition of the lake ecosystem and water quality has deteriorated significantly owing to the intensification of the eutrophication process. Effective integrated management of the lake is crucial for the long-term sustainable development of the region and the communities that rely on it for their livelihoods. The main reasons for eutrophication are the substantial quantity of anthropogenic pollution, especially nutrients, discharged from the catchment area of the lake and the overexploitation of the lake space and its biological resources. The research presented in this paper aimed to diagnose the state of the lake by analysing trends in eutrophication development and its long-term changes related to the catchment area and lake ecosystem relationships. The research period was 25 years, from 1997 to 2023. Land use and land cover data and water quality monitoring data, which are the basis for trophic state assessment, allowed us to analyze the long-term dynamics of eutrophication in the reservoir. For these purposes, GIS-generated thematic maps were created by using QGIS software version 3.44.1, and an appropriate methodology for quantifying eutrophication was chosen and adapted to the specifics of Dal Lake. The obtained results provide a foundation for a eutrophication management strategy that considers the specificity of the Dal Lake ecosystem and the impact of the catchment area. The outcomes highlighted the varied trophic conditions in different lake basins and the dominance of eutrophic conditions during the study period. The research highlights the complexity of the problem and underscores the need for a comprehensive lake management system. Full article
Show Figures

Figure 1

16 pages, 929 KB  
Article
Event-Scale Assessment of the Effectiveness of SuDS in the Quantitative Control of CSOs
by Roberta D’Ambrosio and Antonia Longobardi
Urban Sci. 2026, 10(1), 37; https://doi.org/10.3390/urbansci10010037 - 7 Jan 2026
Abstract
The European Water Framework Directive (2000/60/EC) promotes an integrated approach to water management, recognizing water as a shared resource and defining quality objectives. Within this framework, Sustainable Drainage Systems (SuDS) provide effective solutions to improve water quality, control runoff, mitigate hydrogeological risk, and [...] Read more.
The European Water Framework Directive (2000/60/EC) promotes an integrated approach to water management, recognizing water as a shared resource and defining quality objectives. Within this framework, Sustainable Drainage Systems (SuDS) provide effective solutions to improve water quality, control runoff, mitigate hydrogeological risk, and enhance urban resilience. This study investigates the application of SuDS for quantitative stormwater management in a 290-ha industrial district within the Metropolitan City of Milan. Using a synthetic design storm as a benchmark, the study provides event-scale evidence of the performance of SuDS under observed rainfall events, a topic often underrepresented in the literature. Two hydrologic–hydraulic models were developed using SWMM ver. 5.2: a baseline model representing current conditions and a design model integrating SuDS across 24 hectares. Simulations were performed for four rainfall events representative of typical conditions and for a synthetic 10-year return period design event. Results show that, under observed events, SuDS reduce total CSO volumes by 44% and peak flows by 47%, while decreasing overflow activation by around 11%, with the highest effectiveness during ordinary rainfall conditions. Compared with the synthetic 10-year design event, SuDS exhibit similar volume reductions but lower peak-flow attenuation and overflow frequency reduction, highlighting different system responses under real and design rainfalls. Full article
Show Figures

Figure 1

29 pages, 904 KB  
Review
Risks Associated with Dietary Exposure to Contaminants from Foods Obtained from Marine and Fresh Water, Including Aquaculture
by Martin Rose
Int. J. Environ. Res. Public Health 2026, 23(1), 85; https://doi.org/10.3390/ijerph23010085 - 7 Jan 2026
Abstract
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture [...] Read more.
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture plays a key role in mitigating the depletion of wild fish stocks and addressing issues related to overfishing. Despite its potential benefits, the sustainability of both wild and farmed aquatic food systems is challenged by anthropogenic pollution. Contaminants from agricultural runoff, industrial discharges, and domestic effluents enter freshwater systems and eventually reach marine environments, where they may be transported globally through ocean currents. Maintaining water quality is paramount to food safety, environmental integrity, and long-term food security. In addition to conventional seafood products such as fish and shellfish, foods such as those derived from microalgae are gaining attention in Western markets for their high nutritional value and potential functional properties. These organisms have been consumed in Asia for generations and are now being explored as sustainable foods and ingredients as an alternative source of protein. Contaminants in aquatic food products include residues of agrochemicals, persistent organic pollutants (POPs) such as dioxins, polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFASs), as well as brominated flame retardants and heavy metals. Public and scientific attention has intensified around plastic pollution, particularly microplastics and nanoplastics, which are increasingly detected in aquatic organisms and are the subject of ongoing toxicological and ecological risk assessments. While the presence of these hazards necessitates robust risk assessment and regulatory oversight, it is important to balance these concerns against the health benefits of aquatic foods, which are rich in omega-3 fatty acids, high-quality proteins, vitamins, and trace elements. Furthermore, beyond direct human health implications, the environmental impact of pollutant sources must be addressed through integrated management approaches to ensure the long-term sustainability of aquatic ecosystems and the food systems they support. This review covers regulatory frameworks, risk assessments, and management issues relating to aquatic environments, including the impact of climate change. It aims to serve as a comprehensive resource for researchers, policymakers, food businesses who harvest food from aquatic systems and other stakeholders. Full article
Show Figures

