Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,341)

Search Parameters:
Keywords = suppressive interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 44276 KB  
Article
MSFFDet: A Meta-Learning-Based Support-Guided Feature Fusion Detector for Few-Shot Remote Sensing Detection
by Haoxiang Qi, Wenzhe Zhao, Ting Zhang and Guangyao Zhou
Appl. Sci. 2026, 16(2), 917; https://doi.org/10.3390/app16020917 - 15 Jan 2026
Abstract
Few-shot object detection in remote sensing imagery faces significant challenges, including limited labeled samples, complex scene backgrounds, and subtle inter-class differences. To tackle these issues, we design a novel detection framework that effectively transfers supervision from a few annotated support examples to the [...] Read more.
Few-shot object detection in remote sensing imagery faces significant challenges, including limited labeled samples, complex scene backgrounds, and subtle inter-class differences. To tackle these issues, we design a novel detection framework that effectively transfers supervision from a few annotated support examples to the query domain. We introduce a feature enhancement mechanism that injects fine-grained support cues into the query representation, helping the model focus on relevant regions and suppress background noise. This allows the model to generate more accurate proposals and perform robust classification, especially for visually confusing or small objects. Additionally, our method enhances feature interaction between support and query images through a nonlinear combination strategy, which captures both semantic similarity and discriminative differences. The proposed framework is fully end-to-end and jointly optimizes the feature fusion and detection processes. Experiments on three challenging benchmarks, NWPU VHR-10, iSAID and DIOR, demonstrate that our method consistently achieves state-of-the-art results under different few-shot settings and category splits. Compared with other advanced methods, it yields superior performance, highlighting its strong generalization ability in low-data remote sensing scenarios. Full article
(This article belongs to the Special Issue AI in Object Detection)
Show Figures

Figure 1

32 pages, 8181 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
25 pages, 1792 KB  
Article
ICCA: Independent Multi-Agent Algorithm for Distributed Jamming Scheduling
by Wenpeng Wu, Zhenhua Wei, Haiyang You, Zhaoguang Zhang, Chenxi Li, Jianwei Zhan and Shan Zhao
Algorithms 2026, 19(1), 73; https://doi.org/10.3390/a19010073 - 15 Jan 2026
Abstract
In extreme scenarios, to prevent the leakage of jamming coordination information, the jammers must proactively terminate their communication functions and implement jamming resource scheduling via Non-Networked Cooperation. However, current research on this non-networked jamming approach is relatively limited. Furthermore, existing algorithms either rely [...] Read more.
In extreme scenarios, to prevent the leakage of jamming coordination information, the jammers must proactively terminate their communication functions and implement jamming resource scheduling via Non-Networked Cooperation. However, current research on this non-networked jamming approach is relatively limited. Furthermore, existing algorithms either rely on networked interactions or lack cognitive strategies for the surrounding communication countermeasure situation. For example, they fail to adapt to dynamic changes in electromagnetic noise and struggle to determine jamming effectiveness, leading to low jamming efficiency and severe energy waste in non-networked scenarios. To address this issue, this paper establishes a game process and corresponding algorithm for non-networked communication countermeasures and designs cognitive, cooperative, and scheduling strategies for individual jammers. Meanwhile, a novel performance metric called the “Overall Communication Suppression Ratio (OCSR)” is proposed. This metric quantifies the relationship between “sustained full-suppression duration” and “ operating duration of the jamming system,” overcoming the defect that traditional metrics cannot evaluate the dynamic jamming effectiveness in non-networked scenarios. Experimental results indicate that although the OCSR of the proposed Intelligent Concentric Circle Algorithm (ICCA) is significantly lower than that of the Full-Power Jamming Algorithm (FPJA), ICCA extends the operating duration of the jamming system by 4.8%. This achieves non-uniform power setting of jammers, enabling flexible and dynamic jamming in non-networked scenarios and retaining more battery capacity for jammers after overall jamming failure. Full article
43 pages, 2779 KB  
Review
Molecular and Immune Mechanisms Governing Cancer Metastasis, Including Dormancy, Microenvironmental Niches, and Tumor-Specific Programs
by Dae Joong Kim
Int. J. Mol. Sci. 2026, 27(2), 875; https://doi.org/10.3390/ijms27020875 - 15 Jan 2026
Abstract
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, [...] Read more.
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, long-term survival, and eventual outgrowth are examined, with a focus on how tumor-intrinsic programs interact with extracellular matrix (ECM) remodeling, angiogenesis, and immune regulation. Gene networks that sustain tumor-cell plasticity and invasion are described, including EMT-linked transcription factors such as SNAIL and TWIST, as well as broader transcriptional regulators like SP1. Also, how epigenetic mechanisms, such as EZH2 activity, DNA methylation, chromatin remodeling, and noncoding RNAs, lock in pro-metastatic states and support adaptation under therapeutic pressure. Finally, proteases and matrix-modifying enzymes that physically and biochemically reshape tissues, including MMPs, uPA, cathepsins, LOX/LOXL2, and heparinase, are discussed for their roles in releasing stored growth signals and building permissive niches that enable seeding and colonization. In parallel, immune-evasion strategies that protect circulating and newly seeded tumor cells are discussed, including platelet-mediated shielding, suppressive myeloid populations, checkpoint signaling, and stromal barriers that exclude effector lymphocytes. A major focus is metastatic dormancy, cellular, angiogenic, and immune-mediated, framed as a reversible survival state regulated by stress signaling, adhesion cues, metabolic rewiring, and niche constraints, and as a key determinant of late relapse. Tumor-specific metastatic programs across mesenchymal malignancies (osteosarcoma, chondrosarcoma, and liposarcoma) and selected high-burden cancers (melanoma, hepatocellular carcinoma, glioblastoma, and breast cancer) are highlighted, emphasizing shared principles and divergent organotropisms. Emerging therapeutic strategies that target both the “seed” and the “soil” are also discussed, including immunotherapy combinations, stromal/ECM normalization, chemokine-axis inhibition, epigenetic reprogramming, and liquid-biopsy-enabled minimal residual disease monitoring, to prevent reactivation and improve durable control of metastatic disease. Full article
(This article belongs to the Special Issue Molecular Mechanism Involved in Cancer Metastasis)
Show Figures

