Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,204)

Search Parameters:
Keywords = sustainable energy technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3440 KB  
Article
Effect of Calcination of Manganese Ore on Reducing Hydrogen and Energy Consumptions in Hydrogen-Based Direct Reduction Process
by Jafar Safarian
Metals 2026, 16(1), 117; https://doi.org/10.3390/met16010117 (registering DOI) - 19 Jan 2026
Abstract
Manganese is a critical raw material and there is currently a great interest in decarbonization in the metallurgical sector for its production. Hydrogen use in manganese and its alloys’ production is in principle possible for sustainable production; however, this requires a technological shift [...] Read more.
Manganese is a critical raw material and there is currently a great interest in decarbonization in the metallurgical sector for its production. Hydrogen use in manganese and its alloys’ production is in principle possible for sustainable production; however, this requires a technological shift from traditional carbothermic processes to completely new processes; like the HAlMan process. To design a process, it is crucially important to optimize the process conditions (such as temperature) and minimize the quantity of hydrogen gas and the related energy consumptions. In the present work, energy and mass balances for a hydrogen-based reduction reactor were carried out employing thermodynamics software and analytical approaches from room temperatures to 900 °C. It was found that the quantity of hydrogen gas required for the pre-reduction of manganese ore can be significantly reduced via coupling the reduction reactor with a calciner and the hot charge of the calcined ore into the reduction reactor. Moreover, hot H2-H2O gas mixture from the reduction reactor outlet can be used for preheating the hydrogen feed of the reactor, and the calcination of the ore, while a portion or all its hydrogen can be recovered and looped. The integrated coupled calcination-reduction process was found to be operated with no external energy supply, or insignificant fuel use. Full article
(This article belongs to the Section Extractive Metallurgy)
20 pages, 2303 KB  
Article
Numerical Investigation of Sustainable Diesel Engine Performance and Emissions Using Directly Integrated Steam Methane Reforming Syngas
by Tolga Bayramoğlu, Kubilay Bayramoğlu, Semih Yılmaz and Kerim Deniz Kaya
Sustainability 2026, 18(2), 1012; https://doi.org/10.3390/su18021012 (registering DOI) - 19 Jan 2026
Abstract
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation [...] Read more.
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation and storage. This study investigates a practical alternative in which hydrogen-rich syngas produced via steam methane reforming (SMR) is directly integrated into the diesel engine intake, thereby eliminating the need for fuel transport, storage, and separation while supporting a more sustainable fuel pathway. A validated computational fluid dynamics (CFD) model was developed to examine the effects of varying SMR gas mixture ratios (0–20%) on engine combustion, performance, and emissions. The findings reveal that increasing the SMR fraction enhances in-cylinder pressure by up to 15.7%, heat release rate by 100%, and engine power output by 102.5% compared to conventional diesel operation. Additionally, under SMR20 conditions, CO2 emissions are reduced by approximately 12%, demonstrating the potential contribution of this approach to decarbonization and climate mitigation efforts. However, the rise in in-cylinder temperatures was found to increase NOx formation, indicating the necessity for complementary emission control strategies. Overall, the results suggest that direct SMR syngas integration offers a promising pathway to improve the environmental and performance characteristics of conventional diesel engines while supporting cleaner energy transitions. Full article
Show Figures

