Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = sustainable ceramic materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6022 KiB  
Review
Hydrogen Cryomagnetic a Common Solution for Metallic and Oxide Superconductors
by Bartlomiej Andrzej Glowacki
Materials 2025, 18(15), 3665; https://doi.org/10.3390/ma18153665 - 4 Aug 2025
Viewed by 116
Abstract
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could [...] Read more.
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could transform superconducting technologies, making them economically viable and environmentally sustainable for a variety of critical applications. The discussion aims to provide insights into the intersection of metallic and ceramic superconductors with the hydrogen economy and to chart a path towards scalable and impactful solutions in the energy sector. Full article
(This article belongs to the Special Issue Advanced Superconducting Materials and Technology)
Show Figures

Graphical abstract

16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Viewed by 195
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

19 pages, 2688 KiB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Viewed by 668
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 285
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 503
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 734 KiB  
Article
The Influence of Electrostatic Separation Parameters on the Recovery of Metals from Pre-Crushed PCBs
by Antonio Manuel Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Jose Maria Gallardo, Ranier Enrique Sepúlveda-Ferrer and Ernesto Chicardi
Metals 2025, 15(8), 826; https://doi.org/10.3390/met15080826 - 23 Jul 2025
Viewed by 246
Abstract
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The [...] Read more.
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The process exploits the differences in electrical properties between conductive metals and non-conductive polymers and ceramics, facilitating their separation through applied electric fields. The raw materials were pre-treated via mechanical comminution using shredders and hammer mills to achieve an optimal particle size distribution (<3 mm), which enhances separation efficiency. Ferrous materials were removed prior to electrostatic separation to improve process selectivity. Key operational parameters, including particle size, charge accumulation, environmental conditions, and separation efficiency, were systematically analysed. The results demonstrate that electrostatic separation effectively recovers high-value metals such as copper and gold while minimizing material losses. Additionally, the process contributes to the sustainability of e-waste recycling by enabling the recovery of non-metallic fractions for potential secondary applications. This work underscores the significance of electrostatic separation as a viable technique for e-waste management and highlights optimization strategies for enhancing its performance in large-scale recycling operations. Full article
Show Figures

Figure 1

22 pages, 4859 KiB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 450
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 241
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

30 pages, 9042 KiB  
Article
Innovative Geoproduct Development for Sustainable Tourism: The Case of the Safi Geopark Project (Marrakesh–Safi Region, Morocco)
by Mustapha El Hamidy, Ezzoura Errami, Carlos Neto de Carvalho and Joana Rodrigues
Sustainability 2025, 17(14), 6478; https://doi.org/10.3390/su17146478 - 15 Jul 2025
Viewed by 713
Abstract
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local [...] Read more.
With the growing impact of environmental challenges, the need for well-planned and effectively executed actions to support progress and sustainable social development has become increasingly evident. Geoparks play a vital role in this endeavor by fostering the development of products that celebrate local heritage and promote its conservation, utilizing the natural and cultural resources unique to each region in sustainable ways. Geoproducts, in particular, aim to enrich cultural identity and elevate the value of the landscape and geodiversity by integrating communities into innovative approaches and technologies, engaging them in commercialization, and ensuring sustainability alongside social inclusion. Within the framework of the Safi Geopark Project, this article delves into the concept of geoproducts, their definitions, and their potential to bolster local identity and social and economic development. Leveraging the abundant geological and cultural resources of Safi province, the study presents both tangible and intangible geoproducts that merge traditional craftsmanship with modern sustainability practices. Notable examples include ammonite-inspired ceramics, educational materials, and eco-friendly cosmetics, each carefully designed to reflect and celebrate the region’s geoheritage. This article underscores the crucial role of community involvement in the creation of geoproducts, highlighting their impact on conservation, education, and the promotion of sustainable tourism. By proposing actionable strategies, this study not only broadens the understanding of geoproducts within geoparks but also reinforces their importance as instruments for regional development, heritage conservation, and sustainable economic growth. Full article
Show Figures

Figure 1

39 pages, 3281 KiB  
Review
Sustainable Alkali-Activated and Geopolymer Materials: What Is the Future for Italy?
by Laura Ricciotti, Daniele Lucariello, Valeria Perrotta, Antonio Apicella and Raffaella Aversa
Recycling 2025, 10(4), 140; https://doi.org/10.3390/recycling10040140 - 15 Jul 2025
Viewed by 572
Abstract
Using innovative and sustainable materials has become crucial for developed countries. Reusing waste as a secondary raw material in industrial processes central to the circular economy could enhance environmental sustainability and support local economies. Building materials such as Portland cement have a significant [...] Read more.
Using innovative and sustainable materials has become crucial for developed countries. Reusing waste as a secondary raw material in industrial processes central to the circular economy could enhance environmental sustainability and support local economies. Building materials such as Portland cement have a significant environmental impact due to greenhouse gas emissions and construction and demolition waste (CDW), which is challenging to recycle. Research into sustainable alternatives is, therefore, essential. The European Union has set ambitious targets to reduce greenhouse gas emissions by 55% by 2030 and achieve climate neutrality by 2050. The National Recovery and Resilience Plan (PNRR) supports the green transition in Italy by promoting sustainable materials like geopolymers. These ceramic-like materials are based on aluminosilicates obtained through the chemical activation of waste rich in silica and aluminosilicate compounds. Though promising, these materials require further research to address challenges like long-term durability and chemical variability. Collaboration between scientific research and industry is essential to develop specific protocols and suitable infrastructures. This article provides a critical review of the advancements and challenges in using alkali-activated waste as construction binders, focusing on Italy, and encourages the exploration of alternative sustainable materials beyond conventional Portland cement. Full article
Show Figures