Figure 1

18 pages, 6596 KB  
Article
Structure-Based Prediction of Molecular Interactions for Stabilizing Volatile Drugs
by Yuchen Zhao, Danmei Bai, Boyang Yang, Tiannuo Wu, Guangsheng Wu, Tiantian Ye and Shujun Wang
Pharmaceutics 2026, 18(1), 111; https://doi.org/10.3390/pharmaceutics18010111 - 15 Jan 2026
Abstract
Background/Objectives: The high volatility of volatile drugs significantly restricts their clinical applicability. Although excipients capable of strong interactions can reduce volatilization, conventional screening methods rely on empirical trial-and-error, resulting in low efficiency and high resource consumption. To address this limitation, this study [...] Read more.
Background/Objectives: The high volatility of volatile drugs significantly restricts their clinical applicability. Although excipients capable of strong interactions can reduce volatilization, conventional screening methods rely on empirical trial-and-error, resulting in low efficiency and high resource consumption. To address this limitation, this study introduces an artificial intelligence (AI)-driven strategy for screening drug–excipient interactions. Using d-borneol as a model drug, this approach aims to efficiently identify strongly interacting excipients and develop stable nano-formulations. Methods: High-throughput simulations were performed using the Protenix structure prediction model to evaluate interactions between d-borneol and 472 FDA-approved excipients. The top 50 candidate excipients were selected based on these simu-lations. Molecular docking and stability experiments were conducted to validate the predictions. Results: Molecular docking and stability experiments confirmed the consistency between predicted and experimental results, validating the model’s reliability. Among the candidates, soybean phospholipid (PC) was identified as the optimal excipient. A lyophilized liposomal formulation prepared with PC significantly suppressed the volatilization of d-borneol and improved both thermal and storage stability. Mechanistic investigations indicated that d-borneol stably incorporates into the hydro-phobic region of phospholipids, enhancing membrane ordering via hydrophobic interactions without disturbing the polar headgroups. Conclusions: This study represents the first application of a structure prediction model to excipient screening for volatile drugs. It successfully addresses the stability challenges associated with d-borneol and offers a new paradigm for developing nano-formulations for volatile pharmaceuticals. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