Figure 1

26 pages, 657 KB  
Article
Green Energy Sources in Energy Efficiency Management and Improving the Comfort of Individual Energy Consumers in Poland
by Ewa Chomać-Pierzecka, Anna Barwińska-Małajowicz, Radosław Pyrek, Szymon Godawa and Edward Urbańczyk
Energies 2026, 19(2), 500; https://doi.org/10.3390/en19020500 (registering DOI) - 19 Jan 2026
Abstract
Green technologies are strongly present in the energy mixes of countries around the world. In addition to the need to reduce the extraction of non-renewable raw materials and the harmful environmental impact associated with energy production, the trend towards renewable energy development should [...] Read more.
Green technologies are strongly present in the energy mixes of countries around the world. In addition to the need to reduce the extraction of non-renewable raw materials and the harmful environmental impact associated with energy production, the trend towards renewable energy development should also be linked to the need to minimize energy poverty stemming from high electricity prices and the need to increase the energy efficiency of existing solutions. These issues formed the basis for the study’s objective, which was to examine the regulatory framework for the development of Poland’s energy system, with particular emphasis on sustainable development. A particularly important aspect of the study was the exploration of the market for green technologies introduced into the energy system in Poland, with a primary focus on solutions dedicated to small, individual consumers (households). The cognitive value of the study and its original character is created by the cognitive aspect in terms of the interests and consumer preferences of households in this area, motivated by economic considerations related to the energy efficiency aspect of RES solutions. In this regard, there is a relatively limited number of current studies conducted for the reference country (Poland), justifying the choice of the research topic and theme. For the purposes of the study, a literature review, as well as legal standards and industry reports, was conducted. A practical study was conducted based on the results of surveys conducted by selected companies involved in the sale and installation of heating solutions. Detailed research was supported by statistical instruments using PQstat software version 1.8.4.164. Key findings confirm significant household interest in green electricity production technologies, which enable improved energy efficiency of home energy installations. Importantly, the potential for lower electricity bills, which can be attributed to low system maintenance costs and the ability to manage consumption, is a factor in choosing renewable energy solutions. Current interest in renewable energy solutions focuses on heat pumps, photovoltaics, and energy storage. Renewable energy users are interested in integrating renewable energy technology solutions into energy production and management to optimize energy consumption costs and increase household energy independence. Full article
16 pages, 1483 KB  
Article
Hydrogen Fuel in Aviation: Quantifying Risks for a Sustainable Future
by Ozan Öztürk and Melih Yıldız
Fuels 2026, 7(1), 5; https://doi.org/10.3390/fuels7010005 - 19 Jan 2026
Abstract
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation [...] Read more.
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation decarbonization. However, its large-scale implementation remains hindered by cryogenic storage requirements, safety risks, infrastructure adaptation, and economic constraints. This study aims to identify and evaluate the primary technical and operational risks associated with hydrogen utilization in aviation through a comprehensive Monte Carlo Simulation-based risk assessment. The analysis specifically focuses on four key domains—hydrogen leakage, cryogenic storage, explosion hazards, and infrastructure challenges—while excluding economic and lifecycle aspects to maintain a technical scope only. A 10,000-iteration simulation was conducted to quantify the probability and impact of each risk factor. Results indicate that hydrogen leakage and explosion hazards represent the most critical risks, with mean risk scores exceeding 20 on a 25-point scale, whereas investment costs and technical expertise were ranked as comparatively low-level risks. Based on these findings, strategic mitigation measures—including real-time leak detection systems, composite cryotank technologies, and standardized safety protocols—are proposed to enhance system reliability and support the safe integration of hydrogen-powered aviation. This study contributes to a data-driven understanding of hydrogen-related risks and provides a technological roadmap for advancing carbon-neutral air transport. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

