Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = sustainable development of river valleys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3623 KiB  
Article
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
by Zhongyu Huang, Leilei Kou, Peng Hu, Haiyang Gao, Yanqing Xie and Liguo Zhang
Atmosphere 2025, 16(7), 886; https://doi.org/10.3390/atmos16070886 - 19 Jul 2025
Viewed by 227
Abstract
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, [...] Read more.
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, and dissipating using ERA5 reanalysis and IMERG precipitation estimates, and examined vertical microphysical structures using Dual-frequency Precipitation Radar (DPR) data from the Global Precipitation Measurement (GPM) satellite during the Meiyu period from 2014 to 2023. The results showed that convective heavy rainfall during the mature stage exhibits peak radar reflectivity and surface rainfall rates, with the largest near-surface mass weighted diameter (Dm ≈ 1.8 mm) and the smallest droplet concentration (dBNw ≈ 38). Downdrafts in the dissipating stage preferentially remove large ice particles, whereas sustained moisture influx stabilizes droplet concentrations. Stratiform heavy rainfall, characterized by weak updrafts, displays narrower particle size distributions. During dissipation, particle breakups dominate, reducing Dm while increasing dBNw. The analysis of the relationship between microphysical parameters and rainfall rate revealed that convective heavy rainfall shows synchronized growth of Dm and dBNw during the developing stage, with Dm peaking at about 2.1 mm near 70 mm/h before stabilizing in the mature stage, followed by small-particle dominance in the dissipating stage. In contrast, stratiform rainfall exhibits a “small size, high concentration” regime, where the rainfall rate correlates primarily with increasing dBNw. Additionally, convective heavy rainfall demonstrates about 22% higher precipitation efficiency than stratiform systems, while stratiform rainfall shows a 25% efficiency surge during the dissipation stage compared to other stages. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 3653 KiB  
Article
Perceptions and Adaptive Behaviors of Farmers
by Jiaojiao Wang, Ya Luo, Yajie Ruan, Shengtian Yang, Guotao Dong, Ruifeng Li, Wenhao Yin and Xiaoke Liang
Water 2025, 17(13), 1993; https://doi.org/10.3390/w17131993 - 2 Jul 2025
Viewed by 200
Abstract
A clear understanding of drought perceptions and adaptation behaviors adopted by farmers is an important way to cope with climate change and achieve sustainable agricultural development. Karst is a type of landscape where the dissolving of the bedrock has created sinkholes, sinking streams, [...] Read more.
A clear understanding of drought perceptions and adaptation behaviors adopted by farmers is an important way to cope with climate change and achieve sustainable agricultural development. Karst is a type of landscape where the dissolving of the bedrock has created sinkholes, sinking streams, caves, springs, and other characteristic features. The study took the Huajiang karst dry-hot river valley area located in the southwestern part of Guizhou as the study area and used questionnaire survey method, the index of perception and the diversity index of adaptation strategy to explore the risk perception, adaptation perception and adaptation behavior of farmers to non-climatic droughts in the subtropical karst dry-hot valleys. A total of 530 questionnaires were distributed and 520 were returned. The results show that (1) the farmers’ risk perception of drought is stronger than adaptation perception, which shows that although farmers are well aware of the possible risks posed by drought, their subjective initiative and motivation to adapt to drought are weaker; (2) in the face of drought, farmers prioritize selected non-farm measures for adaptation, followed by crop management and finally water resource management; and (3) compared to farmers in arid and semi-arid regions, those in karst hot-dry river valleys exhibit distinct adaptive behaviors in response to drought, particularly in water resource management. Full article
Show Figures