33 pages, 2555 KB  
Review
Current Insights into Superinfection Exclusion in Insect-Specific Orthoflaviviruses
by Justin J. X. Chan, Ziyao Zhao, Carla J. S. P. Vieira, Jarvis Z. H. Goh and Andrii Slonchak
Viruses 2026, 18(1), 115; https://doi.org/10.3390/v18010115 - 15 Jan 2026
Abstract
The Orthoflavivirus genus includes a variety of human-pathogenic, mosquito-borne flaviviruses (MBFs) including dengue, Zika, and West Nile viruses, which pose significant global public health threats. Insect-specific flaviviruses (ISFs) are another group within the genus that exclusively replicate in mosquitoes and are incapable of [...] Read more.
The Orthoflavivirus genus includes a variety of human-pathogenic, mosquito-borne flaviviruses (MBFs) including dengue, Zika, and West Nile viruses, which pose significant global public health threats. Insect-specific flaviviruses (ISFs) are another group within the genus that exclusively replicate in mosquitoes and are incapable of infecting vertebrates. ISFs have recently attracted growing research interest due to their potential applications in vaccine development. In addition, multiple studies have demonstrated that prior infection with ISFs such as Palm Creek virus and Binjari virus can suppress subsequent infection with human-pathogenic MBFs. This phenomenon, known as superinfection exclusion (SIE), opens the avenue for the potential applications of ISFs in MBF transmission control. This prompted a growing number of studies into ISFs and their interactions with MBFs in mosquito hosts. In this review, we provide an overview on ISFs, with a particular emphasis on the capacity of different ISFs to cause SIE, the current insights into the mechanisms of this phenomenon, and the potential use of ISFs in the SIE-based biocontrol strategies. Full article
(This article belongs to the Special Issue Insect-Specific Viruses and Biological Control of Arboviruses)
Show Figures

Figure 1

38 pages, 8865 KB  
Article
UHPLC–Q–Orbitrap–HRMS-Based Multilayer Mapping of the Pharmacodynamic Substance Basis and Mechanistic Landscape of Maizibizi Wan in Chronic Nonbacterial Prostatitis Therapy
by Maimaitiming Maihemuti, Muaitaer Nuermaimaiti, Wuermaitihan Maimaitiming, Alimujiang Paierhati, Hailong Ji, Muhammatjan Abduwaki, Xinzhou Yang and Nabijan Mohammadtursun
Pharmaceuticals 2026, 19(1), 153; https://doi.org/10.3390/ph19010153 - 15 Jan 2026
Abstract
Background: Chronic nonbacterial prostatitis (CNP), the major subset of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), imposes a substantial global burden yet lacks satisfactory therapies. Maizibizi Wan (MZBZ) has long been used clinically for prostatitis, but its pharmacodynamic substance basis and mechanisms remain unclear. [...] Read more.
Background: Chronic nonbacterial prostatitis (CNP), the major subset of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), imposes a substantial global burden yet lacks satisfactory therapies. Maizibizi Wan (MZBZ) has long been used clinically for prostatitis, but its pharmacodynamic substance basis and mechanisms remain unclear. Methods: Ultra-high-performance liquid chromatography–Q-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) coupled with Global Natural Products Social Molecular Networking (GNPS) molecular networking profiled MZBZ constituents and rat plasma–exposed prototype components and metabolites was used. Based on blood-absorbable components, network pharmacology predicted core targets/pathways; representative interactions were validated by molecular docking. A λ-carrageenan–induced CNBP rat model underwent histopathology (H&E), serum cytokine assays (TNF-α, IL-1β, IL-6/IL-17), immunohistochemistry (COX-2, TNF-α, MMP-9), and Western blotting (P-p65/p65, p-AKT/AKT, COX-2, TGF-β1, BCL2). Results: A total of 188 chemical constituents were identified in MZBZ (79 flavonoids, 38 organic acids, 30 alkaloids, 15 phenylpropanoids, 7 steroids, 4 phenylethanoid glycosides, 15 others). A total of 35 blood-absorbable components (18 prototype components, 17 metabolites) were identified, mainly involving Phase I oxidation and Phase II glucuronidation/sulfation. Network analysis yielded 54 core targets enriched in NF-κB and PI3K/AKT signaling and apoptosis. Docking indicated stable binding of key flavonoids to COX-2, NFKB1, TNF, IL-6, and BCL2. In vivo, MZBZ ameliorated prostatic inflammation, reduced serum TNF-α/IL-1β/IL-6/IL-17 (p < 0.05 or p < 0.01); decreased P-p65/p65, p-AKT/AKT, COX-2, and TGF-β1; and increased BCL2 in prostate tissue. Conclusions: MZBZ exerts anti-CNBP effects via multi-component synergy (prototypes + metabolites) that suppresses inflammatory cytokines, modulates apoptosis, and inhibits NF-κB and PI3K/AKT pathways. These findings provide a mechanistic basis and quality control cues for the rational clinical use of MZBZ. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