34 pages, 1200 KB  
Review
The Role of Hydrogen in Energy Communities: Current Status, Challenges, and Future Developments
by Néstor Velaz-Acera, Cristina Sáez Blázquez, Víctor Casado-Lorenzo and Susana Lagüela
Hydrogen 2026, 7(1), 14; https://doi.org/10.3390/hydrogen7010014 - 19 Jan 2026
Abstract
Renewable hydrogen has become a versatile technology that can play a key role in the deployment of energy communities, although technological, economic, environmental, legal, and social challenges remain to be addressed. This study conducts a systematic review based on the Preferred Reporting Items [...] Read more.
Renewable hydrogen has become a versatile technology that can play a key role in the deployment of energy communities, although technological, economic, environmental, legal, and social challenges remain to be addressed. This study conducts a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology that analyzes the current state of technologies, the different applications, challenges and limitations, and future lines of research related to the enabling role of hydrogen in energy communities. Results from the bibliometric analysis show sustained growth in the number of publications over the last five years (2020–2025), with a predominance of applications in which hydrogen is combined with other energy carriers (58%). The versatility of hydrogen has prompted the evaluation of different applications, with particular emphasis on energy storage to capitalize on energy surpluses (51%), mobility (19%), and heating (20%). The main existing barriers come from the absence of stable long-term regulation, interoperability between components and technologies, and a lack of real data. Overcoming these challenges should be based on new technologies such as artificial intelligence and the construction and operation of pilot projects. In addition, a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis has been conducted building upon the SHARED-H2 SUDOE project, yielding particularly insightful results through the active involvement of stakeholders in the preparatory process. Based on all the points given above, the research concludes that it is necessary to improve long-term policies and increase training at all levels aimed at active end-user participation and a profound restructuring of the energy system. Full article
Show Figures

Figure 1

4 pages, 887 KB  
Editorial
Advances in Catalysis for Sustainable Energy and Environmental Remediation
by Habib Ullah, Muhammad Humayun and Sayyar Ali Shah
Catalysts 2026, 16(1), 100; https://doi.org/10.3390/catal16010100 - 19 Jan 2026
Abstract
Catalysis plays a key role in advancing sustainable technologies for energy conversion and environmental remediation [...] Full article
Show Figures

Scheme 1

20 pages, 3022 KB  
Article
A Framework for Assessing Peak Demand Reduction from Air Conditioning Efficiency Programs in Developing Economies: A Case Study of Paraguay
by Derlis Salomón, Victorio Oxilia, Richard Ríos and Eduardo Ortigoza
Energies 2026, 19(2), 482; https://doi.org/10.3390/en19020482 - 19 Jan 2026
Abstract
This study examines the rapid growth of energy demand in Paraguay, primarily driven by intensive air conditioning use and reduced hydroelectric output due to adverse Paraná River conditions. Employing a Vector Autoregressive (VAR) model, we quantify how temperature shocks significantly elevate peak electricity [...] Read more.
This study examines the rapid growth of energy demand in Paraguay, primarily driven by intensive air conditioning use and reduced hydroelectric output due to adverse Paraná River conditions. Employing a Vector Autoregressive (VAR) model, we quantify how temperature shocks significantly elevate peak electricity demand within the National Interconnected System. Our findings reveal that air conditioning accounts for 34–36% of the peak demand, pushing the hydroelectric system towards its operational limits. To address this challenge, we propose a technological transition strategy focused on energy efficiency improvements and labeling programs aimed at reducing peak demand, delaying system saturation, and achieving substantial power savings. These measures offer a practical approach to climate adaptation while supporting Paraguay’s international commitments and Sustainable Development Goals (SGDs) 7 (affordable and clean energy) and 13 (climate action). This work represents the first pioneering effort in Paraguay to quantify the influence of the SIN’s AC at the national level. This research provides policymakers with an evidence-based framework for energy planning, marking a pioneering effort in Paraguay to quantify cooling loads and set actionable efficiency targets. Full article
Show Figures