Figure 1

23 pages, 4022 KB  
Article
Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking
by Ran Jing, Yinghui Xie, Zheng Hu, Xingjian Yang, Xueming Lin, Wenbin Duan, Feifan Zeng, Tianyi Chen, Xin Wu, Xiaoming He and Zhen Zhang
Sustainability 2026, 18(2), 590; https://doi.org/10.3390/su18020590 - 7 Jan 2026
Viewed by 57
Abstract
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, [...] Read more.
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, and meteorological conditions affect the loss of nitrogen and phosphorus in agricultural nonpoint source pollution. In rice and corn, the CK and PK treatment groups showed significant fitting advantages, such as the R2 of rice-CK reaching 0.309. MAE was 0.395, and the R2 of corn-PK was as high as 0.415. For compound fertilization groups such as NPK and OF, the model fitting ability decreased, such as the R2 of rice-NPK dropping to 0.193 and the R2 of corn-OF being only 0.168. In addition, the overall performance of the model was limited in the modeling of total phosphorus. A relatively good fit was achieved in corn (such as NPK group R2 = 0.272) and in vegetables and citrus. R2 was mostly below 0.25. The results indicated that fertilization management, crop types, and meteorological conditions affected nitrogen and phosphorus losses in agricultural runoff. Cornfields under conventional nitrogen, phosphorus, and potassium fertilizer (NPK) and conventional nitrogen and potassium fertilizer treatment without phosphorus fertilizer (NK) treatments exhibited the highest nitrogen losses, while citrus fields showed elevated phosphorus concentrations under NPK and PK treatments. Organic fertilizer treatments led to moderate nutrient losses but greater variability. Organic fertilizer treatments resulted in moderate nutrient losses but showed greater interannual variability. Meteorological drivers differed among crop types. Nitrogen enrichment was mainly associated with high temperature and precipitation, whereas phosphorus loss was primarily triggered by short-term extreme weather events. Linear regression models performed well under simple fertilization scenarios but struggled with complex nutrient dynamics. Crop-specific traits such as flooding in rice fields, irrigation in corn, and canopy coverage in citrus significantly influenced nutrient migration. The findings of this study highlight that nutrient losses are jointly regulated by crop systems, fertilization practices, and meteorological variability, particularly under extreme weather conditions. These findings underscore the necessity of crop-specific and climate-adaptive nutrient management strategies to reduce agricultural nonpoint source pollution. By integrating long-term field observations with machine learning–based analysis, this study provides scientific evidence to support sustainable fertilizer management, protection of water resources, and environmentally responsible agricultural development in subtropical regions. The proposed approaches contribute to sustainable land and water resource utilization and climate-resilient agricultural systems, aligning with the goals of sustainable development in rapidly urbanizing river basins. Full article
Show Figures

