Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,690)

Search Parameters:
Keywords = sustainability of ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 813 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
20 pages, 2088 KiB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

20 pages, 8429 KiB  
Article
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 (registering DOI) - 6 Aug 2025
Abstract
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and [...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development. Full article
Show Figures

Figure 1

46 pages, 3093 KiB  
Review
Security and Privacy in the Internet of Everything (IoE): A Review on Blockchain, Edge Computing, AI, and Quantum-Resilient Solutions
by Haluk Eren, Özgür Karaduman and Muharrem Tuncay Gençoğlu
Appl. Sci. 2025, 15(15), 8704; https://doi.org/10.3390/app15158704 (registering DOI) - 6 Aug 2025
Abstract
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient [...] Read more.
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient in areas such as data privacy, authentication, access control, and scalable protection. Moreover, centralized security systems face increasing fragility due to single points of failure, various AI-based attacks, including adversarial learning, model poisoning, and deepfakes, and the rising threat of quantum computers to encryption protocols. This study systematically examines the individual and integrated solution potentials of technologies such as Blockchain, Edge Computing, Artificial Intelligence, and Quantum-Resilient Cryptography within the scope of IoE security. Comparative analyses are provided based on metrics such as energy consumption, latency, computational load, and security level, while centralized and decentralized models are evaluated through a multi-layered security lens. In addition to the proposed multi-layered architecture, the study also structures solution methods and technology integrations specific to IoE environments. Classifications, architectural proposals, and the balance between performance and security are addressed from both theoretical and practical perspectives. Furthermore, a future vision is presented regarding federated learning-based privacy-preserving AI solutions, post-quantum digital signatures, and lightweight consensus algorithms. In this context, the study reveals existing vulnerabilities through an interdisciplinary approach and proposes a holistic framework for sustainable, scalable, and quantum-compatible IoE security. Full article
Show Figures

Figure 1

19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

26 pages, 823 KiB  
Article
Reconciling Teaching and Research Tensions: A Sustainability Framework for Expert Teacher Development in Research Intensive Universities
by Yue Huang, Lin Jiang and Ruirui Zhai
Sustainability 2025, 17(15), 7113; https://doi.org/10.3390/su17157113 - 6 Aug 2025
Abstract
The sustainable development of teaching expertise in research-intensive universities remains a critical global challenge. This study investigates the distinctive characteristics of expert teachers—exemplary faculty in research universities—addressing their developmental trajectories and motivational mechanisms within prevailing incentive systems that prioritize research productivity over pedagogical [...] Read more.
The sustainable development of teaching expertise in research-intensive universities remains a critical global challenge. This study investigates the distinctive characteristics of expert teachers—exemplary faculty in research universities—addressing their developmental trajectories and motivational mechanisms within prevailing incentive systems that prioritize research productivity over pedagogical excellence. Employing grounded theory methodology, we conducted iterative coding of 20,000-word interview transcripts from 13 teaching-awarded professors at Chinese “Double First-Class” universities. Key findings reveal the following: (1) Compared to the original K-12 expert teacher model, university-level teaching experts exhibit distinctive disciplinary mastery—characterized by systematic knowledge structuring and cross-disciplinary integration capabilities. (2) Their developmental trajectory transcends linear expertise acquisition, instead manifesting as a problem-solving continuum across four nonlinear phases: career initiation, dilemma adaptation, theoretical consciousness, and leadership expansion. (3) Sustainable teaching excellence relies fundamentally on teachers’ professional passion, sustained through a virtuous cycle of high-quality instructional engagement and external validation (including positive student feedback, institutional recognition, and peer collaboration). Universities must establish comprehensive support systems—including (a) fostering a supportive and flexible learning atmosphere, (b) reforming evaluation mechanisms, and (c) facilitating interdisciplinary collaboration through teaching development communities—to institutionalize this developmental ecosystem. Full article
Show Figures

Figure 1

23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 (registering DOI) - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

26 pages, 1062 KiB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 (registering DOI) - 5 Aug 2025
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

43 pages, 1289 KiB  
Article
Big Data Meets Jugaad: Cultural Innovation Strategies for Sustainable Performance in Resource-Constrained Developing Economies
by Xuemei Liu, Assad Latif, Mohammed Maray, Ansar Munir Shah and Muhammad Ramzan
Sustainability 2025, 17(15), 7087; https://doi.org/10.3390/su17157087 - 5 Aug 2025
Abstract
This study investigates the role of Big Data Analytics Capabilities (BDACs) in ambidexterity explorative innovation (EXPLRI) and exploitative (EXPLOI) innovation for achieving a sustainable performance (SP) in the manufacturing sector of a resource-constrained developing economy. While a BDAC has been widely linked to [...] Read more.
This study investigates the role of Big Data Analytics Capabilities (BDACs) in ambidexterity explorative innovation (EXPLRI) and exploitative (EXPLOI) innovation for achieving a sustainable performance (SP) in the manufacturing sector of a resource-constrained developing economy. While a BDAC has been widely linked to innovation in developed economies, its effectiveness in developing contexts shaped by indigenous innovation practices like Jugaad remains underexplored. Anchored in the Resource-Based View (RBV) and Dynamic Capabilities (DC) theory, we propose a model where the BDAC enhances both EXPLRI and EXPLOI, which subsequently leads to an improved sustainable performance. We further examine the Jugaad capability as a cultural moderator. Using survey data from 418 manufacturing firms and analyzed via Partial Least Squares Structural Equation Modeling (PLS-SEM), results confirm that BDA capabilities significantly boost both types of innovations, which positively impact sustainable performance dimensions. Notably, Jugaad positively moderates the relationship between EXPLOI and financial, innovation, and operational performance but negatively moderates the link between EXPLRI and innovation performance. These findings highlight the nuanced influence of culturally embedded innovation practices in BDAC-driven ecosystems. This study contributes by extending the RBV–DC framework to include cultural innovation capabilities and empirically validating the contingent role of Jugaad in enhancing or constraining innovation outcomes. This study also validated the Jugaad capability measurement instrument for the first time in the context of Pakistan. For practitioners, aligning data analytics strategies with local innovative cultures is vital for sustainable growth in emerging markets. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 5921 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 4695 KiB  
Article
Living Root-Mediated Soil Temperature Amplifies the Effects of Experimental Warming on Soil Microarthropod Communities in a Quercus mongolica Forest in Northeast China
by Chenglin Chi, Jiannan Wang, Rong Cui, Qianxue Wang and Jili Zhang
Insects 2025, 16(8), 809; https://doi.org/10.3390/insects16080809 - 5 Aug 2025
Abstract
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of [...] Read more.
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of global climate change. To address this knowledge gap, we conducted a three-year in situ simulation experiment involving either experimental warming or root trenching treatments to mimic environmental changes and their impacts on soil microarthropod communities in a temperate forest ecosystem in Northeast China. Statistical analysis focused on assessing the abundance and family richness of Collembola and Acari. Warming increased soil temperature, while root trenching had contrasting effects. In the absence of root trenching, warming positively influenced Collembola but negatively affected Acari. Conversely, when combined with root trenching, warming had a diminished impact on both Collembola and Acari. Our findings demonstrate that the interactive effects of warming on soil microarthropod communities vary depending on the presence or absence of root trenching. Specifically, within the context of root trenching treatment compared to no-root trenching treatment, warming exhibited a comparatively attenuated influence on soil microarthropod communities. Overall, living roots play a pivotal role in mediating soil temperature conditions, which significantly impact soil microarthropod communities in the context of global climate change. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

Back to TopTop