Figure 1

62 pages, 2394 KB  
Review
Hydrothermal Carbonization of Biomass for Hydrochar Production: Mechanisms, Process Parameters, and Sustainable Valorization
by Halil Durak, Rahmiye Zerrin Yarbay and Burçin Atilgan Türkmen
Processes 2026, 14(2), 339; https://doi.org/10.3390/pr14020339 - 18 Jan 2026
Abstract
Hydrothermal carbonization (HTC) represents a promising thermochemical method for converting wet biomass under moderate aqueous conditions into carbon-rich materials, characterized by specific attributes. Notwithstanding the increasing interest surrounding HTC, the current literature remains fragmented regarding the precise mechanisms by which process parameters influence [...] Read more.
Hydrothermal carbonization (HTC) represents a promising thermochemical method for converting wet biomass under moderate aqueous conditions into carbon-rich materials, characterized by specific attributes. Notwithstanding the increasing interest surrounding HTC, the current literature remains fragmented regarding the precise mechanisms by which process parameters influence hydrochar formation, its properties, and sustainable utilization. Consequently, the primary objective of this review is to systematically elucidate the fundamental mechanisms that govern HTC, to identify key parameters impacting hydrochar yield and quality, and to assess the sustainability and prospective contributions of HTC within the context of circular economy principles. This paper elaborates on the reaction pathways of hydrolysis, dehydration, decarboxylation, and aromatization that dictate the structural alterations and carbon densification of hydrochars. It emphasizes the roles of temperature, residence time, solid/liquid ratio, catalysts, and feedstock composition in jointly determining hydrochar yield, elemental composition, aromaticity, porosity, and energy density. Additionally, recent advancements, including microwave-assisted HTC, catalytic modifications, and post-activation techniques, are reviewed to enhance hydrochar functionality for applications in energy, adsorption, catalysis, and soil enhancement. Challenges remain regarding the scale-up of the process, reactor design, standardization of hydrochar properties, and the sustainable management or valorization of process water. This review integrates mechanistic insights with recent technological progress to position HTC as a versatile and sustainable method for producing high-value hydrochars, thereby underscoring its potential role in future biorefineries and circular economy initiatives. Full article
(This article belongs to the Special Issue Advances in Waste Valorization into High-Value Chemicals)
Show Figures

Graphical abstract

20 pages, 2113 KB  
Article
Energy Transitions in the Digital Economy: Interlinking Supply Chain Innovation, Growth, and Policy Stringency in OECD Countries
by Majdi Hashim and Opeoluwa Seun Ojekemi
Sustainability 2026, 18(2), 981; https://doi.org/10.3390/su18020981 (registering DOI) - 18 Jan 2026
Abstract
The development of renewable energy has emerged as a cornerstone of sustainable economic transformation, offering a pathway to reduce carbon dependence and enhance long-term energy security. As a result, this study examines the influence of supply chain digitalization, economic growth, and environmental stringency [...] Read more.
The development of renewable energy has emerged as a cornerstone of sustainable economic transformation, offering a pathway to reduce carbon dependence and enhance long-term energy security. As a result, this study examines the influence of supply chain digitalization, economic growth, and environmental stringency policies on renewable energy consumption (REC) across 33 OECD countries from 2000 to 2021. Using the Method of Moments Quantile Regression (MMQR) approach, the research provides robust, distribution-sensitive insights into how these factors shape renewable energy dynamics. In addition to the main variables, financial development and economic globalization were included as control variables to capture broader macroeconomic effects. The empirical results reveal that supply chain digitalization exerts a negative and consistent influence on REC across all quantiles, suggesting that technological advancement within supply chains may still be heavily dependent on non-renewable energy inputs. Conversely, environmental stringency policies demonstrate a positive and significant impact on REC at all quantiles, indicating that stricter environmental regulations effectively drive the transition toward cleaner energy sources. However, the effect of economic growth varies across quantiles, reflecting a nonlinear relationship—fostering renewable energy use in some instances while increasing conventional energy demand in others. Among the control variables, economic globalization enhances REC, implying that greater international integration facilitates technology transfer and access to green innovations. In contrast, financial development negatively affects REC, suggesting that current financial systems may still prioritize fossil fuel investments. Overall, the study emphasizes the need to align digital transformation strategies, financial reforms, and policy frameworks to strengthen renewable energy development and ensure a sustainable, low-carbon future across OECD nations. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

