Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (645)

Search Parameters:
Keywords = supramolecular systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 233
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 351
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

10 pages, 2211 KiB  
Article
Chiral Amine Covalent Organic Cage Lingated with Copper for Asymmetric Decarboxylative Mannich Reaction
by Kaihong Liu, Chunxia Tan and Lingli Yuan
Inorganics 2025, 13(7), 245; https://doi.org/10.3390/inorganics13070245 - 17 Jul 2025
Viewed by 359
Abstract
The efficient employment of chiral porous organic cages (POCs) for asymmetric catalysis is of great significance. In this work, we have synthesized a chiral N-rich organic cage constructed through chiral (S, S)-1,2-cyclohexanediamine and benzene-1,3,5-tricarbaldehyde utilizing dynamic imine chemistry according to [...] Read more.
The efficient employment of chiral porous organic cages (POCs) for asymmetric catalysis is of great significance. In this work, we have synthesized a chiral N-rich organic cage constructed through chiral (S, S)-1,2-cyclohexanediamine and benzene-1,3,5-tricarbaldehyde utilizing dynamic imine chemistry according to the literature. Following reduction with NaBH4, the resulting amine-based POCs (RCC3) feature appended chiral diamine moieties capable of coordinating Cu2+ cations. This Cu2+ coordination provides RCC3 with excellent enantioselectivity as a supramolecular nanoreactor in asymmetric decarboxylative Mannich reactions, providing up to 94% ee of the product. We found that the spatial distribution of chiral amine sites and the coordination of Cu2+ in the RCC3 have a significant impact on catalytic activity, especially enantioselectivity. This work provides insights into the structure–function relationship within supramolecular catalytic systems Full article
Show Figures

Figure 1

20 pages, 859 KiB  
Article
Theoretical Description of Changes in Conformation and Symmetry of Supramolecular Systems During the Reception of a Molecular Signal
by Yuriy Gorovoy, Natalia Rodionova, German Stepanov, Anastasia Petrova, Nadezda Penkova and Nikita Penkov
Int. J. Mol. Sci. 2025, 26(13), 6411; https://doi.org/10.3390/ijms26136411 - 3 Jul 2025
Viewed by 252
Abstract
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular [...] Read more.
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular signal” and causes changes in conformation and symmetry of the “receiver”. The aim of the current work is to theoretically describe such changes primarily using a solution of the chiral protein interferon-gamma (IFNγ) as an example. We provide theoretical evidence that supramolecular systems of highly diluted (HD) aqueous solutions formed by self-assembly after mechanical activation generate a stronger molecular signal compared to non-activated solutions, due to their higher energy-saturated state. Additionally, molecular signals cause supramolecular systems with complex (including chiral) structures to undergo easier changes in conformation and symmetry compared to simpler systems, enhancing their biological activity. Using statistical physics, we obtained the parameter Ic, characterizing the magnitude of conformational and symmetry changes in supramolecular (including chiral) systems caused by molecular signals. In quantum information science, there is an analogue of the parameter Ic, which characterizes the entanglement depth of quantum systems. This study contributes to the understanding of the physico-chemical basis of distant molecular interactions and opens up new possibilities for controlling the properties of complex biological and chemical systems. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Figure 1

