Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = sustainable oil recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2848 KB  
Article
Sustainable Hazardous Mitigation and Resource Recovery from Oil-Based Drill Cuttings Through Slow Pyrolysis: A Kinetic and Product Analysis
by Andres Reyes-Urrutia, Anabel Fernandez, Rodrigo Torres-Sciancalepore, Daniela Zalazar-García, César Venier, César Rozas-Formandoy, Gastón Fouga, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 969; https://doi.org/10.3390/su18020969 (registering DOI) - 17 Jan 2026
Viewed by 69
Abstract
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and [...] Read more.
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and groundwater, highlighting the need for sustainable treatment technologies that minimize environmental impacts and enable resource recovery. This study evaluates slow pyrolysis as a thermochemical route for OBDC stabilization and valorization. Representative samples were characterized through proximate, ultimate, and metal analyses, confirming a complex hydrocarbon–mineral matrix with 78.1 wt% ash, 15.9 wt% volatile matter, and 12.5 wt% TPH. Thermogravimetric analysis (10–20 °C min−1), combined with isoconversional methods, identified three pseudo-components with activation energies ranging from 41.9 to 104.5 kJ mol−1. Slow pyrolysis experiments in a fixed bed (400–650 °C) reduced residual TPH to below 1 wt% at temperatures ≥ 400 °C, meeting Argentine criteria for non-hazardous solids. The process also produced a condensed liquid organic fraction, supporting its potential within circular-economy strategies. Overall, the results show that slow pyrolysis is a viable and sustainable technology for reducing environmental risks from OBDC while enabling resource and energy recovery, contributing to a broader understanding of their thermochemical treatment. Full article
(This article belongs to the Section Energy Sustainability)
52 pages, 2962 KB  
Review
Sustainable Polyurethane Systems: Integrating Green Synthesis and Closed-Loop Recovery
by Tae Hui Kim, Hyeong Seo Kim and Sang-Ho Lee
Polymers 2026, 18(2), 246; https://doi.org/10.3390/polym18020246 - 16 Jan 2026
Viewed by 110
Abstract
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. [...] Read more.
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. Consequently, most end-of-life PU waste is currently managed through landfilling or incineration, resulting in significant resource loss and environmental impact. To address these challenges, this review presents an integrated perspective on sustainable PU systems by unifying green synthesis strategies with closed-loop recovery approaches. First, recent advances in bio-based polyols and phosgene-free isocyanate synthesis derived from renewable resources—such as plant oils, carbohydrates, and lignin—are discussed as viable means to reduce dependence on petrochemical feedstocks and mitigate toxicity concerns. Next, emerging chemical recycling methodologies, including acidolysis and aminolysis, are reviewed with a focus on the selective recovery of high-purity monomers. Finally, PU vitrimers and dynamic covalent polymer networks (DCPNs) based on urethane bond exchange reactions are examined as reprocessable architectures that combine thermoplastic-like processability with the mechanical robustness of thermosets. By integrating synthesis, recovery, and reuse within a unified framework, this review aims to outline a coherent pathway toward establishing a sustainable circular economy for PU materials. Full article
(This article belongs to the Special Issue Advanced Cross-Linked Polymer Network)
21 pages, 2728 KB  
Article
Two Engineered Bacillus subtilis Surfactin High-Producers: Effects of Culture Medium, and Potential Agricultural and Petrochemical Applications
by Graciely Gomes Corrêa, Elvio Henrique Benatto Perino, Cristiano José de Andrade, Maliheh Vahidinasab, Lucas Degang, Behnoush Hosseini, Lars Lilge, Vitória Fernanda Bertolazzi Zocca, Jens Pfannstiel, Danielle Biscaro Pedrolli, Rudolf Hausmann and Jonas Contiero
Biology 2026, 15(2), 146; https://doi.org/10.3390/biology15020146 - 14 Jan 2026
Viewed by 167
Abstract
Two genetically engineered Bacillus subtilis strains, BMV9 and BsB6, were evaluated in terms of culture medium (effect of nutrients on surfactin yield) and potential biotechnological applications of surfactin in agriculture and the petrochemical industry. BMV9 (spo0A3; abrB*; ΔmanPA; [...] Read more.
Two genetically engineered Bacillus subtilis strains, BMV9 and BsB6, were evaluated in terms of culture medium (effect of nutrients on surfactin yield) and potential biotechnological applications of surfactin in agriculture and the petrochemical industry. BMV9 (spo0A3; abrB*; ΔmanPA; sfp+) is, to date, the highest surfactin producer reported scientifically, and BsB6 is a sfp+ laboratory derivative strain that has also demonstrated considerable production potential. To assess their performance, fermentation experiments were conducted in shake flasks using two different culture media, a mineral salt medium and a complex medium, each supplemented with 2% (w/v) glucose. Lipopeptides (surfactin and fengycin) were extracted and quantified at multiple time points (up to 48 h) via high-performance thin-layer chromatography (HPTLC). Optical density, residual glucose, and pH were monitored throughout the cultivation. In parallel, microbial growth in both media were also validated in small-scale cultivation approaches. Antifungal activity of culture supernatants and lipopeptide extracts was tested against two Diaporthe species, key phytopathogens in soybean crops. Given the agricultural relevance of these pathogens, the biocontrol potential of lipopeptides represents a sustainable alternative to conventional chemical fungicides. Additionally, oil displacement tests were performed to evaluate the efficacy of surfactin in enhanced oil recovery (EOR), bioremediation, and related petrochemical processes. High-resolution LC-MS/MS analysis enabled structural characterization and relative quantification of the lipopeptides. Overall, these investigations provide a comprehensive comparison of strain production performance and the associated impact of cultivation media, aiming to define the optimal conditions for economically viable surfactin production and to explore its broader biotechnological applications in agriculture and the petrochemical industry. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

