Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = sustainable traffic management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8263 KiB  
Proceeding Paper
Comparing Dynamic Traffic Flow Between Human-Driven and Autonomous Vehicles Under Cautious and Aggressive Vehicle Behavior
by Maftuh Ahnan and Dukgeun Yun
Eng. Proc. 2025, 102(1), 11; https://doi.org/10.3390/engproc2025102011 (registering DOI) - 5 Aug 2025
Abstract
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, [...] Read more.
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, carbon emissions, and fuel consumption, to assess their effects on overall performance. The findings reveal significant differences between cautious and aggressive AVs, particularly at varying market penetration rates (MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared to their cautious counterparts. They achieve higher levels of service, improving from poor performance at low MPRs to significantly better performance at higher MPRs and in fully autonomous scenarios. In contrast, cautious AVs often experience poor service ratings at low MPRs, with an improvement in performance only at higher MPRs. Regarding environmental performance, aggressive AVs outperform cautious ones in terms of reduced emissions and fuel consumption. The emissions produced by aggressive AVs are significantly lower than those from cautious AVs, and they further decrease as the MPRs increases. Additionally, aggressive AVs show a considerable reduction in fuel usage compared to cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to generate higher emissions and consume more fuel than their aggressive counterparts. In conclusion, aggressive AVs offer better traffic efficiency and environmental performance than both cautious AVs. Their ability to improve road efficiency and reduce congestion positions them as a valuable asset for sustainable transportation. Strategically incorporating aggressive AVs into transportation systems could lead to significant advancements in traffic management and environmental sustainability. Full article
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Viewed by 192
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Viewed by 219
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 - 1 Aug 2025
Viewed by 214
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 - 1 Aug 2025
Viewed by 184
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 318
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

11 pages, 1585 KiB  
Article
Age-Related Patterns of Midfacial Fractures in a Hungarian Population: A Single-Center Retrospective Study
by Enikő Orsi, Lilla Makszin, Zoltán Nyárády, Lajos Olasz and József Szalma
J. Clin. Med. 2025, 14(15), 5396; https://doi.org/10.3390/jcm14155396 - 31 Jul 2025
Viewed by 210
Abstract
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study [...] Read more.
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study was to analyze age- and gender-specific patterns in midfacial fractures over a 10-year period, with emphasis on elderly individuals and low-energy trauma. Methods: A retrospective review was performed of proven midfacial fractures between 2013 and 2022 at the Department of Oral and Maxillofacial Surgery (University of Pécs, Hungary). The patients were stratified by age (<65 vs. ≥65 years) and gender. The variables included the injury mechanism, fracture localization, the dental status, hospitalization, and the presence of associated injuries. Bivariate analyses were performed, and the significance level was set to p < 0.05. Results: A total of 957 radiologically confirmed midfacial fracture cases were evaluated, of whom 344 (35.9%) were ≥65 years old. In the elderly group, females had a 19-fold higher risk for midfacial trauma than younger females (OR: 19.1, 95%CI: 9.30–39.21). In the older group, a fall was significantly the most frequent injury mechanism (OR: 14.5; 95%CI: 9.9–21.3), responsible for 89.5% of the cases, while hospitalization (OR: 0.36; 95%CI: 0.23–0.56) was less characteristic. Most of the fractures occurred in the zygomatic bone, in the zygomaticomaxillary complex, or in the anterior wall of the maxilla. Associated injuries in the elderly group included mostly lower limb injuries—particularly pertrochanteric femoral fractures in females—and upper limb injuries, with a slight male dominance. Conclusions: Low-energy falls are the primary cause of midfacial fractures in elderly patients, particularly in women. Tailored prevention and management strategies are essential for improving the outcomes in this growing demographic group. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 443
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
Alleviating Soil Compaction in an Asian Pear Orchard Using a Commercial Hand-Held Pneumatic Cultivator
by Hao-Ting Lin and Syuan-You Lin
Agronomy 2025, 15(7), 1743; https://doi.org/10.3390/agronomy15071743 - 19 Jul 2025
Viewed by 375
Abstract
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates [...] Read more.
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates subsurface hardpan formation and tree performance. This study evaluated the effectiveness of pneumatic subsoiling, a minimally invasive method using high-pressure air injection, in alleviating soil compaction without disturbing orchard surface integrity. Four treatments varying in radial distance from the trunk and pneumatic application were tested in a mature orchard in central Taiwan. Pneumatic subsoiling 120 cm away from the trunk significantly reduced soil penetration resistance by 15.4% at 34 days after treatment (2,302,888 Pa) compared to the control (2,724,423 Pa). However, this reduction was not sustained at later assessment dates, and no significant improvements in vegetative growth, fruit yield, and fruit quality were observed within the first season post-treatment. These results suggest that while pneumatic subsoiling can modify subsurface soil physical conditions with minimal surface disturbance, its agronomic benefits may require longer-term evaluation under varying moisture and management regimes. Overall, this study highlights pneumatic subsoiling may be a potential low-disturbance strategy to contribute to longer-term soil physical resilience. Full article
Show Figures