48 pages, 8652 KB  
Review
Advances in Alkaline Water Electrolysis—The Role of In Situ Ionic Activation in Green Hydrogen Production
by Vladimir M. Nikolić, Katarina M. Dimić-Mišić, Slađana Lj. Maslovara, Dejana P. Popović, Mihajlo N. Gigov, Sanja S. Krstić and Milica P. Marčeta Kaninski
Catalysts 2026, 16(1), 98; https://doi.org/10.3390/catal16010098 (registering DOI) - 18 Jan 2026
Abstract
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) [...] Read more.
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) kinetics and energy-efficiency limitations compared with acidic electrolysis systems. This review provides a comprehensive overview of the fundamental principles governing alkaline electrolysis, encompassing electrolyte chemistry, electrode materials, electrochemical mechanisms, and the roles of overpotentials, cell resistances, and surface morphology in determining system performance. Key developments in catalytic materials are discussed, highlighting both noble-metal and non-noble-metal electrocatalysts, as well as advanced approaches to surface modification and nanostructuring designed to enhance catalytic activity and long-term stability. Particular emphasis is placed on the emerging strategy of in situ ionic activation, wherein transition-metal ions and oxyanions are introduced directly into the operating electrolyte. These species dynamically interact with electrode surfaces under polarization, inducing real-time surface reconstruction, improving water dissociation kinetics, tuning hydrogen adsorption energies, and extending electrode durability. Results derived from polarization measurements, electrochemical impedance spectroscopy, and surface morphology analyses consistently demonstrate that ionic activators, such as Ni–Co–Mo systems, significantly increase the HER performance through substantial increase in surface roughness and increased intrinsic electrocatalytic activity through synergy of d-metals. By integrating both historical context and recent research findings, this review underscores the potential of ionic activation as a scalable and cost-effective way toward improving the efficiency of alkaline water electrolysis and accelerating progress toward sustainable, large-scale green hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