Figure 1

24 pages, 15580 KiB  
Article
Groundwater Potential Mapping in Semi-Arid Areas Using Integrated Remote Sensing, GIS, and Geostatistics Techniques
by Ahmed El-sayed Mostafa, Mahrous A. M. Ali, Faissal A. Ali, Ragab Rabeiy, Hussein A. Saleem, Mosaad Ali Hussein Ali and Ali Shebl
Water 2025, 17(13), 1909; https://doi.org/10.3390/w17131909 - 27 Jun 2025
Cited by 1 | Viewed by 621 | Correction
Abstract
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information [...] Read more.
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information systems (GIS), geostatistics, and field validation with water wells to develop a comprehensive groundwater potential mapping framework. Sentinel-2 imagery, ALOS PALSAR DEM, and SMAP datasets were utilized to derive critical thematic layers, including land use/land cover, vegetation indices, soil moisture, drainage density, slope, and elevation. The results of the groundwater potentiality map of the study area from RS reveal four distinct zones: low, moderate, high, and very high. The analysis indicates a notable spatial variability in groundwater potential, with “high” (34.1%) and “low” (33.8%) potential zones dominating the landscape, while “very high” potential areas (4.8%) are relatively scarce. The limited extent of “very high” potential zones, predominantly concentrated along the Nile River valley, underscores the river’s critical role as the primary source of groundwater recharge. Moderate potential zones include places where infiltration is possible but limited, such as gently sloping terrain or regions with slightly broken rock structures, and they account for 27.3%. These layers were combined with geostatistical analysis of data from 310 groundwater wells, which provided information on static water level (SWL) and total dissolved solids (TDS). GIS was employed to assign weights to the thematic layers based on their influence on groundwater recharge and facilitated the spatial integration and visualization of the results. Geostatistical interpolation methods ensured the reliable mapping of subsurface parameters. The assessment utilizing pre-existing well data revealed a significant concordance between the delineated potential zones and the actual availability of groundwater resources. The findings of this study could significantly improve groundwater management in semi-arid/arid zones, offering a strategic response to water scarcity challenges. Full article
Show Figures

Figure 1

17 pages, 6026 KiB  
Article
Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data
by Yanfu Bai, Shijie Zhou, Jingjing Wu, Haijun Zeng, Bingyu Luo, Mei Huang, Linyan Qi, Wenyan Li, Mani Shrestha, Abraham A. Degen and Zhanhuan Shang
Remote Sens. 2025, 17(13), 2114; https://doi.org/10.3390/rs17132114 - 20 Jun 2025
Viewed by 309
Abstract
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral [...] Read more.
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral characteristics of alpine grasslands and an accurate assessment of their restoration status are still lacking. In this study, we collected the canopy hyperspectral data of plant communities in the growing season from severely degraded grasslands and actively restored grasslands of different ages in 13 counties of the “Three-River Headwaters Region” and determined the absorption characteristics in the red-light region as well as the trends of red-light parameters. We generated a model for estimating the crude protein content of plant communities in different grasslands based on the screened spectral characteristic covariates. Our results revealed that (1) the raw reflectance parameters of the near-infrared band spectra can distinguish alpine Kobresia meadow from extremely degraded and actively restored grasslands; (2) the wavelength value red-edge position (REP), corresponding to the highest point of the first derivative (FD) spectral reflectance (680–750 nm), can identify the extremely degraded grassland invaded by Artemisia frigida; and (3) the red valley reflectance (Rrw) parameter of the continuum removal (CR) spectral curve (550–750 nm) can discriminate among actively restored grasslands of different ages. In comparison with the Kobresia meadow, the predictive model for the actively restored grassland was more accurate, reaching an accuracy of over 60%. In conclusion, the predictive modeling of forage crude protein content for actively restored grasslands is beneficial for grassland management and sustainable development policies. Full article
Show Figures

Graphical abstract

28 pages, 6036 KiB  
Article
Supply–Demand Assessment of Cultural Ecosystem Services in Urban Parks of Plateau River Valley City: A Case Study of Lhasa
by Shouhang Zhao, Yuqi Li, Ziqian Nie and Yunyuan Li
Land 2025, 14(6), 1301; https://doi.org/10.3390/land14061301 - 18 Jun 2025
Viewed by 504
Abstract
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped [...] Read more.
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped by sociocultural and spatial geographic factors, playing a crucial role in optimizing urban landscape structures and enhancing residents’ well-being. However, current research generally lacks adaptive evaluation frameworks and quantitative methods, particularly for cities with significant spatial and cultural diversity. To address this gap, this study examines the central district of Lhasa as a case study to develop a CES supply–demand evaluation framework suitable for plateau river valley cities. The study adopts the spatial integration analysis method to establish an indicator system centered on “recreational potential–recreational opportunities” and “social needs–material needs,” mapping the spatial distribution and matching characteristics of supply and demand at the community scale. The results reveal that: (1) in terms of supply–demand balance, 25.67% of communities experience undersupply, predominantly in the old city cluster, while 16.22% experience oversupply, mainly in key development zones, indicating a notable supply–demand imbalance; (2) in terms of supply–demand coupling coordination, 55.11% and 38.14% of communities are in declining and transitional stages, respectively. These communities are primarily distributed in near-mountainous and peripheral urban areas. Based on these findings, four urban landscape optimization strategies are proposed: culturally driven urban park development, demand-oriented park planning, expanding countryside parks along mountain ridges, and revitalizing existing parks. These results provide theoretical support and decision-making guidance for optimizing urban park green space systems in plateau river valley cities. Full article
Show Figures