Figure 1

46 pages, 10548 KiB  
Review
A Review of Hybrid LSTM Models in Smart Cities
by Bum-Jun Kim and Il-Woo Nam
Processes 2025, 13(7), 2298; https://doi.org/10.3390/pr13072298 - 18 Jul 2025
Viewed by 691
Abstract
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM [...] Read more.
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM models that integrate LSTM with complementary algorithms, including CNN, GRU, ARIMA, and SVM. These hybrid architectures aim to enhance prediction accuracy, integrate diverse data sources, and improve computational efficiency. This study systematically reviews principles, trends, and real-world applications, quantitatively evaluating hybrid LSTM models using performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (R2), while identifying key study limitations. The case studies considered include traffic management, environmental monitoring, energy forecasting, public health, infrastructure assessment, and urban waste management. For example, hybrid models have achieved substantial accuracy improvements in traffic congestion forecasting, reducing their mean absolute error by up to 29%. Despite the inherent challenges related to structural complexity, interpretability, and data requirements, ongoing research on attention mechanisms, model compression, and explainable AI has significantly mitigated these limitations. Thus, hybrid LSTM models have emerged as vital analytical tools capable of robust spatiotemporal prediction, effectively supporting sustainable urban development and data-driven decision-making in evolving smart city environments. Full article
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities
by Malik Almaliki, Amna Bamaqa, Mahmoud Badawy, Tamer Ahmed Farrag, Hossam Magdy Balaha and Mostafa A. Elhosseini
Sustainability 2025, 17(14), 6462; https://doi.org/10.3390/su17146462 - 15 Jul 2025
Viewed by 607
Abstract
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM [...] Read more.
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM (a hybrid adaptive traffic lights management), a system utilizing the deep deterministic policy gradient (DDPG) reinforcement learning algorithm to optimize traffic light timings dynamically based on real-time data. The system integrates advanced sensing technologies, such as cameras and inductive loops, to monitor traffic conditions and adaptively adjust signal phases. Experimental results demonstrate significant improvements, including reductions in congestion (up to 50%), increases in throughput (up to 149%), and decreases in clearance times (up to 84%). These findings open the door for integrating accessibility-focused features such as adaptive signaling for accessible vehicles, dedicated lanes for paratransit services, and prioritized traffic flows for inclusive mobility. Full article
Show Figures

Figure 1

22 pages, 2194 KiB  
Article
Environmental and Social Benefits of Urban Parking Space Shortages Mitigation Management Model: A System Dynamics and Nudge Approach
by Zhen Chen, Zhengyang Xu, Kang Tian and Shuwei Jia
Sustainability 2025, 17(14), 6414; https://doi.org/10.3390/su17146414 - 13 Jul 2025
Viewed by 391
Abstract
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. [...] Read more.
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. First, an algorithm for mitigating UPSSs based on nudge theory was constructed, in order to determine how the nudge strategies work. Second, nudge tools, including gain disclosure, salience, and outcome notification, were integrated to construct a mitigation model for UPSSs, which synthesizes nudge theory, the model of self-regulatory processes involved in behavioral change, and system dynamics (NT-SPBC-SD theory). Finally, four scenarios of natural development, guide adjustment, balanced regulation, and enhanced change were simulated. The findings of this study are as follows: (1) The UPSS mitigation had multiple overlapping effects and critical point effects, and the nudge strategy gradually decayed or even rebounded over time. (2) Under the enhanced change scenario, the degree of UPSSs, the amount of illegal parking, and CO2 emissions from civil vehicles decreased by 21.2%, 6.93%, and 14.54%, respectively. (3) After quantitative comparisons, the balanced regulation scenario with lower implementation costs instead demonstrated superior overall performance. The results support subsequent research and guide the enhancement of urban parking management policies to advance urban sustainability. Full article
Show Figures

Figure 1

21 pages, 2533 KiB  
Article
Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland)
by Natalia Drop and Adriana Bohdan
Sustainability 2025, 17(14), 6407; https://doi.org/10.3390/su17146407 - 13 Jul 2025
Viewed by 598
Abstract
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for [...] Read more.
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for 2025. Additive and multiplicative formulations were parameterized with Excel Solver, using the mean absolute percentage error to identify the better-fitting model. The additive version captured both the steady post-pandemic recovery and pronounced seasonal peaks, indicating that passenger throughput is likely to rise modestly year on year, with the highest loads expected in the summer quarter and the lowest in early spring. These findings suggest the airport should anticipate continued growth and consider adjustments to terminal capacity, apron allocation, and staffing schedules to maintain service quality. Because the Holt–Winters method extrapolates historical patterns and does not incorporate external shocks—such as economic downturns, policy changes, or public health crises—its projections are most reliable over the short horizon examined and should be complemented by scenario-based analyses in future work. This study contributes to sustainable airport management by providing a reproducible, data-driven forecasting framework that can optimize resource allocation with minimal environmental impact. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 415
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

42 pages, 5471 KiB  
Article
Optimising Cyclist Road-Safety Scenarios Through Angle-of-View Analysis Using Buffer and GIS Mapping Techniques
by Zahra Yaghoobloo, Giuseppina Pappalardo and Michele Mangiameli
Infrastructures 2025, 10(7), 184; https://doi.org/10.3390/infrastructures10070184 - 11 Jul 2025
Viewed by 295
Abstract
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The [...] Read more.
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The research introduces novel geoprocessing tools-based GIS techniques that mathematically simulate cyclists’ angles of view and the distances to nearby environmental features. It provides precise insights into some potential hazards and infrastructure challenges encountered while cycling. This research focuses on managing and analysing the data collected, utilising OpenStreetMap (OSM) as vector-based supporting data. It integrates cyclists’ behavioural data with the urban environmental features encountered, such as intersections, road design, and traffic controls. The analysis is categorised into specific classes to evaluate the impacts of these aspects of the environment on cyclists’ behaviours. The current investigation highlights the importance of integrating the objective environmental elements surrounding the route with subjective perceptions and then determining the influence of these environmental elements on cyclists’ behaviours. Unlike previous studies that ignore cyclists’ visual perspectives in the context of real-world data, this work integrates objective GIS data with cyclists’ field of view-based modelling to identify high-risk areas and highlight the need for enhanced safety measures. The proposed approach equips urban planners and designers with data-informed strategies for creating safer cycling infrastructure, fostering sustainable mobility, and mitigating urban congestion. Full article
Show Figures

Figure 1

Back to TopTop