16 pages, 1642 KiB  
Article
Thermodynamic and Structural Signatures of Arginine Self-Assembly Across Concentration Regimes
by Adil Guler
Processes 2025, 13(7), 1998; https://doi.org/10.3390/pr13071998 - 24 Jun 2025
Viewed by 351
Abstract
Arginine plays a critical role in biomolecular interactions due to its guanidinium side chain, which enables multivalent electrostatic and hydrogen bonding contacts. In this study, atomistic molecular dynamics simulations were conducted across a broad concentration range (26–605 mM) to investigate the thermodynamic and [...] Read more.
Arginine plays a critical role in biomolecular interactions due to its guanidinium side chain, which enables multivalent electrostatic and hydrogen bonding contacts. In this study, atomistic molecular dynamics simulations were conducted across a broad concentration range (26–605 mM) to investigate the thermodynamic and structural features of arginine self-assembly in aqueous solution. Key observables—including hydrogen bond count, radius of gyration, contact number, and isobaric heat capacity—were analyzed to characterize emergent behavior. A three-regime aggregation pattern (dilute, cooperative, and saturated) was identified and quantitatively modeled using the Hill equation, revealing a non-linear transition in clustering behavior. Spatial analyses were supplemented with trajectory-based clustering and radial distribution functions. The heat capacity peak observed near 360 mM was interpreted as a thermodynamic signature of hydration rearrangement. Trajectory analyses utilized both GROMACS tools and the MDAnalysis library. While force field limitations and single-replica sampling are acknowledged, the results offer mechanistic insight into how arginine concentration modulates molecular organization—informing the understanding of biomolecular condensates, protein–nucleic acid complexes, and the design of functional supramolecular systems. The findings are in strong agreement with experimental observations from small-angle X-ray scattering and differential scanning calorimetry. Overall, this work establishes a cohesive framework for understanding amino acid condensation and reveals arginine’s concentration-dependent behavior as a model for weak, reversible molecular association. Full article
(This article belongs to the Special Issue Advances in Computer Simulation of Condensed Matter Systems)
Show Figures

Graphical abstract

8 pages, 882 KiB  
Short Note
bis(2-Phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]-iridium(III) Hexafluorophosphate
by Patrick Endres, Nishi Singh, Andreas Winter, Helmar Görls and Ulrich S. Schubert
Molbank 2025, 2025(2), M2024; https://doi.org/10.3390/M2024 - 18 Jun 2025
Viewed by 408
Abstract
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding [...] Read more.
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding (X-bonding). The synthesis of bis(2-phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]iridium(III) hexafluorophosphate, (2)(PF6), is straightforward and involves post-complexation iodination, thus expanding the already rich toolbox for performing “chemistry on the complex”. The formation of the iodoethynyl moieties was unequivocally proven by 1H-NMR spectroscopy, ESI-TOF mass spectrometry, and single-crystal XRD analysis. Full article
Show Figures

Figure 1

17 pages, 3390 KiB  
Article
Controlled Formation of Au Nanonetworks via Discrete BTA-Oligo(Acrylic Acid)3 Supramolecular Templates
by Sadaf Aiman, Soonyoung Choi, Hyosun Lee, Sang-Ho Lee and Eunyong Seo
Polymers 2025, 17(12), 1662; https://doi.org/10.3390/polym17121662 - 15 Jun 2025
Viewed by 382
Abstract
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an [...] Read more.
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA)3 oligomers on the formation and structural organization of Au nanomaterials in an aqueous system. Discrete and polydisperse BTA-oligo(AA)3 samples are systematically synthesized and characterized to evaluate their role as templates for nanostructure formation. UV-vis spectroscopy and TEM analyses reveal distinct differences in the resulting nanostructures. Specifically, discrete oligomers facilitate the formation of well-defined, interconnected Au nanonetworks with high structural uniformity, even at elevated concentrations. In contrast, polydisperse oligomers facilitated the formation of isolated Au nanoparticles with limited control over morphology and connectivity. These differences are attributed to the greater molecular uniformity and enhanced self-assembly capabilities of the discrete oligomers, which serve as effective templates for directing Au precursor organization and reduction into ordered nanostructures. This study provides mechanistic insight into how molecular dispersity affects the templating and assembly of gold nanomaterials. The findings offer a promising strategy for developing tailored nanostructures with interconnected morphologies and controlled optical and structural properties, paving the way for advanced applications. Full article
(This article belongs to the Special Issue Advanced Polymer Structures: Chemistry for Engineering Applications)
Show Figures