22 pages, 8822 KB  
Article
Potential Recovery and Recycling of Condensate Water from Atlas Copco ZR315 FF Industrial Air Compressors
by Ali Benmoussa, Zakaria Chalhe, Benaissa Elfahime and Mohammed Radouani
Inventions 2026, 11(1), 10; https://doi.org/10.3390/inventions11010010 - 14 Jan 2026
Viewed by 168
Abstract
This research examines the feasibility of recovering and recycling condensate water, a waste byproduct generated by Atlas Copco ZR315 FF industrial air compressors utilizing oil-free rotary screw technology with integrated dryers. Given the growing severity of global water scarcity, finding alternative water sources [...] Read more.
This research examines the feasibility of recovering and recycling condensate water, a waste byproduct generated by Atlas Copco ZR315 FF industrial air compressors utilizing oil-free rotary screw technology with integrated dryers. Given the growing severity of global water scarcity, finding alternative water sources is essential for sustainable industrial practices. This study specifically evaluates the potential of capturing and treating compressed air condensate as a viable method for water recovery. The investigation analyzes both the quantity and quality of condensate water produced by the ZR315 FF unit. It contrasts this recovery approach with traditional water production methods, such as desalination and atmospheric water generation (AWG) via dehumidification. The findings demonstrate that recovering condensate water from industrial air compressors is a cost-effective and energy-efficient substitute for conventional water production, especially in water-stressed areas like Morocco. The results show a significant opportunity to reduce industrial water usage and provide a sustainable source of process water. This research therefore supports the application of circular economy principles in industrial water management and offers practical solutions for overcoming water scarcity challenges within manufacturing environments. Full article
Show Figures