29 pages, 2836 KB  
Review
Harnessing Endophytic Fungi for Sustainable Agriculture: Interactions with Soil Microbiome and Soil Health in Arable Ecosystems
by Afrin Sadia, Arifur Rahman Munshi and Ryota Kataoka
Sustainability 2026, 18(2), 872; https://doi.org/10.3390/su18020872 - 15 Jan 2026
Abstract
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to [...] Read more.
Sustainable food production for a growing population requires farming practices that reduce chemical inputs while maintaining soil as a living, renewable foundation for productivity. This review synthesizes current advances in understanding how endophytic fungi (EFs) interact with the soil microbiome and contribute to the physicochemical and biological dimensions of soil health in arable ecosystems. We examine evidence showing that EFs enhance plant nutrition through phosphate solubilization, siderophore-mediated micronutrient acquisition, and improved nitrogen use efficiency while also modulating plant hormones and stress-responsive pathways. EFs further increase crop resilience to drought, salinity, and heat; suppress pathogens; and influence key soil properties including aggregation, organic matter turnover, and microbial network stability. Recent integration of multi-omics, metabolomics, and community-level analyses has shifted the field from descriptive surveys toward mechanistic insight, revealing how EFs regulate nutrient cycling and remodel rhizosphere communities toward disease-suppressive and nutrient-efficient states. A central contribution of this review is the linkage of EF-mediated plant functions with soil microbiome dynamics and soil structural processes framed within a translational pipeline encompassing strain selection, formulation, delivery, and field scale monitoring. We also highlight current challenges, including context-dependent performance, competition with native microbiota, and formulation and deployment constraints that limit consistent outcomes under field conditions. By bridging microbial ecology with agronomy, this review positions EFs as biocontrol agents, biofertilizers, and ecosystem engineers with strong potential for resilient, low-input, and climate-adaptive cropping systems. Full article
Show Figures

Figure 1

10 pages, 1044 KB  
Article
Molecular Regulation of Secondary Hair Follicle Stem Cell by S100a4 in Cashmere Goat
by Xinyue Liang, Bohan Liu, Jiayi Wang, Yanlei Liu, Yiping Wei, Hongji Yu, Junpeng Zhang, Shuyi Zhang and Huiling Xue
Int. J. Mol. Sci. 2026, 27(2), 849; https://doi.org/10.3390/ijms27020849 - 15 Jan 2026
Abstract
Secondary hair follicle stem cells (HFSCs) are essential for cashmere fiber regeneration, yet the molecular mechanisms governing their activation and lineage progression remain poorly understood. Here, we identify S100a4 as a key regulator of secondary HFSCs in cashmere goat. S100a4 expression peaks during [...] Read more.
Secondary hair follicle stem cells (HFSCs) are essential for cashmere fiber regeneration, yet the molecular mechanisms governing their activation and lineage progression remain poorly understood. Here, we identify S100a4 as a key regulator of secondary HFSCs in cashmere goat. S100a4 expression peaks during anagen and is markedly enriched in secondary HFSCs relative to hair matrix cells (HMCs), suggesting a role in initiating follicle regeneration. Functional assays show that S100a4 promotes HFSCs into a dynamically regulated state that activates stem cell competence while facilitating differentiation, with overexpression upregulating epidermal and follicular differentiation markers (Ivl, Cux1, K14, Klk5), as well as pluripotency genes (Itga6, Krt15), while knockdown suppresses these programs. Proteomic analysis further reveals direct interactions between S100A4 and keratins critical for hair follicle and epidermal development (KRT5, KRT14, KRT8, KRT18), suggesting a structural and regulatory interface through which S100A4 modulates HFSC fate. Collectively, these results establish S100a4 as a central modulator of secondary HFSC function and provide mechanistic insight into the molecular control of hair follicle regeneration, with potential implications for improving cashmere fiber production. Full article
(This article belongs to the Special Issue Molecular Insights into Zoology)
Show Figures