Graphical abstract

40 pages, 4864 KiB  
Review
Molecular Modeling Is Key to Understanding Supramolecular Resorcinarenyl Capsules, Inclusion Complex Formation and Organic Reactions in Nanoconfined Space
by Maxime Steinmetz and David Sémeril
Molecules 2025, 30(12), 2549; https://doi.org/10.3390/molecules30122549 - 11 Jun 2025
Cited by 1 | Viewed by 839
Abstract
This review highlights how advances in silico techniques have shed new light on phenomena in confined supramolecular resorcinarene-based systems. Computational studies have provided detailed insights into capsule formation, their dynamic behavior, guest encapsulation and reaction mechanisms within these hosts, often revealing information that [...] Read more.
This review highlights how advances in silico techniques have shed new light on phenomena in confined supramolecular resorcinarene-based systems. Computational studies have provided detailed insights into capsule formation, their dynamic behavior, guest encapsulation and reaction mechanisms within these hosts, often revealing information that experimental methods cannot reach. The focus is placed on the self-assembly of resorcin[4]arenes, pyrogallol[4]arenes, velcrands, and octa acid systems. These computational studies complement experimental findings and, in many cases, offer new perspectives that are inaccessible using experimental techniques alone. Supramolecular architectures are growing in complexity the role of in silico approaches is becoming indispensable. They offer a way to design rationally and understand host–guest chemistry more deeply. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Chemistry)
Show Figures

Graphical abstract

16 pages, 3891 KiB  
Article
Structure and Properties of Self-Reinforced Polytetrafluoroethylene-Based Materials
by Shunqi Mei, Oksana Ayurova, Undrakh Mishigdorzhiyn, Vasily Kornopoltsev, Evgeny Kovtunets, Kirill Demin, Bair Garmaev and Andrei Khagleev
Polymers 2025, 17(12), 1609; https://doi.org/10.3390/polym17121609 - 9 Jun 2025
Viewed by 549
Abstract
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The [...] Read more.
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The high adhesive and mechanical properties of SRPMs are due to the formation of a homogeneous system with no inter-phase boundary. Moreover, self-reinforcement considers the possibility of using polymer waste to create high-strength composites, which reduces the environmental load. In the current work, the phase composition, structure, and properties of SRPMs based on polytetrafluoroethylene (PTFE) were studied. SRPMs were prepared by mixing industrial and regenerated PTFE powders and then subjected to pressing and sintering. Two types of regenerated PTFE were used for the SRPM preparation: a commercial PTFE of the TOMFLONTM trademark and mechanically grinded PTFE waste. The degree of crystallinity of the obtained materials (41–68%) was calculated by XRD analysis; the crystallite size was determined to be 30–69 nm. Thermal analysis of the composites was carried out by the DSC method in the temperature range of 25–370 °C. The characteristics of thermal processes in self-reinforced composites correlate with the data from structural studies of XRD and FTIR analyses. The results of dynamic mechanical analysis showed that the introduction of regenerated PTFE powder into an industrial one increased the elasticity modulus from 0.6 GPa up to 2.0–3.1 GPa. It was shown that the phase state of the SRPMs depended on the method of processing polymer waste (the type of regenerated PTFE) that determined the heat resistance and mechanical properties of the obtained composite material. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 3759 KiB  
Article
Exploring Single-Molecular Magnets for Quantum Technologies
by Wei Wu, Tianhong Huang, Jianhua Zhu, Taoyu Zou and Hai Wang
Molecules 2025, 30(12), 2522; https://doi.org/10.3390/molecules30122522 - 9 Jun 2025
Viewed by 838
Abstract
A single-molecule magnet (SMM) is a molecule that functions as a magnet. SMMs can be explored not only for emerging technology but also the fundamental science of their quantum nature, nanometer sizes, and their ease of engineering. This review encompasses the state-of-the-art experiments [...] Read more.
A single-molecule magnet (SMM) is a molecule that functions as a magnet. SMMs can be explored not only for emerging technology but also the fundamental science of their quantum nature, nanometer sizes, and their ease of engineering. This review encompasses the state-of-the-art experiments and theories developed so far for SMMs. We briefly explore their experimental synthesis and characterization. In the experimental synthesis, we cover ‘Click Chemistry’ and supramolecular chemistry. The main experimental characterizations comprise superconducting quantum interference devices, electron paramagnetic resonance, neutron scattering, and X-ray magnetic circular dichroism. The theoretical and computational works based on the density functional theory, the post-Hartree–Fock methods, and the theory of open quantum systems are discussed. Moreover, we exemplify the numerous promising research areas for SMMs by discussing quantum technologies. We envision a brilliant future for the fundamental research and emerging applications of SMMs. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