Figure 1

25 pages, 2812 KB  
Article
Field-Scale Techno-Economic Assessment and Real Options Valuation of Carbon Capture Utilization and Storage—Enhanced Oil Recovery Project Under Market Uncertainty
by Chang Liu, Cai-Shuai Li and Xiao-Qiang Zheng
Sustainability 2026, 18(2), 805; https://doi.org/10.3390/su18020805 - 13 Jan 2026
Viewed by 217
Abstract
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented [...] Read more.
This study develops a field-based techno-economic model and decision framework for a CO2-enhanced oil recovery and storage project under joint market uncertainty. Historical drilling and completion expenditures calibrate investment cost functions, and three years of production data are fitted with segmented hyperbolic Arps curves to forecast 20-year oil output. Markov-chain models jointly generate internally consistent pathways for crude oil, ETA, and purchased CO2 prices, which are embedded in a Monte Carlo valuation. The framework outputs probability distributions of NPV and deferral option value; under the mid scenario, their mean values are USD 18.1M and USD 2.0M, respectively. PRCC-based global sensitivity analysis identifies the dominant value drivers as oil price, CO2 price, utilization factor, oil density, pipeline length, and injection volume. Techno-economic boundary maps in the joint oil and CO2 price space then delineate feasible regions and break-even thresholds for key design parameters. Results indicate that CCUS-EOR viability cannot be inferred from oil price or any single cost factor alone, but requires coordinated consideration of subsurface constraints, engineering configuration, and multi-market dynamics, including the value of waiting in unfavorable regimes, contributing to low-carbon development and sustainable energy transition objectives. Full article
Show Figures

Figure 1

21 pages, 3620 KB  
Article
Geomechanical Analysis of Hot Fluid Injection in Thermal Enhanced Oil Recovery
by Mina S. Khalaf
Energies 2026, 19(2), 386; https://doi.org/10.3390/en19020386 - 13 Jan 2026
Viewed by 114
Abstract
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress [...] Read more.
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress rotation within a displacement discontinuity method (DDM) framework. This study aims to examine the influence of sustained hot-fluid injection on stress redistribution, hydraulic-fracture deformation, and fracture stability in thermal-EOR by accounting for coupled thermal, hydraulic, and mechanical interactions. This study develops a fully coupled thermo-poroelastic DDM formulation in which fracture-surface normal and shear displacement discontinuities, together with fluid and heat influx, act as boundary sources to compute time-dependent stresses, pore pressure, and temperature, while internal fracture fluid flow (Poiseuille-based volume balance), heat transport (conduction–advection with rock exchange), and mixed-mode propagation criteria are included. A representative scenario considers an initially isothermal hydraulic fracture grown to 32 m, followed by 12 months of hot-fluid injection, with temperature contrasts of ΔT = 0–100 °C and reduced pumping rate. Results show that the hydraulic-fracture aperture increases under isothermal and modest heating (ΔT = 25 °C) and remains nearly stable near ΔT = 50 °C, but progressively narrows for ΔT = 75–100 °C despite continued injection, indicating potential injectivity decline driven by thermally induced compressive stresses. Hot injection also tightens fracture tips, restricting unintended propagation, and produces pronounced near-fracture stress amplification and re-orientation: minimum principal stress increases by 6 MPa for ΔT = 50 °C and 10 MPa for ΔT = 100 °C, with principal-stress rotation reaching 70–90° in regions adjacent to the fracture plane and with markedly elevated shear stresses that may promote natural-fracture activation. These findings show that temperature effects can directly influence injectivity, fracture containment, and the risk of unintended fracture or natural-fracture activation, underscoring the importance of temperature-aware geomechanical planning and injection-strategy design in field operations. Incorporating these effects into project design can help operators anticipate injectivity decline, improve fracture containment, and reduce geomechanical uncertainty during long-term hot-fluid injection. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 116
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