Figure 1

19 pages, 1116 KB  
Article
Creation of High-Density Néel Skyrmions by Interfacial-Proximity Engineering
by Tingjia Zhang, Chendi Yang, Xiaowei Lv, Ke Pei, Xiao Yang, Wuyang Tan, Junye Pan, Jiazhuan Qin, Meichen Wen, Wei Li, Jia Liang and Renchao Che
Materials 2026, 19(2), 340; https://doi.org/10.3390/ma19020340 - 14 Jan 2026
Abstract
Two-dimensional ferromagnets are promising for compact spintronic devices. However, their centrosymmetric structure inherently suppresses the Dzyaloshinskii–Moriya interaction (DMI), hindering the stabilization of chiral spin texture. Here, a tunable DMI induced by interface symmetry breaking in Fe3GeTe2/MoS2 vdW heterostructures [...] Read more.
Two-dimensional ferromagnets are promising for compact spintronic devices. However, their centrosymmetric structure inherently suppresses the Dzyaloshinskii–Moriya interaction (DMI), hindering the stabilization of chiral spin texture. Here, a tunable DMI induced by interface symmetry breaking in Fe3GeTe2/MoS2 vdW heterostructures is reported. We find that the interfacial DMI stabilizes Néel-type skyrmions in Fe3GeTe2/MoS2 heterostructures under zero magnetic field, with nucleation observed at 64 Oe and annihilation at 800 Oe via Lorentz transmission electron microscopy (LTEM). Skyrmion density peaks (~0.57 skyrmions/μm2) at a Fe3GeTe2 thickness of ~30 nm and decays beyond ~60 nm, indicating a finite penetration depth of the proximity effect. Such modulated DMI enables a stabilized nucleation of Néel type skyrmions, allowing for precise control over their density, revealed by Lorentz transmission electron microscopy. Thickness-dependent measurements confirm the interfacial origin of this stabilization. Skyrmion density reaches peak in thin Fe3GeTe2 layers and decays beyond ~60 nm, defining the finite penetration depth of the proximity effect. Micromagnetic simulations reproduce the field-dependent evolution of skyrmions, showing a strong correlation to interfacial DMI. First-principles calculations attribute this DMI to asymmetric charge redistribution and spin–orbit coupling at the heterointerface. This work establishes interface engineering as a universal strategy for stabilizing skyrmions in centrosymmetric vdW ferromagnets, offering a thickness-tunable platform for next-generation two-dimensional spintronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
25 pages, 13302 KB  
Article
Investigation of the Effects of Ambient Conditions and Injection Strategies on Methanol Spray Characteristics
by Decheng Wang, Wuzhe Zhu, Zhijie Li, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Yunliang Qi and Zhi Wang
Energies 2026, 19(2), 416; https://doi.org/10.3390/en19020416 - 14 Jan 2026
Abstract
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume [...] Read more.
To reveal the physical evolution of methanol spray under different environmental conditions and injection strategies, this study focuses on the atomization and evaporation behavior of low-pressure methanol spray. The coupled effects of temperature, pressure, and injection parameters are systematically investigated based on constant-volume combustion chamber experiments and three-dimensional CFD simulations. The formation, evolution, and interaction mechanisms of the liquid column core and cooling core are revealed. The results indicate that temperature is the dominant factor influencing methanol spray atomization. When the temperature increases from 255 K to 333 K, the spray penetration distance increases by approximately 70%, accompanied by a pronounced shortening of the liquid-core length and enhanced evaporation and air entrainment. Under low-temperature conditions, a stable liquid-core structure and a strong cooling core are formed, characterized by a high-density, long-axis morphology and an extensive low-temperature region, which suppress fuel–air mixing and ignition. Increasing the ambient pressure improves spray–air mixing but reduces penetration; at 255 K, increasing the ambient pressure from 0.05 MPa to 0.2 MPa increases the spray cone angle by approximately 10% while reducing the penetration distance by about 50%. Furthermore, optimizing the injection pressure or shortening the injection pulse width effectively enhances atomization performance: increasing the injection pressure from 0.4 MPa to 0.6 MPa and reducing the pulse width from 5 ms to 2 ms increases the penetration distance by approximately 30% and reduces the mean droplet diameter by about 20%. Full article
Show Figures