Figure 1

22 pages, 1115 KB  
Review
Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review
by Akmaral Darmenbayeva, Reshmy Rajasekharan, Zhanat Idrisheva, Roza Aubakirova, Zukhra Dautova, Gulzhan Abylkassova, Manira Zhamanbayeva, Irina Afanasenkova and Bakytgul Massalimova
Polymers 2026, 18(2), 153; https://doi.org/10.3390/polym18020153 - 6 Jan 2026
Viewed by 100
Abstract
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and [...] Read more.
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and oilseed by-products. Emphasis is placed on the relationship between feedstock composition and extraction efficiency, highlighting how lignin distribution, hemicellulose content, and mineral impurities influence pretreatment severity, cellulose yield, and process sustainability. The review systematically analyzes chemical, enzymatic, and mechanical processing routes, with particular attention being paid to pretreatment strategies, fibrillation intensity, and yield variability. Beyond cellulose recovery, key sustainability indicators—such as energy demand, water and chemical consumption, waste generation, and chemical recovery—are evaluated to provide a system-level perspective on process efficiency. The analysis demonstrates that cellulose yield alone is an insufficient criterion for sustainable process design and must be considered alongside environmental and techno-economic metrics. Advanced applications of agro-waste-derived cellulose are discussed using a feedstock-driven approach, showing that high functional performance can often be achieved with moderately processed cellulose tailored to specific end uses. Finally, the review addresses challenges related to feedstock heterogeneity, mineral management, standardization, and industrial scale-up, underscoring the importance of biorefinery integration, closed-loop resource management, and harmonized quality descriptors. These insights provide a foundation for the development of scalable and sustainable cellulose production pathways based on agro-industrial waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

22 pages, 6011 KB  
Article
Quantifying Spatiotemporal Groundwater Storage Variations in China (2003–2019) Using Multi-Source Data
by Lin Tu, Zhangli Sun, Zhoutao Zheng and Ahmed Samir Abowarda
Water 2026, 18(2), 151; https://doi.org/10.3390/w18020151 - 6 Jan 2026
Viewed by 72
Abstract
Groundwater constitutes a vital freshwater resource essential for sustaining agricultural productivity, industrial processes, and domestic water supply. Quantifying spatiotemporal dynamics of Groundwater Storage (GWS) across China provides a critical scientific basis for sustainable water resource management and conservation. Employing a unified methodology combining [...] Read more.
Groundwater constitutes a vital freshwater resource essential for sustaining agricultural productivity, industrial processes, and domestic water supply. Quantifying spatiotemporal dynamics of Groundwater Storage (GWS) across China provides a critical scientific basis for sustainable water resource management and conservation. Employing a unified methodology combining Gravity Recovery and Climate Experiment (GRACE) observations and global hydrological models (GLDAS, WGHM), this study investigates spatiotemporal variations in Groundwater Storage Anomalies (GWSA) across China and its nine major river basins from February 2003 to December 2019. The results indicate an overall declining trend in China’s GWSA at −2.27 to −0.38 mm/yr. Significant depletion hotspots are identified in northern Xinjiang, southeastern Tibet, and the Haihe River Basin. Conversely, statistically significant increasing trends are detected in the Endorheic Basin of the Tibetan Plateau and the middle reaches of the Yangtze River Basin. Although GWSA inversions derived from different Global Land Data Assimilation System (GLDAS) models show general consistency, there are still pronounced regional heterogeneities in model performance. The findings offer critical scientific foundations for water resources managers and policymakers to formulate sustainable groundwater management strategies in China. Full article
(This article belongs to the Special Issue Remote Sensing and GIS in Water Resource Management)
Show Figures

Figure 1

17 pages, 2173 KB  
Article
Surface and Drip Irrigation Method in Maize Cultivation: Comparison of Environmental Performance
by Filippo Vigo, Luca Ferraro and Jacopo Bacenetti
Sustainability 2026, 18(2), 580; https://doi.org/10.3390/su18020580 - 6 Jan 2026
Viewed by 97
Abstract
Maize is a water-intensive crop widely cultivated in temperate regions, where irrigation practices strongly influence its environmental performance. This study applies Life Cycle Assessment (LCA) to compare the environmental impacts of surface and drip irrigation for maize green silage production in the Po [...] Read more.
Maize is a water-intensive crop widely cultivated in temperate regions, where irrigation practices strongly influence its environmental performance. This study applies Life Cycle Assessment (LCA) to compare the environmental impacts of surface and drip irrigation for maize green silage production in the Po Valley (Italy), following ISO 14040/44 standards and adopting a cradle-to-farm-gate perspective. Results show that, compared to drip irrigation, surface irrigation leads to lower impacts in 14 out of 15 categories, with reductions ranging from −0.2% (marine eutrophication) to −61% (human toxicity, non-cancer), particularly for human toxicity and resource use due to lower diesel and infrastructure requirements. Conversely, drip irrigation achieves a 58% reduction in water use thanks to its higher irrigation efficiency. The single-score assessment highlights water use as the key differentiating factor, positioning drip irrigation as preferable under scenarios of water scarcity. Contribution and sensitivity analyses confirm that nitrogen fertiliser use and mechanisation are major hotspots, while yield variation (±30%) significantly affects the magnitude of results. These findings emphasise a clear trade-off: surface irrigation shows a lower environmental burden across most impact categories, whereas drip irrigation strongly reduces water scarcity impacts and provides robust, site-specific evidence to guide sustainable irrigation strategies in intensive maize systems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