19 pages, 1900 KB  
Article
Experimental Evaluation of the Bioenergy Potential of Enterolobium cyclocarpum (Orejero) Fruit Peel Residue
by Zully-Esmeralda Gómez-Rosales, Paola-Andrea Hernández-Mejía, Andrés-Gonzalo Forero-González, Johanna-Karina Solano-Meza, Javier Rodrigo-Ilarri and María-Elena Rodrigo-Clavero
Energies 2026, 19(2), 360; https://doi.org/10.3390/en19020360 - 12 Jan 2026
Viewed by 210
Abstract
This study presents an experimental evaluation of the bioenergy potential of Enterolobium cyclocarpum (“orejero”) fruit peel residue, an underutilized agroforestry by-product in tropical America. Although the species is widely used for shade and fodder in livestock systems, its fruit peel has not yet [...] Read more.
This study presents an experimental evaluation of the bioenergy potential of Enterolobium cyclocarpum (“orejero”) fruit peel residue, an underutilized agroforestry by-product in tropical America. Although the species is widely used for shade and fodder in livestock systems, its fruit peel has not yet been characterized for energy recovery purposes. Fruit samples were collected in rural areas of Tesalia (Huila, Colombia), and the peel fraction was analyzed in certified laboratories. The moisture content of the peel was determined as 11 wt%, and the lower heating value was measured as 0.015 TJ/t following ASTM E711-06. Elemental analysis according to ASTM D5373-16 yielded (dry basis): 37.2 wt% C, 4.09 wt% H, 0.45 wt% N and 0.13 wt% S. Based on Colombian cultivation and production data, the theoretical energy potential was estimated as 3.6 TJ/year per hectare. The technical energy potential reached 0.18 and 0.21 TJ/year per hectare for combustion and gasification, respectively. CO2-equivalent emissions were also estimated for both conversion routes, revealing a trade-off between the higher energy yield and higher specific emissions associated with gasification. Overall, the results show that E. cyclocarpum fruit peel residue has a calorific value comparable to widely used agri-food residues in Colombia (e.g., sugarcane bagasse and oil palm fiber), but with a substantially higher per-hectare energy potential due to its large residue fraction. Its high availability, favorable fuel properties, and compatibility with decentralized combustion and gasification technologies support its use as a promising feedstock for bioenergy generation in rural or off-grid areas, in line with circular economy and sustainable energy transition strategies. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

24 pages, 1753 KB  
Article
Valorization of Produced Water from Oilfields for Microbial Exopolysaccharide Synthesis in Stirred Tank Bioreactors
by Igor Carvalho Fontes Sampaio, Pamela Dias Rodrigues, Isabela Viana Lopes de Moura, Maíra dos Santos Silva, Luiz Fernando Widmer, Cristina M. Quintella, Elias Ramos-de-Souza and Paulo Fernando de Almeida
Fermentation 2026, 12(1), 39; https://doi.org/10.3390/fermentation12010039 - 8 Jan 2026
Viewed by 363
Abstract
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming [...] Read more.
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming PW from an industrial waste into a useful resource. In this context, bacterial exopolysaccharides (EPS) have gained attention due to their diverse functional properties and applicability in bioremediation, bioprocessing and petroleum-related operations. This study evaluated the potential of Lelliottia amnigena to synthesize EPS using oilfield PW as a component of the culture medium in stirred-tank bioreactors. Three conditions were assessed: a control using distilled water (dW), PW diluted to 25% (PW25%) and dialyzed PW (DPW). Batch experiments were conducted for 24 h, during which biomass growth, EPS accumulation and dissolved oxygen dynamics were monitored. Post-cultivation analyses included elemental and monosaccharide composition, scanning electron microscopy and rheological characterization of purified EPS solutions. EPS production varied among treatments, with dW and DPW yielding approximately 9.6 g L−1, while PW25% achieved the highest productivity (17.55 g L−1). The EPS samples contained fucose, glucose and mannose, with compositional differences reflecting the influence of PW-derived minerals. Despite reduced apparent viscosity under PW25% and DPW conditions, the EPS exhibited physicochemical properties suitable for biotechnological applications, including potential use in fucose recovery, drilling fluids and lubrication systems in the petroleum sector. The EPS also demonstrated substantial adsorption capacity, incorporating salts from PW and contributing to contaminant removal. This study demonstrates that PW can serve both as a substrate and as a source of functional inorganic constituents for microbial EPS synthesis, supporting an integrated approach to PW valorization. These findings reinforce the potential of EPS-based bioprocesses as sustainable green technologies that simultaneously promote waste mitigation and the production of high-value industrial bioproducts. Full article
Show Figures