Figure 1

24 pages, 4178 KiB  
Article
Spatial Pattern and Driving Mechanisms of Settlements in the Agro-Pastoral Ecotone of Northern China: A Case Study of Eastern Inner Mongolia
by Ziqi Zhang, Xiaotong Wu, Song Chen, Lyuyuan Jia, Qianhui Wang, Zhiqing Zhang, Mingzhe Li, Ruofei Jia and Qing Lin
Land 2025, 14(6), 1268; https://doi.org/10.3390/land14061268 - 12 Jun 2025
Viewed by 1006
Abstract
Rural settlements in agro-pastoral ecotones reflect the complex interplay between natural constraints and human land use, particularly in ecologically sensitive and climatically transitional regions. This study investigated the agro-pastoral ecotone of eastern Inner Mongolia, a representative region characterized by environmental heterogeneity and competing [...] Read more.
Rural settlements in agro-pastoral ecotones reflect the complex interplay between natural constraints and human land use, particularly in ecologically sensitive and climatically transitional regions. This study investigated the agro-pastoral ecotone of eastern Inner Mongolia, a representative region characterized by environmental heterogeneity and competing land use functions. Landscape pattern indices, ordinary least squares (OLS) regression, and geographically weighted regression (GWR) were employed to analyze settlement morphology and its environmental determinants. The results reveal a distinct east–west spatial gradient: settlements are larger and more concentrated in low-elevation plains with favorable hydrothermal conditions, whereas those in mountainous and pastoral areas are smaller, sparser, and more fragmented. OLS regression revealed a strong positive correlation between arable land and settlement density (r > 0.8), whereas elevation and slope were significantly negatively correlated. GWR results further highlight spatial non-stationarity in the influence of key environmental factors. Average annual temperature generally shows a positive influence on settlement density, particularly in the central and eastern agricultural areas. In contrast, forest cover is predominantly negative, especially in the Greater Khingan Mountains. Proximity to water resources consistently enhances settlement density, although the magnitude of this effect varies across regions. Based on spatial characteristics and land use structure, rural settlements were categorized into four types: alpine pastoral, agro-pastoral transitional, river valley agricultural, and forest ecological. This study provides empirical evidence that natural factors (topography, climate, and hydrology) and land use variables (farmland, pasture, and woodland) collectively shape rural settlement patterns in transitional landscapes. The findings offer methodological and practical insights for targeted land management and sustainable rural development in agro-pastoral regions under ecological and socioeconomic pressures. Full article
(This article belongs to the Special Issue Sustainable Evaluation Methodology of Urban and Regional Planning)
Show Figures

Figure 1

26 pages, 9089 KiB  
Article
Hydrological Effects of the Planned Power Project and Protection of the Natura 2000 Areas: A Case Study of the Adamów Power Plant
by Tomasz Kałuża, Ireneusz Laks, Jolanta Kanclerz, Ewelina Janicka-Kubiak, Mateusz Hämmerling and Stanisław Zaborowski
Energies 2025, 18(12), 3079; https://doi.org/10.3390/en18123079 - 11 Jun 2025
Viewed by 389
Abstract
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role [...] Read more.
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role in protecting bird habitats and biodiversity, and any changes in water management can affect their condition. This paper presents a detailed hydrological analysis of the Warta River and Jeziorsko Reservoir for 2018–2022, with a focus on low-flow periods. The Peak Over Threshold (POT) method and Q70% threshold were used to identify the frequency, length, and seasonality of low-flow periods in three water gauge profiles: Uniejów, Koło, and Sławsk. The longest recorded low-flow episode lasted 167 days. The permissible water intake for the investment (up to 0.8 m3∙s–1) is in accordance with the applicable permits and is used mainly for cooling purposes. Calculations indicate that under maximum intake conditions, the water level reduction in the Jeziorsko Reservoir would be between 1.7 and 2.0 mm∙day–1, depending on the current level of filling. Such changes do not disrupt the natural functions of the reservoir under typical conditions, although during prolonged droughts, they can pose a threat to protected areas. An analysis of the impact of periodic water overflow into the Kiełbaska Duża River indicates its negligible effect on water levels in the reservoir and flows in the Warta River. The results underscore the need for the integrated management of water and power resources, considering the increasing variability in hydrological conditions. Ensuring a balance between industrial needs and environmental protection is key to minimizing the potential impact of investments and implementing sustainable development principles. Full article
Show Figures