35 pages, 14920 KB  
Article
A Study on Blue Infrastructure Governance from the Issue-Appeal Divergence Perspective: An Empirical Analysis Based on LDA and BERTopic Models
by Bin Guo, Xinyu Wang, Yitong Hou, Wen Zhang, Bo Yang and Yuanyuan Shi
Water 2026, 18(2), 148; https://doi.org/10.3390/w18020148 - 6 Jan 2026
Viewed by 69
Abstract
Enhancing blue infrastructure is a critical pathway to strengthening urban water resilience and improving living environments. However, divergent perceptions and demands among multiple stakeholders may lead to misalignment between governance priorities and implementation pathways, thereby limiting governance effectiveness. Recognizing and addressing these differences [...] Read more.
Enhancing blue infrastructure is a critical pathway to strengthening urban water resilience and improving living environments. However, divergent perceptions and demands among multiple stakeholders may lead to misalignment between governance priorities and implementation pathways, thereby limiting governance effectiveness. Recognizing and addressing these differences has become essential for enhancing the performance of blue infrastructure governance and public satisfaction. Taking Shaanxi Province as a case study, this research systematically identifies core issues and disparities in public demands regarding water governance of blue infrastructure by analyzing governmental documents and public demands. The study aims to support a shift in governance strategy from a “provision-driven” to a “demand-driven” approach. A “topic identification–demand extraction–problem diagnosis” framework is adopted: first, the LDA model is used to analyze government platform texts and derive a macro-level thematic framework; subsequently, the BERTopic model is applied to mine public comments and identify micro-level demands; finally, the Jaccard similarity algorithm is employed to compare the two sets of topics, revealing the gap between policy provisions and public demands. The findings indicate the following: first, government agendas are highly concentrated on macro-level strategies (the topic “Integrated Water Ecosystem Management and Strategic Planning” accounts for 72.91% of weighting), whereas public appeals focus on specific, micro-level daily concerns such as infrastructure quality, drinking water safety, and drainage blockages; second, the Jaccard semantic correlation between the two is generally low (ranging from 6.05% to 14.62%), confirming a significant “topic-term overlap”; third, spatial analysis further reveals a geographical mismatch, particularly in core urban areas, which exhibit a “system-lag” type of misalignment characterized by high public demand but insufficient governmental attention. The research aims to clarify governance discrepancies, providing a basis for optimizing policy priorities and enabling targeted governance, while also offering insights for establishing a sustainable water resource management system. Full article
Show Figures

Figure 1

18 pages, 672 KB  
Article
A Circular Economy-Oriented Network DEA Model for Evaluating and Improving the Efficiency of Industrial Water Recycling Systems in China
by Yuqi Wei
Sustainability 2026, 18(2), 555; https://doi.org/10.3390/su18020555 - 6 Jan 2026
Viewed by 79
Abstract
Confronting severe water scarcity challenges, China’s industrial water circularity demands robust efficiency evaluation frameworks. This research pioneers a two-stage network model integrating undesirable outputs and feedback mechanisms to assess 30 provincial systems. The methodology captures interconnected processes where production generates wastewater, which is [...] Read more.
Confronting severe water scarcity challenges, China’s industrial water circularity demands robust efficiency evaluation frameworks. This research pioneers a two-stage network model integrating undesirable outputs and feedback mechanisms to assess 30 provincial systems. The methodology captures interconnected processes where production generates wastewater, which is then treated to yield reusable water fed back into production. Comprehensive efficiency gaps were quantified using weighted optimization, enabling tailored provincial enhancement paths: wastewater volume reduction and reclaimed water augmentation strategies. Results reveal striking regional disparities, with only two regions initially achieving full efficiency while coastal manufacturing hubs exhibited paradoxical inefficiency despite high output. Implementation demonstrated reclaimed water enhancement’s superior efficacy—enabling over half of regions to reach full efficiency—while wastewater reduction alone proved insufficient for most provinces. Crucially, ecologically fragile regions achieved optimal performance through minimal precision interventions. The study establishes that effective water circularity requires coordinated optimization of both production and treatment stages, with region-specific sequencing strategies. This approach delivers policymakers a diagnostic toolkit for spatially differentiated resource transition planning, balancing economic output with environmental sustainability. Full article
Show Figures