Graphical abstract

17 pages, 2618 KB  
Article
Experimental Study on Mechanism of Using Complex Nanofluid Dispersions to Enhance Oil Recovery in Tight Offshore Reservoirs
by Zhisheng Xing, Xingyuan Liang, Guoqing Han, Fujian Zhou, Kai Yang and Shuping Chang
J. Mar. Sci. Eng. 2026, 14(2), 126; https://doi.org/10.3390/jmse14020126 - 7 Jan 2026
Viewed by 196
Abstract
Horizontal wells combined with multi-stage fracturing are key techniques for extracting tight oil formation. However, due to the ultra-low permeability and porosity of reservoirs, energy depletion occurs rapidly, necessitating external supplements to sustain production. During the hydraulic fracturing process, large volumes of fracturing [...] Read more.
Horizontal wells combined with multi-stage fracturing are key techniques for extracting tight oil formation. However, due to the ultra-low permeability and porosity of reservoirs, energy depletion occurs rapidly, necessitating external supplements to sustain production. During the hydraulic fracturing process, large volumes of fracturing fluid are injected into reservoirs, increasing its pressure to a certain extent. However, due to the oil-wet nature of the formation, the fracturing fluid cannot penetrate the rock, failing to enhance oil recovery during the shut-in period. Surfactant-based nanofluids have been introduced as fracturing fluid additives to reverse rock wettability, thereby boosting imbibition-driven recovery. Although the imbibition has been studied to inspire the tight oil recovery, few studies have demonstrated the imbibition in enhanced fossil hydrogen energy, which further promotes the imbibition recovery. In this paper, complex nanofluid dispersions (CND) have been proved to enhance the tight reservoir pressure. Through contact angle and imbibition experiments, it is shown that CND can transform oil-wet rock to water-wet, reduce the adhesion of oil, and improve the ultimate oil recovery through the imbibition effect. Then, core flow testing experiments were conducted to show CND can decrease the flow resistance and improve the swept area of the injected fluid. In the end, pressure transmission tests were conducted to show CND can enhance the formation energy and production after fracturing. Results demonstrate that CND enables the fracturing fluid to travel further away from the hydraulic fractures, thus decreasing the depletion of tight formation pressure and maintaining a higher oil production rate. Results help optimize the design of the hydraulic fracturing of tight offshore reservoirs. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

27 pages, 2554 KB  
Article
Resilient Anomaly Detection in Ocean Drifters with Unsupervised Learning, Deep Learning Models, and Energy-Efficient Recovery
by Claire Angelina Guo, Jiachi Zhao and Eugene Pinsky
Oceans 2026, 7(1), 5; https://doi.org/10.3390/oceans7010005 - 6 Jan 2026
Viewed by 323
Abstract
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. [...] Read more.
Changes in climate and ocean pollution has prioritized monitoring of ocean surface behavior. Ocean drifters, which are floating sensors that record position and velocity, help track ocean dynamics. However, environmental events such as oil spills can cause abnormal behavior, making anomaly detection critical. Unsupervised learning, combined with deep learning and advanced data handling, is used to detect unusual behavior more accurately on the NOAA Global Drifter Program dataset, focusing on regions of the West Coast and the Mexican Gulf, for time periods spanning 2010 and 2024. Using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), pseudo-labels of anomalies are generated to train both a one-dimensional Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network. The results of the two models are then compared with bootstrapping with block shuffling, as well as 10 trials with bar chart summaries. The results show nuance, with models outperforming the other in different contexts. Between the four spatiotemporal domains, a difference in the increasing rate of anomalies is found, showing the relevance of the suggested pipeline. Beyond detection, data reliability and efficiency are addressed: a RAID-inspired recovery method reconstructs missing data, while delta encoding and gzip compression cut storage and transmission costs. This framework enhances anomaly detection, ensures reliable recovery, and reduces energy consumption, thereby providing a sustainable system for timely environmental monitoring. Full article
Show Figures