Figure 1

43 pages, 7441 KB  
Review
Advances and Perspectives in Curcumin Regulation of Systemic Metabolism: A Focus on Multi-Organ Mechanisms
by Dingya Sun, Jialu Wang, Xin Li, Jun Peng and Shan Wang
Antioxidants 2026, 15(1), 109; https://doi.org/10.3390/antiox15010109 - 14 Jan 2026
Abstract
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable [...] Read more.
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable to its accumulation in the intestines and subsequent modulation of systemic oxidative stress and inflammation. This article systematically reviews the comprehensive regulatory effects of curcumin on systemic metabolic networks—including glucose metabolism, amino acid metabolism, lipid metabolism, and mitochondrial metabolism—and explores their molecular basis, particularly how curcumin facilitates systemic metabolic improvements by alleviating oxidative stress and interacting with inflammation. Preclinical studies indicate that curcumin accumulates in the intestines, where it remodels the microbiota through prebiotic effects, enhances barrier integrity, and reduces endotoxin influx—all of which are critical drivers of systemic oxidative stress and inflammation. Consequently, curcumin improves insulin resistance, hyperglycemia, and dyslipidemia across multiple organs (liver, muscle, adipose) by activating antioxidant defense systems (e.g., Nrf2), enhancing mitochondrial respiratory function (via PGC-1α/AMPK), and suppressing pro-inflammatory pathways (e.g., NF-κB). Clinical trials have corroborated these effects, demonstrating that curcumin supplementation significantly enhances glycemic control, lipid profiles, adipokine levels, and markers of oxidative stress and inflammation in patients with obesity, type 2 diabetes, and non-alcoholic fatty liver disease. Therefore, curcumin emerges as a promising multi-target therapeutic agent against metabolic diseases through its systemic antioxidant and anti-inflammatory networks. Future research should prioritize addressing its bioavailability limitations and validating its efficacy through large-scale trials to translate this natural antioxidant into a precision medicine strategy for metabolic disorders. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 4769 KB  
Article
Porphyromonas gingivalis Vesicles Control Osteoclast–Macrophage Lineage Fate
by Elizabeth Leon, Shin Nakamura, Satoru Shindo, Maria Rita Pastore, Tomoki Kumagai, Alireza Heidari, Elaheh Dalir Abdolahinia, Tomoya Ueda, Takumi Memida, Ana Duran-Pinedo, Jorge Frias-Lopez, Xiaozhe Han, Xin Chen, Shengyuan Huang, Guoqin Cao, Sunniva Ruiz, Jan Potempa and Toshihisa Kawai
Int. J. Mol. Sci. 2026, 27(2), 831; https://doi.org/10.3390/ijms27020831 - 14 Jan 2026
Abstract
Porphyromonas gingivalis (Pg), a keystone pathogen of chronic periodontitis, releases outer membrane vesicles (OMVs) that act as nanoscale vehicles to disseminate virulence factors within periodontal tissues and systemically beyond the oral cavity. Although Pg-OMVs are increasingly recognized as critical mediators [...] Read more.
Porphyromonas gingivalis (Pg), a keystone pathogen of chronic periodontitis, releases outer membrane vesicles (OMVs) that act as nanoscale vehicles to disseminate virulence factors within periodontal tissues and systemically beyond the oral cavity. Although Pg-OMVs are increasingly recognized as critical mediators of host–pathogen interactions, their effects on the differentiation and function of monocyte–macrophage/osteoclast lineage cells remain unclear. Here, we examined the impact of Pg-OMVs on the differentiation of RAW264.7 monocyte/macrophage-like cells into osteoclasts (OC) and/or macrophages (MΦ) in the presence of receptor activator of nuclear factor-κB ligand (RANKL). OMVs were isolated from Pg W83 and applied to RANKL-primed RAW264.7 cells using three distinct stimulation schedules: (1) simultaneous treatment with Pg-OMVs and RANKL at Day 0; (2) RANKL priming at Day 0 followed by Pg-OMV stimulation at Day 1; and (3) RANKL priming at Day 0 followed by Pg-OMV stimulation at Day 3. In all schedules, cells were cultured for 7 days from the initial RANKL exposure. Remarkably, simultaneous exposure to Pg-OMVs and RANKL (Schedule 1) markedly suppressed osteoclastogenesis (OC-genesis) while promoting M1 macrophage polarization. In contrast, delayed Pg-OMV stimulation of RANKL-primed cells (Schedules 2 and 3) significantly enhanced OC-genesis while reducing M1 polarization. These schedule-dependent effects were consistent with altered expression of osteoclastogenic markers, including dc-stamp, oc-stamp, nfatc1, and acp5. Importantly, a monoclonal antibody against OC-STAMP counteracted the Pg-OMV-induced upregulation of OC-genesis in Schedules 2 and 3. Furthermore, levels of Pg-OMV phagocytosis were inversely correlated with osteoclast formation. Finally, co-stimulation with RANKL and Pg-OMVs (Schedule 1) enhanced macrophage migratory capacity, whereas delayed stimulation with Pg-OMVs (Schedules 2 and 3) did not. Collectively, these findings indicate that Pg-OMVs exert stage-specific effects on the OC/MΦ lineage: stimulation at early stages of RANKL priming suppresses OC-genesis and promotes M1 polarization, whereas stimulation at later stages enhances OC-genesis without inducing M1 differentiation. Thus, Pg-OMVs may critically influence the fate of the OC/MΦ unit in periodontal lesions, contributing to disease progression and tissue destruction. Full article
(This article belongs to the Special Issue Molecular Biology of Periodontal Disease and Periodontal Pathogens)
Show Figures