Figure 1

22 pages, 11337 KiB  
Article
Toward Landscape-Based Groundwater Recharge in Arid Regions: A Case Study of Karachi, Pakistan
by Amna Riaz, Steffen Nijhuis and Inge Bobbink
Sustainability 2025, 17(11), 4931; https://doi.org/10.3390/su17114931 - 27 May 2025
Viewed by 632
Abstract
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. [...] Read more.
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. This over-exploitation has led to the depletion of aquifers, land infertility, saline intrusion, land subsidence, and harm to hydrological ecosystems. Globally, numerous studies have documented the potential of groundwater recharge (GWR) using GIS and remote sensing techniques. However, its practical application in a landscape context for sustainable urban and regional development is underexplored. In this study, we developed the landscape-based GWR concept by conducting a case study of Karachi city (Pakistan). We took physical landscape (surface and sub-surface) features and groundwater recharge potential as a base for design and planning to improve groundwater recharge and urban landscape. Moreover, we highlighted the added values of this approach besides recharging the depleted ground hydrological conditions and improving the urban landscape condition (i.e., social–ecological inclusiveness, sustainable future development, and interdisciplinary collaboration). The results indicated a negative impact of urbanization on groundwater recharge, especially in the alluvial zones and river valleys, underscoring the need for a spatial approach to safeguard GWR and guide development. Through this study, we propose that landscape-based GWR can be one of the potential solutions not only for the critical water crisis faced by rapidly urbanizing arid megacities but also for improving the overall quality of life and urban landscape. Furthermore, this holistic approach toward groundwater recharge can guide future urban development patterns, preservation of high groundwater recharge potential sites, and evolution toward sustainable development in arid regions where groundwater is the most significant yet vulnerable resource. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
Show Figures

Figure 1

15 pages, 2210 KiB  
Article
A New Insight into Sulfate Contamination in Over-Exploited Groundwater Areas: Integrating Multivariate and Geostatistical Techniques
by Li Wang, Qi Wang, Wenchang Li, Yifeng Liu and Qianqian Zhang
Water 2025, 17(10), 1530; https://doi.org/10.3390/w17101530 - 19 May 2025
Cited by 1 | Viewed by 514
Abstract
The issue of sulfate (SO42−) pollution in groundwater has already attracted widespread attention from scientists. However, at the large-scale regional level, especially in areas with groundwater overexploitation, the pollution mechanisms and sources of sulfate remain unclear. This study innovatively investigates [...] Read more.
The issue of sulfate (SO42−) pollution in groundwater has already attracted widespread attention from scientists. However, at the large-scale regional level, especially in areas with groundwater overexploitation, the pollution mechanisms and sources of sulfate remain unclear. This study innovatively investigates the spatial distribution characteristics and sources of SO42− in the groundwater of the Hutuo River alluvial fan area, an understudied region facing significant environmental challenges due to overexploitation. Utilizing a combination of hydrochemical analysis, multivariate statistical methods, and geostatistical techniques, we reveal that the mean concentration of SO42− is significantly higher (127 mg/L) in overexploited areas, with an exceedance rate of 5.1%. Our findings uncover substantial spatial heterogeneity in SO42− concentrations, with particularly high levels in the river valley plain (RVP) (175 mg/L) and the upper area of the alluvial fan (UAF) (169 mg/L), which we attribute to distinct human activities. A novel contribution of our study is the identification of groundwater depth as a critical factor influencing SO42− distribution (p < 0.001). We also demonstrate that the higher proportion of sulfate-type waters in overexploited areas is primarily due to the accelerated oxidation of sulfide minerals caused by overexploitation. Principal component analysis (PCA) and correlation analysis further identify the main sources of SO42− as industrial wastewater, domestic sewage, the dissolution of evaporites, and the oxidation of sulfide minerals. By integrating geostatistical techniques, we present the spatial distribution of sulfate pollution sources at a fine scale, providing a comprehensive and spatially explicit understanding of the pollution dynamics. These results offer a novel scientific basis for developing targeted strategies to control sulfate pollution and protect the sustainable use of regional groundwater resources. Our study thus fills a critical knowledge gap and provides actionable insights for groundwater management in similar regions facing overexploitation challenges. Full article
Show Figures