Figure 1

12 pages, 5506 KB  
Article
Green Synthesis of Activated Carbon from Waste Biomass for Biodiesel Dry Wash
by Diana Litzajaya García-Ruiz, Dylan Sinhue Valencia-Delgado, Salvador Moisés Hernández-Ocaña, Luis Fernando Ortega-Varela, Lada Domratcheva-Lvova, Fermín Morales-Troyo, Yadira Solana-Reyes and Carmen Judith Gutiérrez-García
Biomass 2026, 6(1), 3; https://doi.org/10.3390/biomass6010003 - 5 Jan 2026
Viewed by 236
Abstract
The valorization of agro-industrial waste could be a strategy to improve organic waste management. The production of activated carbon (AC) is a path to use for this waste, with the aim of reducing its negative effects. AC is characterized by a high internal [...] Read more.
The valorization of agro-industrial waste could be a strategy to improve organic waste management. The production of activated carbon (AC) is a path to use for this waste, with the aim of reducing its negative effects. AC is characterized by a high internal surface area, chemical stability, and oxygen-containing functional groups in its structure. This work is focused on the valorization of agro-industrial waste such as pineapple peel and coconut shells. These are made up of sucrose, glucose, fructose, and other essential nutrients, as well as cellulose, hemicellulose, and lignin. Activated Carbon was obtained with slow pyrolysis at 400 °C, for 4 h in a stainless-steel tubular reactor with physical activation. The obtained samples were analyzed using SEM, TGA, FTIR, and BET to verify the morphology, thermal degradation, functional groups and pores ratio of the AC, highlighting the presence of materials pore >10 µm. The TGA residual materials gave 16.3% of pineapple peel AC ashes and 0.2% of coconut AC. A C=C, C-HX, CO, and OH stretching were observed in 400–4000 cm−1. The peak intensity decreased once the biodiesel was treated with AC, because the traces of water and functional groups interacted actively, resulting a high content of bases. Activated carbon was used for dry cleaning of the obtained biodiesel from residual oil, which was effective in reducing pH and moisture levels in the biodiesel samples. Pore distribution was determined by BET, 5.6 nm for pineapple peel and 39.8243 nm for coconut shells. The obtained activated carbon offers a sustainable alternative to traditional carbon sources and contributes to the circular economy by recycling waste biomass. Full article
Show Figures

Graphical abstract

22 pages, 4387 KB  
Article
The Optimal Amount of PAMAM G3 Dendrimer in Polyurethane Matrices Makes Them a Promising Tool for Controlled Drug Release
by Magdalena Zaręba, Magdalena Zuzanna Twardowska, Paweł Błoniarz, Jaromir B. Lechowicz, Jakub Czechowicz, Dawid Łysik, Magdalena Rzepna and Łukasz Stanisław Uram
Polymers 2026, 18(1), 135; https://doi.org/10.3390/polym18010135 - 1 Jan 2026
Viewed by 485
Abstract
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability [...] Read more.
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability to encapsulate and release the model anticancer drug doxorubicin (DOX), as well as their biocompatibility and effectiveness against normal and cancer cells in vitro. PU–PAMAM foams containing 10–50 wt% PAMAM G3 were prepared using glycerin-based polyether polyol and castor oil as co-components. Structural and rheological analyses revealed that foams containing up to 20 wt% PAMAM G3 exhibited a well-developed porous structure, while higher dendrimer loadings (≥30 wt%) led to irregular cell shapes, pore coalescence, and thinning of cell walls, and indicated a gradual loss of structural integrity. Rheological creep–recovery measurements confirmed the structural findings: moderate PAMAM G3 incorporation (≤20 wt%) increased both the instantaneous and delayed elastic modulus (E1 ≈ 130–140 kPa; E2 ≈ 80 kPa) and enhanced elastic recovery, reflecting improved cross-link density and foam stability. Higher dendrimer contents (30–50 wt%) caused a decline in these parameters and higher viscoelastic compliance, indicating a softer, less stable structure. The DOX loading capacity and encapsulation efficiency increased with PAMAM G3 content, reaching maximum values of 35% and 51% for 30–40 wt% PAMAM G3, respectively. However, the most sustained DOX release profiles were observed for matrices containing 20 wt% PAMAM G3. Analysis of cumulative release and kinetic modeling revealed a transition from diffusion-controlled release at low PAMAM contents to burst-dominated release at higher dendrimer loadings. Importantly, matrices containing 10–20 wt% PAMAM G3 also indicated selective anticancer action against squamous cell carcinoma (SCC-15) compared to non-cancerous human keratinocytes (HaCaT). Moreover, the DOX they released effectively destroyed cancer cells. Overall, PU–PAMAM foams containing 10–20 wt% PAMAM G3 provide the most balanced combination of structural stability, controlled drug release, and cytocompatibility. These materials therefore represent a promising platform as passive carriers in drug delivery systems (DDSs), such as local implants, anticancer patches, or bioactive wound dressings. Full article
Show Figures