30 pages, 5237 KiB  
Article
A Detailed Thermodynamic Description of Ion Pair Binding by a Calix[4]arene Derivative Containing Urea and Amide Functionalities
by Marija Cvetnić, Tamara Rinkovec, Robert Vianello, Gordan Horvat, Nikola Bregović and Vladislav Tomišić
Molecules 2025, 30(11), 2464; https://doi.org/10.3390/molecules30112464 - 4 Jun 2025
Viewed by 689
Abstract
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents [...] Read more.
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents a difficult task that is rarely resolved due to various coupled processes. Here, we present a comprehensive study of ion pair (NaCl, NaHSO4, and NaH2PO4) binding by a ureido–amide calix[4]arene host in acetonitrile using a series of experimental techniques and molecular dynamics simulations. We devoted particular attention to characterizing the side processes (ion association and salt precipitation) and included them in the models describing ion pair complex formation. For this purpose, a multimethod approach (potentiometry, conductometry, ITC, flame AES) was employed, generating reliable data which provided insight into the thermodynamic effect of each included equilibrium. Positive cooperativity was observed in the context of NaCl and NaHSO4 binding by the studied calixarene. Computational results related to the NaCl complex in acetonitrile revealed that favorable Coulombic interactions, changes in affinity for solvent molecule inclusion, and intramolecular hydrogen bonding contributed to cation-induced cooperativity. Full article
Show Figures

Graphical abstract

8 pages, 1150 KiB  
Communication
Structural Characterization of 7-Chloro-4-(4-methyl-1-piperazinyl)quinoline Monohydrate
by Silvia Rizzato and Francesco Marinoni
Molbank 2025, 2025(2), M2016; https://doi.org/10.3390/M2016 - 2 Jun 2025
Viewed by 812
Abstract
The crystal structure of the hydrated form of 7-chloro-4-(4-methyl-1-piperazinyl)quinoline (BPIP) was determined by single-crystal X-ray diffraction analysis. This study revealed a one-dimensional supramolecular network stabilized by hydrogen bonding interactions between BPIP and water molecules. This compound represents one-half of a piperaquine [...] Read more.
The crystal structure of the hydrated form of 7-chloro-4-(4-methyl-1-piperazinyl)quinoline (BPIP) was determined by single-crystal X-ray diffraction analysis. This study revealed a one-dimensional supramolecular network stabilized by hydrogen bonding interactions between BPIP and water molecules. This compound represents one-half of a piperaquine molecule, a member of the 4-aminoquinoline class of antimalarial treatments, currently employed as a partner agent in modern combination therapies. As a simplified structural analog, BPIP can serve as a critical model system for probing the intermolecular interactions, physicochemical properties, and structural behavior of the parent compound. As a result, conducting a thorough solid-state characterization of BPIP is critical for gaining insight into its physical properties and verifying the material’s identity and purity. Full article
Show Figures

Graphical abstract

13 pages, 2721 KiB  
Article
Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions
by Xiaonan Geng, Lixin Zhang, Duan Xiong, Zhen Su and Qingqing Guan
Sensors 2025, 25(11), 3470; https://doi.org/10.3390/s25113470 - 30 May 2025
Viewed by 430
Abstract
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. [...] Read more.
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. Herein we report a dual-mode supramolecular sensing system constructed from a unique three-component assembly involving a terpyridine platinum (II) complex, oxalate, and Zn2+, enabling highly specific detection performance for Zn2+. The supramolecular sensing system exhibits excellent selectivity among various interfering substances, accompanied by ultra-low detection limit (0.199 μM) and fast response (<3 s). The high recognization capacity comes from tri-component-based supramolecular assembly, while the dual-mode response arises from the generation of intermelcular Pt-Pt and π-π interactions, which yields absorption and emission originating from low-energy metal–metal-to-ligand charge transfer (MMLCT) transitions. This work marks a pioneering demonstration for highly specific detection of Zn2+ and inspires an alternative strategy for designing cation probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