Figure 1

23 pages, 8350 KiB  
Article
Interactions and Driving Force of Land Cover and Ecosystem Service Before and After the Earthquake in Wenchuan County
by Jintai Pang, Li He, Zhengwei He, Wanting Zeng, Yan Yuan, Wenqian Bai and Jiahua Zhao
Sustainability 2025, 17(7), 3094; https://doi.org/10.3390/su17073094 - 31 Mar 2025
Cited by 1 | Viewed by 380
Abstract
The Wenchuan earthquake, an unexpected magnitude 8.0 mega-earthquake that struck on 12 May 2008, significantly changed land cover (LC), particularly affecting vegetation and rock cover. However, the long-term effects of LC changes on ecosystem services (ESs) remain unclear in earthquake-affected regions, especially across [...] Read more.
The Wenchuan earthquake, an unexpected magnitude 8.0 mega-earthquake that struck on 12 May 2008, significantly changed land cover (LC), particularly affecting vegetation and rock cover. However, the long-term effects of LC changes on ecosystem services (ESs) remain unclear in earthquake-affected regions, especially across different spatial scales. This study, focusing on Wenchuan County, employs a multi-model framework that integrates fractional vegetation coverage (FVC), rock exposure rate (FR), and ecosystem services (ESs), combining correlation analysis, geographically weighted regression (GWR), Self-organizing map (SOM) clustering, and XGBoost-SHAP model, to analyze the spatiotemporal dynamics, interrelationships, and driving mechanisms of land cover (LC) and ESs before and after the earthquake. Results show that: (1) From 2000 to 2020, FVC and FR fluctuated markedly under earthquake influence, with slight declines in habitat quality (HQ) and carbon storage (CS) and notable improvements in soil conservation (SC) and water yield (WY). (2) With increasing elevation, the FVC–CS–SC group exhibited a downward trend and synergy, while the FR–HQ–WY group increased and also showed synergy; trade-offs and synergies became more pronounced at larger scales, displaying strong spatiotemporal heterogeneity. (3) Elevation (explaining 10–60% of variance) was the main driver for LC and ESs, with land use, slope, human activities, climate, and geological conditions significantly impacting individual indicators. At the same time, the existing geological hazard points are mainly concentrated along both sides of the river valleys, which may be associated with intensified human–land conflicts. These findings offer valuable insights into ecological restoration and sustainable development in earthquake-affected regions. Full article
Show Figures

Figure 1

26 pages, 8108 KiB  
Article
Investigating Groundwater–Surface Water Interactions and Transformations in a Typical Dry–Hot Valley Through Environmental Isotopes Analysis
by Jun Li, Honghao Liu, Yizhi Sheng, Duo Han, Keqiang Shan, Zhiping Zhu and Xuejian Dai
Water 2025, 17(6), 775; https://doi.org/10.3390/w17060775 - 7 Mar 2025
Viewed by 776
Abstract
This study investigates the hydrological processes and water body transformation mechanisms in the Yuanmou dry–hot valley, focusing on precipitation, well water, spring water, river water, and reservoir water, during both wet and dry seasons. The spatiotemporal characteristics and significance of the hydrogen and [...] Read more.
This study investigates the hydrological processes and water body transformation mechanisms in the Yuanmou dry–hot valley, focusing on precipitation, well water, spring water, river water, and reservoir water, during both wet and dry seasons. The spatiotemporal characteristics and significance of the hydrogen and oxygen stable isotopes across these water bodies were analyzed. Key findings included the following: (i) Seasonal variations in precipitation, river water, and shallow groundwater were minimal, and were primarily driven by differences in water vapor sources and transport distances during wet and dry seasons. The seasonal effects of mid-deep groundwater and reservoir water were influenced by leakage recharge from deep aquifers and temperature variations, respectively. (ii) The groundwater line-conditioned excess (lc-excess) deviated significantly from the Local Meteoric Water Line, indicating that precipitation recharge occurred primarily through slow infiltration piston flow with significant isotopic fractionation. (iii) River water was recharged by precipitation, deep groundwater, and spring water; well water by precipitation and lateral groundwater inflow; spring water by deep groundwater; and reservoir water by precipitation, groundwater, and water transfer, with strong evaporation effects. (iv) Using a binary isotope mass balance model, the recharge ratios of precipitation and groundwater to surface water were calculated to be 40% and 60%, respectively. Additionally, during the wet season, the proportion of groundwater recharge to river water increased. This study provides valuable insights into hydrological cycle processes in dry–hot valleys and offers a scientific basis for the sustainable development and management of water resources in arid regions. Full article
Show Figures