Figure 1

51 pages, 8938 KiB  
Review
Sustainability of Recycling Waste Ceramic Tiles in the Green Concrete Industry: A Comprehensive Review
by Ghasan Fahim Huseien, Zahraa Hussein Joudah, Mohammad Hajmohammadian Baghban, Nur Hafizah A. Khalid, Iman Faridmehr, Kaijun Dong, Yuping Li and Xiaobin Gu
Buildings 2025, 15(14), 2406; https://doi.org/10.3390/buildings15142406 - 9 Jul 2025
Viewed by 687
Abstract
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition [...] Read more.
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition debris. WCTs do not decompose easily, leading to long-term accumulation in landfills and occupying a significant amount of landfill space, which has substantial environmental impacts. Recycling WCTs offers several critical ecological benefits, including reducing landfill waste and pollution, conserving natural resources, lowering energy consumption, and supporting the circular economy, which in turn contributes to sustainable construction and waste management practices. In green concrete manufacturing, WCTs are widely utilized as replacements for cement, fine, and coarse aggregates, and the recycling level in the concrete industry is an increasingly explored practice aimed at promoting sustainability and reducing construction waste. From this view, this paper reports the innovative technologies, advancements in green concrete performance, and development trends in the reuse of WCTs in the production of systems. The effects of WCTs on fresh, engineering, microstructural, and durable properties, as well as their environmental performance, are reviewed. In conclusion, the use of technologies for recycling WCTs has demonstrated potential in promoting sustainability and supporting the transition toward a more environmentally friendly construction industry. This approach offers a practical contribution to sustainable development and represents significant progress in closing the recycling loop within the construction sector. Full article
Show Figures

Figure 1

18 pages, 4306 KiB  
Article
Optimizing the Thermal Treatment of Mining-Waste-Amended Clays for Ceramic Aggregates in Pavement Applications
by Murilo Miguel Narciso, Lisley Madeira Coelho, Sergio Neves Monteiro and Antônio Carlos Rodrigues Guimarães
Materials 2025, 18(13), 3180; https://doi.org/10.3390/ma18133180 - 4 Jul 2025
Viewed by 329
Abstract
Mining activities generate large volumes of tailings with significant environmental impact but also the potential for sustainable reuse in construction materials. This study evaluates the production of ceramic aggregates from mixtures of clay, sand, and iron ore waste subjected to thermal treatment at [...] Read more.
Mining activities generate large volumes of tailings with significant environmental impact but also the potential for sustainable reuse in construction materials. This study evaluates the production of ceramic aggregates from mixtures of clay, sand, and iron ore waste subjected to thermal treatment at temperatures ranging from 600 to 1100 °C. The influence of calcination temperature on mineralogical transformations and mechanical integrity was investigated using X-ray diffraction (XRD) and the α-Treton parameter, derived from standardized impact resistance testing. The results indicate that the formation of metakaolinite between 700 and 900 °C enhances mechanical resistance, while higher temperatures (>900 °C) lead to structural degradation, followed by partial recovery due to mullite crystallization. The α-Treton curve exhibited clear correlation with the phase changes identified by XRD, demonstrating its applicability as a low-cost, sensitive proxy for optimizing thermal activation. A simplified methodology is proposed to optimize the thermal activation of such materials by correlating firing temperature with mineralogical evolution and mechanical integrity, contributing to the development of sustainable ceramic aggregates for pavement applications. Full article
Show Figures

Figure 1

13 pages, 881 KiB  
Article
Sustainable Concrete Using Ceramic Tile Waste as a Substitute for Brick Aggregate
by Kamal Hosen and Alina Bărbulescu
Materials 2025, 18(13), 3093; https://doi.org/10.3390/ma18133093 - 30 Jun 2025
Viewed by 524
Abstract
Recycled materials have gained extensive recognition in many industrial sectors for enhancing sustainability and reducing environmental impacts. Combining ceramic tile waste (CTW) in concrete mixes with recycled aggregate will help lower natural aggregate demand and reduce the amount sent to landfill. This paper [...] Read more.
Recycled materials have gained extensive recognition in many industrial sectors for enhancing sustainability and reducing environmental impacts. Combining ceramic tile waste (CTW) in concrete mixes with recycled aggregate will help lower natural aggregate demand and reduce the amount sent to landfill. This paper aims to study the mechanical properties of CTW in concrete mixes as a brick aggregate replacement and its impact on concrete strength and durability. To evaluate and assess their strength and durability, three types of concrete cubes were prepared using 20%, 40%, and 70% of waste ceramic tiles as a replacement for coarse aggregate. Two kinds of concrete samples were also prepared with conventional coarse aggregate as the control specimen (CC). A 1:2:4 concrete mixed ratio was used in this research with a 0.50 water–cement ratio. The samples were tested after 14 days and 28 days to assess their mechanical properties, including strength and durability. When CTW was added to concrete mixtures instead of brick chips, the mechanical strength rose considerably, and the water absorption performance increased. Moreover, replacing brick chips with ceramic waste in concrete could have significant environmental benefits. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