Figure 1

13 pages, 455 KB  
Systematic Review
Essential Oils and Their Use as Anesthetics and Sedatives for Nile tilapia (Oreochromis niloticus): A Systematic Review
by Bruno Mendes Visoni, Thaise Pinto de Melo, Sharine Nunes Descovi, Berta Maria Heinzmann and Bernardo Baldisserotto
Fishes 2026, 11(1), 19; https://doi.org/10.3390/fishes11010019 - 29 Dec 2025
Viewed by 227
Abstract
Essential oils (EOs) are increasingly studied as natural anesthetics for fish, offering potential alternatives to synthetic agents. This systematic review aimed to summarize the effects of EOs on Oreochromis niloticus, focusing on their efficacy in inducing sedation and anesthesia, recovery times, and [...] Read more.
Essential oils (EOs) are increasingly studied as natural anesthetics for fish, offering potential alternatives to synthetic agents. This systematic review aimed to summarize the effects of EOs on Oreochromis niloticus, focusing on their efficacy in inducing sedation and anesthesia, recovery times, and associated physiological responses. A comprehensive search was conducted in the Scopus, Web of Science, and Wiley Online Library databases for studies published up to 10 December 2024. Studies evaluating EOs or their main components in O. niloticus with quantitative data on anesthesia or sedation were included. From 355 records initially identified, studies meeting the inclusion criteria were analyzed qualitatively. EOs rich in compounds such as linalool, carvacrol, and pulegone effectively induced anesthesia in less than 3 min, with recovery times under 10 min, aligning with operational standards for fish anesthesia. However, some EOs caused physiological changes that may be related to stress responses. Variability in experimental protocols and incomplete reporting of chemical composition limited the comparability between studies. EOs demonstrate promising anesthetic potential for O. niloticus, representing safe and environmentally sustainable alternatives. Further standardized and controlled studies are required to confirm their safety and optimize application in aquaculture. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

19 pages, 2921 KB  
Article
A Study of the Reservoir Protection Mechanism of Fuzzy-Ball Workover Fluid for Temporary Plugging in Low-Pressure Oil Well Workover Operations
by Fanghui Zhu, Lihui Zheng, Yibo Li, Mengdi Zhang, Shuai Li, Hongwei Shi, Jingyi Yang, Xiaowei Huang and Xiujuan Tao
Processes 2026, 14(1), 59; https://doi.org/10.3390/pr14010059 - 23 Dec 2025
Viewed by 262
Abstract
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with [...] Read more.
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with field data were used to evaluate its plugging performance and reservoir-protective mechanisms. In sand-filled tubes (diameter 25 mm, length 20–100 cm) sealed with the fuzzy-ball fluid, the formation’s bearing capacity increased by 3.25–18.59 MPa, showing a positive correlation with the plugging radius. Compatibility tests demonstrated that mixtures of crude oil and workover fluid (1:1) or crude oil, workover fluid, and water (1:1:1) held at 60 °C for 80 h exhibited only minor apparent viscosity reductions of 4 mPa·s and 2 mPa·s, respectively, indicating good stability. After successful plugging, a 1% ammonium persulfate solution was injected for 2 h to break the gel; permeability recovery rates reached 112–127%, confirming low reservoir damage and effective gel-break de-blocking. Field data from five wells (formation pressure coefficients 0.49–0.64) showed per-well fluid consumption of 33–83 m3 and post-workover liquid production index recoveries of 5.90–53.30%. Multivariate regression established mathematical relationships among bearing capacity, production index recovery, and fourteen geological engineering parameters, identifying the plugging radius as a key factor. Larger radii enhance both temporary plugging strength and production recovery without harming the reservoir, and they promote production by expanding the cleaning zone. In summary, the fuzzy-ball workover fluid achieves an integrated “high-efficiency plugging–low-damage gel-break–synergistic cleaning” mechanism, resolving the trade-off between temporary-plugging strength and production recovery in low-pressure wells and offering an innovative, environmentally friendly solution for the sustainable and efficient exploitation of oil–gas resources. Full article
(This article belongs to the Special Issue New Technology of Unconventional Reservoir Stimulation and Protection)
Show Figures

Figure 1

Back to TopTop