Figure 1

28 pages, 99998 KiB  
Article
Spatiotemporal Responses and Vulnerability of Vegetation to Drought in the Ili River Transboundary Basin: A Comprehensive Analysis Based on Copula Theory, SPEI, and NDVI
by Yaqian Li, Jianhua Yang, Jianjun Wu, Zhenqing Zhang, Haobing Xia, Zhuoran Ma and Liang Gao
Remote Sens. 2025, 17(5), 801; https://doi.org/10.3390/rs17050801 - 25 Feb 2025
Cited by 3 | Viewed by 829
Abstract
The Ili River Transboundary Basin is an important area within the Belt and Road Initiative, and its ecological security impacts China–Kazakhstan diplomatic relations and the building of the Belt and Road Initiative. Using the copula method, this study quantifies the vulnerability of vegetation [...] Read more.
The Ili River Transboundary Basin is an important area within the Belt and Road Initiative, and its ecological security impacts China–Kazakhstan diplomatic relations and the building of the Belt and Road Initiative. Using the copula method, this study quantifies the vulnerability of vegetation to drought in the Ili River Transboundary Basin based on the Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The vulnerability of vegetation in the Ili River Transboundary Basin is highest in June, with the proportion of highly vulnerable areas reaching 63.29% under extreme drought conditions. As the drought severity increases, the probability of vegetation loss rises, with vegetation being affected the most in June. From May to June, drought-prone areas are mainly located in Almaty Oblast and East Kazakhstan. From July to September, drought-prone areas are mainly found in the Ili River Valley and southeastern Almaty Oblast. Rainfed croplands are most susceptible to drought, while, for irrigated croplands, higher drought severity enhances the mitigating effect of irrigation measures. Vegetation areas are most affected by drought in semi-arid regions, particularly in summer. These findings offer valuable scientific support for drought management and sustainable development in the region. Full article
Show Figures

Figure 1

26 pages, 13415 KiB  
Article
A Methodology for the Multitemporal Analysis of Land Cover Changes and Urban Expansion Using Synthetic Aperture Radar (SAR) Imagery: A Case Study of the Aburrá Valley in Colombia
by Ahmed Alejandro Cardona-Mesa, Rubén Darío Vásquez-Salazar, Juan Camilo Parra, César Olmos-Severiche, Carlos M. Travieso-González and Luis Gómez
Remote Sens. 2025, 17(3), 554; https://doi.org/10.3390/rs17030554 - 6 Feb 2025
Viewed by 2084
Abstract
The Aburrá Valley, located in the northwestern region of Colombia, has undergone significant land cover changes and urban expansion in recent decades, driven by rapid population growth and infrastructure development. This region, known for its steep topography and dense urbanization, faces considerable environmental [...] Read more.
The Aburrá Valley, located in the northwestern region of Colombia, has undergone significant land cover changes and urban expansion in recent decades, driven by rapid population growth and infrastructure development. This region, known for its steep topography and dense urbanization, faces considerable environmental challenges. Monitoring these transformations is essential for informed territorial planning and sustainable development. This study leverages Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 mission, covering 2017–2024, to propose a methodology for the multitemporal analysis of land cover dynamics and urban expansion in the valley. The novel proposed methodology comprises several steps: first, monthly SAR images were acquired for every year under study from 2017 to 2024, ensuring the capture of surface changes. These images were properly calibrated, rescaled, and co-registered. Then, various multitemporal fusions using statistics operations were proposed to detect and find different phenomena related to land cover and urban expansion. The methodology also involved statistical fusion techniques—median, mean, and standard deviation—to capture urbanization dynamics. The kurtosis calculations highlighted areas where infrequent but significant changes occurred, such as large-scale construction projects or sudden shifts in land use, providing a statistical measure of surface variability throughout the study period. An advanced clustering technique segmented images into distinctive classes, utilizing fuzzy logic and a kernel-based method, enhancing the analysis of changes. Additionally, Pearson correlation coefficients were calculated to explore the relationships between identified land cover change classes and their spatial distribution across nine distinct geographic zones in the Aburrá Valley. The results highlight a marked increase in urbanization, particularly along the valley’s periphery, where previously vegetated areas have been replaced by built environments. Additionally, the visual inspection analysis revealed areas of high variability near river courses and industrial zones, indicating ongoing infrastructure and construction projects. These findings emphasize the rapid and often unplanned nature of urban growth in the region, posing challenges to both natural resource management and environmental conservation efforts. The study underscores the need for the continuous monitoring of land cover changes using advanced remote sensing techniques like SAR, which can overcome the limitations posed by cloud cover and rugged terrain. The conclusions drawn suggest that SAR-based multitemporal analysis is a robust tool for detecting and understanding urbanization’s spatial and temporal dynamics in regions like the Aburrá Valley, providing vital data for policymakers and planners to promote sustainable urban development and mitigate environmental degradation. Full article
Show Figures