15 pages, 2578 KiB  
Article
Surface Relief Gratings of Slide-Ring Hydrogels for Label-Free Biosensing
by Aitor Cubells-Gómez, María Isabel Lucío, María-José Bañuls and Ángel Maquieira
Gels 2025, 11(6), 415; https://doi.org/10.3390/gels11060415 - 30 May 2025
Viewed by 428
Abstract
The creation of surface relief gratings using hydrogels for label-free biomolecule detection represents a significant advance in the development of versatile, cutting-edge biosensors. Central to this innovation is the formulation of materials with enhanced mechanical properties, especially for applications in soft, wearable technologies. [...] Read more.
The creation of surface relief gratings using hydrogels for label-free biomolecule detection represents a significant advance in the development of versatile, cutting-edge biosensors. Central to this innovation is the formulation of materials with enhanced mechanical properties, especially for applications in soft, wearable technologies. In this work, we have developed novel biofunctional hydrogels that incorporate slide-ring supramolecular structures into their network, enabling the production of surface relief gratings with superior mechanical characteristics for biomolecule detection without the need for labels. These hydrogels, functionalized with bovine serum albumin and goat anti-rabbit antibodies, demonstrated excellent selectivity and sensitivity toward anti-bovine serum albumin and rabbit IgGs in blood serum, evaluated using a label-free format. Remarkably, the new materials matched the analytical performance of conventional hydrogels based on static networks while offering dramatically improved toughness and elasticity, with a compressive modulus comparable to human skin. This demonstrates the potential of slide-ring hydrogels for fabricating robust, label-free biosensing platforms. Furthermore, the flexibility of this system allows for the incorporation of various recognition elements tailored to specific applications. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors (2nd Edition))
Show Figures

Graphical abstract

15 pages, 4082 KiB  
Article
Electrochemical Boron Detection with Ferrocene and Catechol-Functionalized Cyclodextrin Inclusion Complex
by Kai Sato, Hiroshi Kimoto and Takeshi Hashimoto
Int. J. Mol. Sci. 2025, 26(9), 4432; https://doi.org/10.3390/ijms26094432 - 7 May 2025
Viewed by 530
Abstract
We demonstrate a rapid and sensitive boron detection method through current amplification mediated by supramolecular interaction. Oxidation peak currents obtained by cyclic voltammetry (CV) measurements of a ferrocene/catechol-functionalized β-cyclodextrin inclusion complex were amplified through an EC’ reaction (where EC’ denotes an electrochemical [...] Read more.
We demonstrate a rapid and sensitive boron detection method through current amplification mediated by supramolecular interaction. Oxidation peak currents obtained by cyclic voltammetry (CV) measurements of a ferrocene/catechol-functionalized β-cyclodextrin inclusion complex were amplified through an EC’ reaction (where EC’ denotes an electrochemical step followed by a catalytic chemical step). However, the amplified current was decreased by boric acid (the primary form of boron in water) addition at pH 8.6 owing to interactions of boron with the cis-diol structure of dihydroxybenzoic acid-β-cyclodextrin and ferrocene for ester formation. We determined the optimum CyD functionalization sites and measurement conditions and obtained a limit of detection of 0.16 mg B L−1 for ferrocene/3,4-dihydroxybenzoic acid-β-cyclodextrin (Fc/3,4-DHBA-β-CyD). The binding constant (assuming a 1:1 binding model) for the interaction between Fc/3,4-DHBA-β-CyD and boric acid was estimated to be approximately 1500 M−1. Boron concentrations in spiked real samples showed good recoveries and linear calibration curves. The electrochemical response of this system was not significantly affected by the presence of other anions or cations. We also found that an aqueous solution of 3,4-DHBA-β-CyD remained stable for at least 112 days. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 2nd Edition)
Show Figures

Figure 1

Back to TopTop