Figure 1

36 pages, 968 KB  
Review
Applications of Artificial Intelligence in Fisheries: From Data to Decisions
by Syed Ariful Haque and Saud M. Al Jufaili
Big Data Cogn. Comput. 2026, 10(1), 19; https://doi.org/10.3390/bdcc10010019 - 5 Jan 2026
Viewed by 586
Abstract
AI enhances aquatic resource management by automating species detection, optimizing feed, forecasting water quality, protecting species interactions, and strengthening the detection of illegal, unreported, and unregulated fishing activities. However, these advancements are inconsistently employed, subject to domain shifts, limited by the availability of [...] Read more.
AI enhances aquatic resource management by automating species detection, optimizing feed, forecasting water quality, protecting species interactions, and strengthening the detection of illegal, unreported, and unregulated fishing activities. However, these advancements are inconsistently employed, subject to domain shifts, limited by the availability of labeled data, and poorly benchmarked across operational contexts. Recent developments in technology and applications in fisheries genetics and monitoring, precision aquaculture, management, and sensing infrastructure are summarized in this paper. We studied automated species recognition, genomic trait inference, environmental DNA metabarcoding, acoustic analysis, and trait-based population modeling in fisheries genetics and monitoring. We used digital-twin frameworks for supervised learning in feed optimization, reinforcement learning for water quality control, vision-based welfare monitoring, and harvest forecasting in aquaculture. We explored automatic identification system trajectory analysis for illicit fishing detection, global effort mapping, electronic bycatch monitoring, protected species tracking, and multi-sensor vessel surveillance in fisheries management. Acoustic echogram automation, convolutional neural network-based fish detection, edge-computing architectures, and marine-domain foundation models are foundational developments in sensing infrastructure. Implementation challenges include performance degradation across habitat and seasonal transitions, insufficient standardized multi-region datasets for rare and protected taxa, inadequate incorporation of model uncertainty into management decisions, and structural inequalities in data access and technology adoption among smallholder producers. Standardized multi-region benchmarks with rare-taxa coverage, calibrated uncertainty quantification in assessment and control systems, domain-robust energy-efficient algorithms, and privacy-preserving data partnerships are our priorities. These integrated priorities enable transition from experimental prototypes to a reliable, collaborative infrastructure for sustainable wild capture and farmed aquatic systems. Full article
Show Figures

Figure 1

31 pages, 3358 KB  
Article
Exploring Sierra Leone’s Water Sector: A Governance and Stakeholder Analysis
by Henrietta E. M. George-Williams, Dexter V. L. Hunt and Christopher D. F. Rogers
Sustainability 2026, 18(1), 491; https://doi.org/10.3390/su18010491 - 3 Jan 2026
Viewed by 439
Abstract
Sierra Leone’s water sector faces a “paradox of scarcity in abundance”: despite plentiful natural water resources, access to safe, reliable, and affordable supply remains limited, particularly for vulnerable populations. This paper investigates the governance dynamics and stakeholder relationships that underpin these challenges, drawing [...] Read more.
Sierra Leone’s water sector faces a “paradox of scarcity in abundance”: despite plentiful natural water resources, access to safe, reliable, and affordable supply remains limited, particularly for vulnerable populations. This paper investigates the governance dynamics and stakeholder relationships that underpin these challenges, drawing on a mixed-methods approach combining desktop research, surveys, and 37 semi-structured interviews. Using stakeholder and social network analysis, the study identifies key actors and their roles, interests, influence, and interdependencies, while also examining systemic barriers across social, technical, economic, environmental, and political dimensions. The findings reveal a highly fragmented governance landscape, characterised by overlapping mandates, donor dependency, weak enforcement, and the marginalisation of community voices. Although recent reforms—including new regulatory institutions, donor-funded infrastructure projects, and community-based initiatives—represent progress, they remain largely piecemeal, reactive, and insufficient to address entrenched structural deficiencies. The paper concludes that Sierra Leone’s water crisis is less a problem of resource scarcity than one of governance. Achieving sustainable water security requires integrated, system-wide reforms that strengthen institutional capacity, enhance coordination, enforce accountability, and embed inclusive stakeholder participation. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

Back to TopTop