Figure 1

20 pages, 13611 KiB  
Article
Spatiotemporal Evolution Characteristics and Causative Analysis of Toponymic Cultural Landscapes in Traditional Villages in Northern Guangdong, China
by Jun Li, Yao Xiao, Jiangyu Yan, Chen Liang and Haiyan Zhong
Sustainability 2025, 17(1), 271; https://doi.org/10.3390/su17010271 - 2 Jan 2025
Cited by 3 | Viewed by 1408
Abstract
This research focuses on the cultural landscape of traditional village toponyms in the northern Guangdong region, aiming to reveal the spatial distribution, site selection characteristics, temporal evolution patterns, and influencing factors of toponyms. The study employs quantitative statistics and ArcGIS spatial analysis methods, [...] Read more.
This research focuses on the cultural landscape of traditional village toponyms in the northern Guangdong region, aiming to reveal the spatial distribution, site selection characteristics, temporal evolution patterns, and influencing factors of toponyms. The study employs quantitative statistics and ArcGIS spatial analysis methods, combining place name classification and kernel density analysis to explore the mechanisms through which natural and human factors influence place name distribution. The main findings are as follows: (1) Traditional village toponyms exhibit a characteristic of “large dispersion and small aggregation” with high-density areas mainly concentrated in Meizhou and Qingyuan. (2) Natural toponyms dominate, showing a strong correlation with river valley and plain environments, while village location demonstrates hydrophilicity and terrain suitability. Human toponyms enrich the landscape’s connotation through cultural identity and social memory, reflecting the profound influences of Confucian agricultural education traditions and immigrant cultures. (3) Economic activities and population migrations during historical periods have significantly shaped the cultural landscape of toponyms, not only promoting the evolution of village site selection and distribution patterns but also profoundly affecting naming conventions for toponyms. This research emphasizes the importance of protecting the cultural landscape of toponyms while achieving a symbiotic relationship between cultural value and economic benefits through regional cultural tourism development, laying a theoretical foundation for the long-term preservation and sustainable development of regional cultural heritage. Full article
(This article belongs to the Special Issue Cultural Heritage Conservation and Sustainable Development)
Show Figures

Figure 1

12 pages, 4736 KiB  
Article
Model-Supported Groundwater Table Control on the Vistula River Plain—Methodological Approach
by Andrzej Brandyk, Ryszard Oleszczuk, Grzegorz Majewski, Mariusz Barszcz and Katarzyna Rozbicka
Sustainability 2024, 16(24), 11190; https://doi.org/10.3390/su162411190 - 20 Dec 2024
Viewed by 782
Abstract
At present, a sustainable and wise management of water resources requires more insight into drainage/irrigation practices in river valleys. Since efficient sub-irrigation, based on reliable hydrometeorological forecasts, has been extensively considered with respect to water saving, the proper modeling tools were subsequently developed. [...] Read more.
At present, a sustainable and wise management of water resources requires more insight into drainage/irrigation practices in river valleys. Since efficient sub-irrigation, based on reliable hydrometeorological forecasts, has been extensively considered with respect to water saving, the proper modeling tools were subsequently developed. An original, conceptual model for the management of drainage/irrigation systems was presented, taking into account the water inflow and storage in the soil profile. The aim was to propose a relatively simple procedure with parameters that relate to easily obtainable variables, e.g., groundwater table depth in the form of uncomplicated equations. The results of this tool were compared with the groundwater heads simulated using the recognized, common Modflow model. The comparisons proved a close match of the modeled variables and point at possibilities to calibrate it on polder areas. Full article
Show Figures

Figure 1

Back to TopTop