Figure 1

30 pages, 7793 KB  
Article
A New Sea Ice Concentration (SIC) Retrieval Algorithm for Spaceborne L-Band Brightness Temperature (TB) Data
by Yin Hu, Shaoning Lv, Zhijin Li, Yijian Zeng, Xiehui Li, Yijun Zhang and Jun Wen
Remote Sens. 2026, 18(2), 265; https://doi.org/10.3390/rs18020265 - 14 Jan 2026
Abstract
Sea ice concentration (SIC) is crucial to the global climate. In this study, a new single-channel SIC retrieval algorithm utilizing spaceborne L-band brightness temperature (TB) measurements is developed based on a microwave radiative transfer model. Additionally, its four uncertainties are quantified [...] Read more.
Sea ice concentration (SIC) is crucial to the global climate. In this study, a new single-channel SIC retrieval algorithm utilizing spaceborne L-band brightness temperature (TB) measurements is developed based on a microwave radiative transfer model. Additionally, its four uncertainties are quantified and constrained: (1) variations in seawater reference TB under warm water conditions, (2) variations in sea ice reference TB under extremely low-temperature conditions, (3) the freeze–thaw dynamics of sea ice captured by Diurnal Amplitude Variation (DAV) signals, and (4) Land mask imperfections. It is found that DAV has the most pronounced effect: eliminating its influence reduces RMSE from 10.51% to 8.43%, increases R from 0.92 to 0.94, and minimizes Bias from -0.68 to 0.13. Suppressing all four uncertainties lowers RMSE to 7.42% (a 3% improvement). Furthermore, the algorithm exhibits robust agreement with the seasonal variability of SSM/I SIC, with R mostly exceeding 0.9, RMSE mostly below 10%, and Biases mostly within 5% throughout the year. Compared to ship-based and SAR SIC data, the new L-band algorithm’s Bias and RMSE are only 2% and 2% (ship-based)/2% and 1% (SAR) higher, respectively, than those of the SSM/I product. Future algorithms can integrate the DAV signal more effectively to better understand sea ice freeze–thaw processes and ice-atmosphere interactions. Full article
Show Figures