25 pages, 2848 KB  
Article
Sustainable Hazardous Mitigation and Resource Recovery from Oil-Based Drill Cuttings Through Slow Pyrolysis: A Kinetic and Product Analysis
by Andres Reyes-Urrutia, Anabel Fernandez, Rodrigo Torres-Sciancalepore, Daniela Zalazar-García, César Venier, César Rozas-Formandoy, Gastón Fouga, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 969; https://doi.org/10.3390/su18020969 (registering DOI) - 17 Jan 2026
Viewed by 69
Abstract
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and [...] Read more.
The expansion of unconventional hydrocarbon extraction in the Vaca Muerta Formation (Argentina) has increased the generation of oil-based drill cuttings (OBDCs), a hazardous waste containing up to 20 wt% total petroleum hydrocarbons (TPHs) and trace metals. These characteristics pose risks to soil and groundwater, highlighting the need for sustainable treatment technologies that minimize environmental impacts and enable resource recovery. This study evaluates slow pyrolysis as a thermochemical route for OBDC stabilization and valorization. Representative samples were characterized through proximate, ultimate, and metal analyses, confirming a complex hydrocarbon–mineral matrix with 78.1 wt% ash, 15.9 wt% volatile matter, and 12.5 wt% TPH. Thermogravimetric analysis (10–20 °C min−1), combined with isoconversional methods, identified three pseudo-components with activation energies ranging from 41.9 to 104.5 kJ mol−1. Slow pyrolysis experiments in a fixed bed (400–650 °C) reduced residual TPH to below 1 wt% at temperatures ≥ 400 °C, meeting Argentine criteria for non-hazardous solids. The process also produced a condensed liquid organic fraction, supporting its potential within circular-economy strategies. Overall, the results show that slow pyrolysis is a viable and sustainable technology for reducing environmental risks from OBDC while enabling resource and energy recovery, contributing to a broader understanding of their thermochemical treatment. Full article
(This article belongs to the Section Energy Sustainability)
40 pages, 4921 KB  
Systematic Review
Grid-Scale Battery Energy Storage and AI-Driven Intelligent Optimization for Techno-Economic and Environmental Benefits: A Systematic Review
by Nipon Ketjoy, Yirga Belay Muna, Malinee Kaewpanha, Wisut Chamsa-ard, Tawat Suriwong and Chakkrit Termritthikun
Batteries 2026, 12(1), 31; https://doi.org/10.3390/batteries12010031 - 17 Jan 2026
Viewed by 80
Abstract
Grid-Scale Battery Energy Storage Systems (GS-BESS) play a crucial role in modern power grids, addressing challenges related to integrating renewable energy sources (RESs), load balancing, peak shaving, voltage support, load shifting, frequency regulation, emergency response, and enhancing system stability. However, harnessing their full [...] Read more.
Grid-Scale Battery Energy Storage Systems (GS-BESS) play a crucial role in modern power grids, addressing challenges related to integrating renewable energy sources (RESs), load balancing, peak shaving, voltage support, load shifting, frequency regulation, emergency response, and enhancing system stability. However, harnessing their full potential and lifetime requires intelligent operational strategies that balance technological performance, economic viability, and environmental sustainability. This systematic review examines how artificial intelligence (AI)-based intelligent optimization enhances GS-BESS performance, focusing on its techno-economic, environmental impacts, and policy and regulatory implications. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we review the evolution of GS-BESS, analyze its advancements, and assess state-of-the-art applications and emerging AI techniques for GS-BESS optimization. AI techniques, including machine learning (ML), predictive modeling, optimization algorithms, deep learning (DL), and reinforcement learning (RL), are examined for their ability to improve operational efficiency and control precision in GS-BESSs. Furthermore, the review discusses the benefits of advanced dispatch strategies, including economic efficiency, emissions reduction, and improved grid resilience. Despite significant progress, challenges persist in data availability, model generalization, high computational requirements, scalability, and regulatory gaps. We conclude by identifying emerging opportunities to guide the next generation of intelligent energy storage systems. This work serves as a foundational resource for researchers, engineers, and policymakers seeking to advance the deployment of AI-enhanced GS-BESS for sustainable, resilient power systems. By analyzing the latest developments in AI applications and BESS technologies, this review provides a comprehensive perspective on their synergistic potential to drive sustainability, cost-effectiveness, and energy systems reliability. Full article
(This article belongs to the Special Issue AI-Powered Battery Management and Grid Integration for Smart Cities)
18 pages, 3693 KB  
Article
Modeling and Performance Assessment of a NeWater System Based on Direct Evaporation and Refrigeration Cycle
by Yilin Huo, Eric Hu and Jay Wang
Energies 2026, 19(2), 468; https://doi.org/10.3390/en19020468 - 17 Jan 2026
Viewed by 45
Abstract
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production [...] Read more.
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production system (called “NeWater” system in this paper), which combines saline water desalination with atmospheric water-harvesting technologies to simultaneously produce freshwater from brackish water or seawater and ambient air. To evaluate its performance, an integrated thermodynamic and mathematical model of the system was developed and validated. The NeWater system consists of a vapor compression refrigeration unit (VRU), a direct evaporation unit (DEU), up to four heat exchangers, some valves, and auxiliary components. The system can be applied to areas and scenarios where traditional desalination technologies, like reverse osmosis and thermal-based desalination, are not feasible. By switching between different operating modes, the system can adapt to varying environmental humidity and temperature conditions to maximize its freshwater productivity. Based on the principles of mass and energy conservation, a performance simulation model of the NeWater system was developed, with which the impacts of some key design and operation parameters on system performance were studied in this paper. The results show that the performances of the VRU and DEU had a significant influence on system performance in terms of freshwater production and specific energy consumption. Under optimal conditions, the total freshwater yield could be increased by up to 1.9 times, while the specific energy consumption was reduced by up to 48%. The proposed system provides a sustainable and scalable water production solution for water-scarce regions. Optimization of the NeWater system and the selection of VRUs are beyond the scope of this paper and will be the focus of future research. Full article
Show Figures

Figure 1

29 pages, 2315 KB  
Review
Sugarcane Breeding in the Genomic Era: Integrative Strategies and Emerging Technologies
by Suparat Srithawong, Weikuan Fang, Yan Jing, Jatuphol Pholtaisong, Du Li, Nattapat Khumla, Suchirat Sakuanrungsirikul and Ming Li
Plants 2026, 15(2), 286; https://doi.org/10.3390/plants15020286 - 17 Jan 2026
Viewed by 259
Abstract
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. However, genetic improvement through conventional breeding is constrained by long breeding cycles, low genetic gain, and considerable operational complexity arising from its highly allopolyploid and aneuploid genome. With the [...] Read more.
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. However, genetic improvement through conventional breeding is constrained by long breeding cycles, low genetic gain, and considerable operational complexity arising from its highly allopolyploid and aneuploid genome. With the increasing global demand for sustainable food and renewable energy, sugarcane breeding programs must accelerate the development of high-yielding, stress-tolerant cultivars through the integration of advanced biotechnological tools with traditional breeding approaches. Recent advances in genetic engineering, genomic selection (GS), and high-throughput omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and phenomics, have substantially enhanced the efficiency of trait improvement related to growth, development, yield, and stress resilience. The integration of multi-omics data enables the dissection of regulatory networks linking genotype to phenotype, improves predictive accuracy, and provides deeper insights into the molecular mechanisms underlying complex traits. These integrative approaches support more informed selection decisions and accelerate genetic gain in sugarcane breeding programs. This review synthesizes recent technological developments and their practical applications in sugarcane improvement. It highlights the strategic implementation of transgenic and genome-editing technologies, genomic selection, and multi-omics integration to enhance yield potential and resistance to biotic and abiotic stresses, thereby contributing to sustainable sugarcane production and global food and bioenergy security. Full article
(This article belongs to the Special Issue Sugarcane Breeding and Biotechnology for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 1053 KB  
Article
Training and Competency Gaps for Shipping Decarbonization in the Era of Disruptive Technology: The Case of Panama
by Javier Eloy Diaz Jimenez, Eddie Blanco-Davis, Rosa Mary de la Campa Portela, Sean Loughney, Jin Wang and Ervin Vargas Wilson
Sustainability 2026, 18(2), 958; https://doi.org/10.3390/su18020958 (registering DOI) - 17 Jan 2026
Viewed by 130
Abstract
The maritime sector is undergoing a profound transformation driven by disruptive technologies and global decarbonization objectives, placing new demands on Maritime Education and Training (MET) systems. Equipping maritime professionals with competencies for low-carbon shipping is now as critical as technological advancement itself. This [...] Read more.
The maritime sector is undergoing a profound transformation driven by disruptive technologies and global decarbonization objectives, placing new demands on Maritime Education and Training (MET) systems. Equipping maritime professionals with competencies for low-carbon shipping is now as critical as technological advancement itself. This study examines how disruptive technologies can be effectively integrated into MET frameworks to support environmental sustainability, using Panama as a representative case study of a major flag and maritime service state. A mixed-methods approach was adopted, combining a structured literature review, expert surveys, and a multi-criteria decision-making analysis based on the Analytic Hierarchy Process (AHP). The findings reveal a significant misalignment between existing MET curricula and the competencies required for decarbonized maritime operations. Key gaps include limited training in alternative fuels, emissions measurement and reporting, energy-efficient technologies, digital analytics, and regulatory compliance. Stakeholders also reported fragmented training provision, uneven access to emerging technologies, and weak coordination between academia, industry, and regulators, particularly in developing contexts. The results highlight the urgent need for curriculum reform and stronger cross-sector collaboration to align MET with evolving technological and regulatory demands. The study provides an applied, evidence-based framework for MET reform, with insights transferable to other systems facing similar decarbonization challenges. Full article
(This article belongs to the Special Issue Sustainable Energy Systems and Renewable Generation—Second Edition)
Show Figures

Figure 1

Back to TopTop