17 pages, 6578 KiB  
Article
Research on the Influence Law and Mechanism of Regenerated Ceramic Tile Form and Replacement Rate on the Mechanical Properties of Ultra-High-Performance Concrete
by Xiuying Yang, Yiwu Xing, Zhen Wang, Shixin Duan, Guodong Zhao, Jie Song and Zhaohui Xiao
Materials 2025, 18(13), 3028; https://doi.org/10.3390/ma18133028 - 26 Jun 2025
Viewed by 359
Abstract
Ultra-high-performance concrete (UHPC) has gained widespread application across various domains owing to its superior properties. Nevertheless, the high cement content and associated costs present challenges, including significant shrinkage of the cement matrix and economic considerations. Using industrial by-products or waste to replace some [...] Read more.
Ultra-high-performance concrete (UHPC) has gained widespread application across various domains owing to its superior properties. Nevertheless, the high cement content and associated costs present challenges, including significant shrinkage of the cement matrix and economic considerations. Using industrial by-products or waste to replace some raw materials is one of the effective solutions. Meanwhile, China’s ceramic industry generates a large amount of waste every year. Applying ceramics in UHPC can effectively solve these problems. This study explores the use of recycled tile waste as a sustainable alternative to reduce the use of natural aggregates and cement and enhance the performance of UHPC. To investigate the impact of recycled ceramics on the mechanical properties of UHPC, three preparation methods were employed: (1) single incorporation of ceramic tile aggregate (CTA) to replace fine aggregates (0–100%), (2) single incorporation of ceramic tile powder (CTP) to replace cementitious materials (0–20%), and (3) dual incorporation of both CTA and CTP. The effects of different preparation methods and substitution rates on mechanical properties were evaluated through compressive and flexural strength tests, and microstructure analyses were conducted by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The test results show that the compressive strength and flexural strength of UHPC increased with an increase in the ceramic particle substitution rate and reached the maximum value at a 100% substitution rate. On the contrary, ceramic powder substitution initially reduced the compressive strength, and it slightly recovered at a substitution rate of 10%. However, the bending strength decreased with an increase in the substitution rate of the ceramic powder. When ceramic particles and ceramic powder were used in combination, the compressive strength was the highest when 100% ceramic particles and 20% ceramic powder were used as substitutes. The maximum flexural strength occurred when 100% ceramic particles or 5% ceramic powder was used as a substitute. This study demonstrates that recycled ceramic waste can effectively enhance the mechanical properties of UHPC, providing a sustainable solution for reducing cement consumption and improving the performance of concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 2387 KiB  
Review
Application of Ceramic Membranes Derived from Waste and Natural Materials for the Removal of Organic Dyes from Wastewater: A Review
by Keotshepile A. Malebadi, Lawrence Sawunyama, Naledi H. Seheri and Damian C. Onwudiwe
Ceramics 2025, 8(3), 80; https://doi.org/10.3390/ceramics8030080 - 25 Jun 2025
Viewed by 771
Abstract
The growing demand for organic dyes across industries increases their environmental impact since wastewater containing organic dyes poses serious risks to aquatic life, human beings, and the environment. The removal of organic dye residues is a challenge for traditional wastewater treatment facilities, highlighting [...] Read more.
The growing demand for organic dyes across industries increases their environmental impact since wastewater containing organic dyes poses serious risks to aquatic life, human beings, and the environment. The removal of organic dye residues is a challenge for traditional wastewater treatment facilities, highlighting the need for advanced treatment techniques that balance cost-effectiveness and sustainability in the face of today’s strict environmental regulations. The use of low-cost starting materials in ceramic membrane technology has recently become more popular as a feasible option because of its affordability and effectiveness, leveraging the synergy of adsorption and filtration to improve dye removal. Recent developments in ceramic membranes derived from waste and natural materials are examined in this review paper, along with their types, mechanisms, and applications in eliminating organic dyes from wastewater. The various forms of ceramic membranes derived from waste and natural materials are classified as follows: those composed solely of inexpensive starting materials, composites of inexpensive materials, hybrids of inexpensive and commercial materials, and inexpensive materials functionalized with cutting-edge materials such as carbon nanotubes and nanoparticles. These membranes have shown promising results in lab-scale research, but their large-scale use is still limited. The factors that negate the commercialization of these membranes are also critically discussed. Finally, key challenges and future research opportunities in the development of sustainable ceramic membranes for highly efficient dye removal are highlighted. Full article
Show Figures

Figure 1

Back to TopTop