Figure 1

25 pages, 18497 KB  
Article
Carvacrol Selectively Induces Mitochondria-Related Apoptotic Signaling in Primary Breast Cancer-Associated Fibroblasts
by Nail Besli, Nilufer Ercin, Merve Tokocin, Sümeyra Emine Boluk, Rabia Kalkan Cakmak, Kamil Ozdogan, Talar Vartanoglu Aktokmakyan, Mehtap Toprak, Gulcin Ercan, Merve Beker, Ulkan Celik, Emir Capkinoglu and Yusuf Tutar
Pharmaceuticals 2026, 19(1), 142; https://doi.org/10.3390/ph19010142 - 14 Jan 2026
Abstract
Background/Objectives: Cancer-associated fibroblasts (CAFs) are key stromal mediators of breast tumor progression and therapy resistance. Carvacrol, a dietary monoterpenic phenol, exhibits antiproliferative activity in cancer cells, but its effects on primary human breast CAFs remain unclear. This study aimed to determine whether [...] Read more.
Background/Objectives: Cancer-associated fibroblasts (CAFs) are key stromal mediators of breast tumor progression and therapy resistance. Carvacrol, a dietary monoterpenic phenol, exhibits antiproliferative activity in cancer cells, but its effects on primary human breast CAFs remain unclear. This study aimed to determine whether carvacrol selectively induces mitochondria-related apoptotic signaling in breast CAFs while sparing normal fibroblasts (NFs). Methods: Primary fibroblast cultures were established from invasive ductal carcinoma tissues (CAFs, n = 9) and nonmalignant breast tissues (NFs, n = 5) and validated by α-SMA and FAP immunofluorescence. Cells were exposed to 400 μM carvacrol. Apoptosis was assessed by TUNEL assay and BAX/BCL-XL Western blotting. Changes in signaling pathways were evaluated by analyzing PPARα/NF-κB, sirtuin (SIRT1, SIRT3), autophagy-related markers (LAMP2A, p62), and matrix metalloproteinases (MMP-2, MMP-3). In silico molecular docking and 100-ns molecular dynamics simulations were performed to examine interactions between carvacrol and caspase-3 and caspase-9. Results: Carvacrol induced a pronounced, time-dependent apoptotic response in CAFs, with TUNEL-based viability declining to approximately 10% of control levels by 12 h and a marked increase in the BAX/BCL-XL ratio. In contrast, NFs exhibited minimal TUNEL positivity and no significant change in BAX/BCL-XL. In CAFs, but not NFs, carvacrol reduced PPARα expression and NF-κB nuclear localization, increased SIRT1 and SIRT3 levels, selectively suppressed MMP-3 while partially normalizing MMP-2, and altered autophagy-related markers (decreased LAMP2A and accumulation of p62), consistent with autophagic stress and possible impairment of autophagic flux. Computational analyses revealed stable carvacrol binding to caspase-3 and caspase-9 with modest stabilization of active-site loops, supporting caspase-dependent, mitochondria-related apoptosis. Conclusions: Carvacrol selectively targets breast cancer-associated fibroblasts by inducing mitochondria-related apoptotic signaling while largely sparing normal fibroblasts. This effect is accompanied by coordinated modulation of PPARα/NF-κB, sirtuin, autophagy, and MMP pathways. These findings support further evaluation of carvacrol as a microenvironment-directed adjunct in breast cancer therapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop