Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = supercritical antisolvent process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6322 KiB  
Article
Visible-Light-Driven Degradation of Chloramphenicol Using CeO2 Nanoparticles Prepared by a Supercritical CO2 Route: A Proof of Concept
by Maria Chiara Iannaco, Antonietta Mancuso, Stefania Mottola, Andrea Pipolo, Vincenzo Vaiano and Iolanda De Marco
Nanomaterials 2025, 15(2), 102; https://doi.org/10.3390/nano15020102 - 10 Jan 2025
Cited by 2 | Viewed by 1205
Abstract
Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for [...] Read more.
Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO2 as a photocatalyst for the degradation of chloramphenicol. Supercritical antisolvent (SAS) processing was successfully employed to synthesize photocatalyst precursor nanoparticles. After thermal annealing, the CeO2 samples were characterized through UV–Vis diffuse reflectance spectroscopy to evaluate the band gap energy values. Raman and FT-IR spectroscopy confirmed the presence of oxygen vacancies in the CeO2 lattice. During photocatalytic experiments, the CeO2 derived from the SAS-processed precursor exhibited superior photocatalytic performance compared to the catalyst synthesized from the non-micronized precursor. Various annealing temperatures were employed to tune the oxygen vacancy of CeO2. Furthermore, the impact of catalyst dosage and chloramphenicol concentration was investigated. Under optimal reaction conditions (25 mg L−1 chloramphenicol and 2.25 g L−1 catalyst dosage), a degradation efficiency of 64% was achieved. Finally, to elucidate the degradation mechanism, different scavengers (EDTA, benzoquinone, and isopropyl alcohol) were utilized, revealing that the superoxide radical is the primary species responsible for chloramphenicol degradation. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 8938 KiB  
Article
Designing Microparticles of Luteolin and Naringenin in Different Carriers via Supercritical Antisolvent Process
by Stefania Mottola and Iolanda De Marco
Polymers 2024, 16(24), 3600; https://doi.org/10.3390/polym16243600 - 23 Dec 2024
Viewed by 675
Abstract
Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, [...] Read more.
Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, luteolin (LUT) and naringenin (NAR), two compounds with antioxidant activity and potential health benefits, were precipitated through the supercritical antisolvent technique using polyvinylpyrrolidone and β-cyclodextrin as the carriers. The precipitation occurred from dimethylsulfoxide using supercritical carbon dioxide as the antisolvent. The influence of pressure (9–12 MPa), active substance/carrier concentration in the solution (20–200 mg/mL), and their ratio (1/1 and 1/2 mol/mol) on morphology, particle mean size, and distribution were investigated. Under the optimized operating conditions, spherical microparticles with a mean diameter equal to 2.7 ± 0.9 μm (for LUT) and 5.5 ± 1.9 μm (for NAR) were obtained. The active ingredients were protected from the external environment by the presence of the carrier, and the dissolution rate was notably increased by processing them with β-cyclodextrin. It was sixty times faster and three times faster than that of the antioxidant alone for LUT and NAR, respectively. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 3988 KiB  
Article
Effect of Process Parameters on Nano-Microparticle Formation During Supercritical Antisolvent Process Using Mixed Solvent: Application for Enhanced Dissolution and Oral Bioavailability of Telmisartan Through Particle-Size Control Based on Experimental Design
by Eun-Sol Ha, Heejun Park, Ji-Su Jeong, Seon-Kwang Lee, Hui-Taek Kang, In-hwan Baek and Min-Soo Kim
Pharmaceutics 2024, 16(12), 1508; https://doi.org/10.3390/pharmaceutics16121508 - 24 Nov 2024
Cited by 1 | Viewed by 1241
Abstract
Background/Objectives: This study investigates the impact of supercritical antisolvent (SAS) process parameters on the particle formation of telmisartan, a poorly water-soluble drug. Methods: A fractional factorial design was employed to examine the influence of the SAS process parameters, including solvent ratio, drug solution [...] Read more.
Background/Objectives: This study investigates the impact of supercritical antisolvent (SAS) process parameters on the particle formation of telmisartan, a poorly water-soluble drug. Methods: A fractional factorial design was employed to examine the influence of the SAS process parameters, including solvent ratio, drug solution concentration, temperature, pressure, injection rate of drug solution, and CO₂ flow rate, on particle formation. Solid-state characterizations of the SAS process particles using XRD and FT-IR confirmed their amorphous nature. The effect of particle size on the kinetic solubility, dissolution, and oral bioavailability of telmisartan was also assessed. Results: Using a mixture of dichloromethane and methanol, telmisartan amorphous nano-microparticles with sizes between 200 and 2000 nm were produced. The key parameters, particularly drug solution concentration and temperature, significantly affected the particle size. Interestingly, the ratio of the solvent mixture also had a significant effect on the particle morphology. Further experiments were performed to determine the conditions for preparing telmisartan amorphous nano-microparticles with various sizes by controlling the solvent mixture ratio and the concentration of the drug solution. It was revealed that a reduction in the amorphous particle size enhanced both the kinetic solubility and dissolution rates, leading to a significantly increased in vivo oral bioavailability in rats compared to unprocessed telmisartan. Conclusions: These findings suggest that SAS processing, utilizing adjustments of process parameters, offers an effective strategy for enhancing the bioavailability of poorly soluble drugs by generating amorphous spherical nano-microparticles with optimized particle size. Full article
(This article belongs to the Special Issue Supercritical Techniques for Pharmaceutical Applications)
Show Figures

Graphical abstract

16 pages, 13512 KiB  
Article
Green Processing of Ilex guayusa: Antioxidant Concentration and Caffeine Reduction Using Encapsulation by Supercritical Antisolvent Process
by Miguel Ángel Meneses, Jhulissa Guzmán, Jhulissa Cabrera, Jorge Magallanes, Eduardo Valarezo and María del Cisne Guamán-Balcázar
Molecules 2024, 29(22), 5309; https://doi.org/10.3390/molecules29225309 - 11 Nov 2024
Viewed by 1607
Abstract
This study investigated the valorization of Ilex guayusa leaves by producing a low-caffeine, antioxidant-rich product through the supercritical antisolvent extraction (SAE) process. The objective was to concentrate the antioxidants while selectively reducing the caffeine. The SAE treatments were conducted using an ethanolic extract [...] Read more.
This study investigated the valorization of Ilex guayusa leaves by producing a low-caffeine, antioxidant-rich product through the supercritical antisolvent extraction (SAE) process. The objective was to concentrate the antioxidants while selectively reducing the caffeine. The SAE treatments were conducted using an ethanolic extract of guayusa leaves under varying pressure (80 bar–150 bar) and temperature (35–45 °C) conditions to improve the recovery of chlorogenic acid (CGA) and caffeine fractionation. The co-precipitation of antioxidants with polyvinylpyrrolidone (PVP) (ratio 1:1–1:2 mass/mass) as an encapsulant was also studied. The SAE precipitates were analyzed for their recovery yield, CGA and caffeine contents, antioxidant activity, and total phenols. Based on the statistical analysis, the optimal conditions for the SAE were 120 bar and 45 °C. Under these conditions, the CGA concentration increased from 43.02 mg/g extract to 237 mg/g precipitate, while the caffeine was reduced to less than 1% mass. Co-precipitation with PVP improved the recovery yield by more than two times than the SAE alone while maintaining the caffeine content below 1% mass. Additionally, the co-precipitation with PVP facilitated the formation of spherical microparticles, indicating successful encapsulation of the bioactive compounds, with an IC50 of 0.51 ± 0.01 mg/mL for DPPH and 0.18 ± 0.01 mg/mL for ABTS. These results highlight the effectiveness of the SAE co-precipitation process in developing low-caffeine functional ingredients with potential food and pharmaceutical applications. Full article
(This article belongs to the Special Issue Processing of Materials by Supercritical Fluids, 3rd Edition)
Show Figures

Figure 1

20 pages, 42348 KiB  
Article
Optimizing Paclitaxel Oral Absorption and Bioavailability: TPGS Co-Coating via Supercritical Anti-Solvent Fluidized Bed Technology
by Zicheng Zhong, Yanling Lan, Jinxing Chen, Lu Ping, Xuchun Li, Qing Wang, Xiaodong Zhuang, Zhenwen Qiu, Tianhui Yuan, Qiupin Guo, Long Xi, Qingguo Li and Dandong Luo
Pharmaceuticals 2024, 17(4), 412; https://doi.org/10.3390/ph17040412 - 25 Mar 2024
Cited by 3 | Viewed by 2785
Abstract
Supercritical anti-solvent fluidized bed (SAS-FB) coating technology has the advantages of reducing particle size, preventing high surface energy particle aggregation, improving the dissolution performance and bioavailability of insoluble drugs. The poor solubility of Biopharmaceutics Classification System (BCS) class IV drugs poses challenges in [...] Read more.
Supercritical anti-solvent fluidized bed (SAS-FB) coating technology has the advantages of reducing particle size, preventing high surface energy particle aggregation, improving the dissolution performance and bioavailability of insoluble drugs. The poor solubility of Biopharmaceutics Classification System (BCS) class IV drugs poses challenges in achieving optimal bioavailability. Numerous anti-cancer drugs including paclitaxel (PTX) belong to the BCS class IV, hindering their therapeutic efficacy. To address this concern, our study explored SAS-FB technology to coat PTX with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) onto lactose. Under our optimized conditions, we achieved a PTX coating efficiency of 96.8%. Further characterization confirmed the crystalline state of PTX in the lactose surface coating by scanning electron microscopy and X-ray powder diffraction. Dissolution studies indicated that SAS-FB processed samples release over 95% of the drug within 1 min. Moreover, cell transmembrane transport assays demonstrated that SAS-FB processed PTX samples co-coated with TPGS had an enhanced PTX internalization into cells and a higher permeability coefficient compared to those without TPGS. Finally, compared to unprocessed PTX, SAS-FB (TPGS) and SAS-FB processed samples showed a 2.66- and 1.49-fold increase in oral bioavailability in vivo, respectively. Our study highlights the efficacy of SAS-FB co-coating for PTX and TPGS as a promising strategy to overcome bioavailability challenges inherent in BCS class IV drugs. Our approach holds broader implications for enhancing the performance of similarly classified medications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

15 pages, 4754 KiB  
Article
Encapsulation of Olive (Olea europaea L.) Pruning Waste Particles by Supercritical CO2 Technology
by Antonio Montes, Diego Valor, Ignacio García-Casas, Ana Sánchez and Clara Pereyra
Foods 2024, 13(6), 905; https://doi.org/10.3390/foods13060905 - 16 Mar 2024
Cited by 1 | Viewed by 2222
Abstract
Olive leaves (Olea europaea L.) contain a multitude of bioactive compounds such as sterols, carotenes, triterpenic alcohols and phenolic compounds. These compounds have been shown to exhibit antiviral, antioxidant, candida-growth-inhibitory, anticancer, antifungal, anti-inflammatory and antibacterial activities. In this sense, submicron particles from [...] Read more.
Olive leaves (Olea europaea L.) contain a multitude of bioactive compounds such as sterols, carotenes, triterpenic alcohols and phenolic compounds. These compounds have been shown to exhibit antiviral, antioxidant, candida-growth-inhibitory, anticancer, antifungal, anti-inflammatory and antibacterial activities. In this sense, submicron particles from olive leaves with antioxidant activity were precipitated by supercritical antisolvent extraction in a previous work. Moreover, encapsulation enables the delayed release of compounds and avoids the first-step effect in medical therapies. Therefore, this work focused on encapsulation of particles with a certain antioxidant capacity from olive pruning waste using supercritical technology. A variety of experiments were carried out to test how the different operating variables (pressure, temperature and extract–polymer ratio) affect. Morphology was analyzed by SEM microscopy, obtaining encapsulates between 1 and 5 microns in size. The antioxidant capacity was determined by the DPPH assay, with most of the encapsulates having AAI values between 0.5 and 1 (moderate antioxidant capacity). An increase in polyphenol content was observed in the 1:3 ratio tests. The release of the compounds in gastric simulated medium was retarded by the polymeric encapsulation, while in intestinal fluid, the solubility was improved compared to the unencapsulated particles. Overall, the supercritical encapsulation process for the natural extract of olive pruning residues has proven to be effective in obtaining antioxidant particles with different release profiles. Full article
(This article belongs to the Special Issue Application of Green Extraction Technology for Foods)
Show Figures

Figure 1

14 pages, 5171 KiB  
Article
Curcumin/Carrier Coprecipitation by Supercritical Antisolvent Route
by Stefania Mottola and Iolanda De Marco
Pharmaceutics 2024, 16(3), 352; https://doi.org/10.3390/pharmaceutics16030352 - 2 Mar 2024
Cited by 3 | Viewed by 1426
Abstract
In this work, polyvinylpyrrolidone (PVP)- and β-cyclodextrin (β-CD)-based composite powders containing curcumin (CURC) were obtained through the supercritical antisolvent (SAS) technique. Pressure, total concentration of CURC/carrier in dimethylsulfoxide, and CURC/carrier ratio effects on the morphology and size of the precipitated powders were investigated. [...] Read more.
In this work, polyvinylpyrrolidone (PVP)- and β-cyclodextrin (β-CD)-based composite powders containing curcumin (CURC) were obtained through the supercritical antisolvent (SAS) technique. Pressure, total concentration of CURC/carrier in dimethylsulfoxide, and CURC/carrier ratio effects on the morphology and size of the precipitated powders were investigated. Using PVP as the carrier, spherical particles with a mean diameter of 1.72 μm were obtained at 12.0 MPa, 20 mg/mL, and a CURC/PVP molar ratio equal to 1/2 mol/mol; using β-CD as the carrier, the optimal operating conditions were 9.0 MPa and 200 mg/mL; well-defined micrometric particles with mean diameters equal to 2.98 and 3.69 μm were obtained at molar ratios of 1/2 and 1/1 mol/mol, respectively. FT-IR spectra of CURC/ β-CD inclusion complexes and coprecipitated CURC/PVP powders revealed the presence of some peaks of the active compounds. The stoichiometry of the complexes evaluated through the Job method revealed that β-CD formed inclusion complexes with CURC at a molar ratio equal to 1/1. Dissolution profiles revealed that in comparison with the curve of the pure ingredient, the SAS-processed powders obtained using both PVP and β-CD have an improved release rate. Full article
(This article belongs to the Special Issue Supercritical Techniques for Pharmaceutical Applications)
Show Figures

Figure 1

23 pages, 4263 KiB  
Review
Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives
by Emilia Oleandro, Mariamelia Stanzione, Giovanna Giuliana Buonocore and Marino Lavorgna
Nanomaterials 2024, 14(5), 414; https://doi.org/10.3390/nano14050414 - 23 Feb 2024
Cited by 31 | Viewed by 5595 | Correction
Abstract
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins’ abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, [...] Read more.
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins’ abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers’ efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs’ structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions. Full article
Show Figures

Figure 1

14 pages, 7421 KiB  
Article
The Treatment of Natural Calcium Materials Using the Supercritical Antisolvent Method for CO2 Capture Applications
by Luís C. S. Nobre, Paula Teixeira, Carla I. C. Pinheiro, António M. F. Palavra, Mário J. F. Calvete, Carlos A. Nieto de Castro and Beatriz P. Nobre
Processes 2024, 12(3), 425; https://doi.org/10.3390/pr12030425 - 20 Feb 2024
Cited by 1 | Viewed by 1808
Abstract
The potential of the supercritical antisolvent micronization (SAS) technique was evaluated for the production of CaO-based particles with a size and a physical structure that could enable high performance for CO2 capture through the calcium looping process. Two sources of calcium derivative [...] Read more.
The potential of the supercritical antisolvent micronization (SAS) technique was evaluated for the production of CaO-based particles with a size and a physical structure that could enable high performance for CO2 capture through the calcium looping process. Two sources of calcium derivative compounds were tested, waste marble powder (WMP) and dolomite. The SAS micronization of the derivate calcium acetate was carried out at 60 °C, 200 bar, a 0.5 mL min−1 flow rate of liquid solution, and 20 mg mL−1 concentration of solute, producing, with a yield of more than 70%, needle-like particles. Moreover, since dolomite presents with a mixture of calcium and magnesium carbonates, the influence of the magnesium fraction in the SAS micronization was also assessed. The micronized mixtures with lower magnesium content (higher calcium fraction) presented needle-like particles similar to WMP. On the other hand, for the higher magnesium fractions, the micronized material was similar to magnesium acetate micronization, presenting sphere-like particles. The use of the micronized material in the Ca-looping processes, considering 10 carbonation-calcination cycles under mild and realistic conditions, showed that under mild conditions, the micronized WMP improved CaO conversion. After 10 cycles the micronization, WMP presented a conversion 1.8 times greater than the unprocessed material. The micronized dolomite, under both mild and real conditions, maintained more stable conversion after 10 cycles. Full article
Show Figures

Figure 1

18 pages, 10219 KiB  
Article
Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes
by Stefania Mottola and Iolanda De Marco
Polymers 2024, 16(1), 29; https://doi.org/10.3390/polym16010029 - 20 Dec 2023
Cited by 6 | Viewed by 1515
Abstract
In this study, corticosteroid–β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a [...] Read more.
In this study, corticosteroid–β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of β-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 °C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 ± 0.180 μm and 0.131 ± 0.070 μm in the case of DEX and PRED, respectively. Job’s method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release. Full article
Show Figures

Figure 1

18 pages, 5117 KiB  
Article
Photocatalytic Systems Based on ZnO Produced by Supercritical Antisolvent for Ceftriaxone Degradation
by Stefania Mottola, Antonietta Mancuso, Olga Sacco, Vincenzo Vaiano and Iolanda De Marco
Catalysts 2023, 13(8), 1173; https://doi.org/10.3390/catal13081173 - 30 Jul 2023
Cited by 9 | Viewed by 1943
Abstract
Emerging contaminants are a significant issue in the environment. Photocatalysis is proposed as a solution for the degradation of pollutants contained in wastewater. In this work, ZnO-based photocatalysts have been produced and tested for the photocatalytic degradation of an antibiotic; specifically, ceftriaxone has [...] Read more.
Emerging contaminants are a significant issue in the environment. Photocatalysis is proposed as a solution for the degradation of pollutants contained in wastewater. In this work, ZnO-based photocatalysts have been produced and tested for the photocatalytic degradation of an antibiotic; specifically, ceftriaxone has been used as a model contaminant. Moreover, there is particular interest in combining small-size ZnO particles and β-cyclodextrin (β-CD), creating a hybrid photocatalyst. Zinc acetate (ZnAc) (subsequently calcinated into ZnO) and β-CD particles with a mean diameter of 0.086 and 0.38 µm, respectively, were obtained using the supercritical antisolvent process (SAS). The produced photocatalysts include combinations of commercial and micronized particles of ZnO and β-CD and commercial and micronized ZnO. All the samples were characterized through UV–Vis diffuse reflectance spectroscopy (DRS), and the band gap values were calculated. Raman and FT-IR measurements confirmed the presence of ZnO and the existence of functional groups due to the β-cyclodextrin and ZnO combination in the hybrid photocatalysts. Wide-angle X-ray diffraction patterns proved that wurtzite is the main crystalline phase for all hybrid photocatalytic systems. In the photocatalytic degradation tests, it was observed that all the photocatalytic systems exhibited 100% removal efficiency within a few minutes. However, the commercial ZnO/micronized β-CD hybrid system is the photocatalyst that shows the best performance; in fact, when using this hybrid system, ceftriaxone was entirely degraded in 1 min. Full article
(This article belongs to the Special Issue Photocatalytical Technology in Europe: State-of-the-Art)
Show Figures

Figure 1

6 pages, 537 KiB  
Comment
Comment on Villalva et al. Antioxidant, Anti-Inflammatory, and Antibacterial Properties of an Achillea millefolium L. Extract and Its Fractions Obtained by Supercritical Anti-Solvent Fractionation against Helicobacter pylori. Antioxidants 2022, 11, 1849
by Rafał Frański and Monika Beszterda-Buszczak
Antioxidants 2023, 12(6), 1226; https://doi.org/10.3390/antiox12061226 - 7 Jun 2023
Cited by 7 | Viewed by 2626
Abstract
Villalva et al. evaluated the potential utility of an Achillea millefolium (yarrow) extract in the control of H. pylori infection. The agar-well diffusions bioassay was applied to determine the antimicrobial activity of yarrow extracts. The supercritical anti-solvent fractionation process of yarrow extract was [...] Read more.
Villalva et al. evaluated the potential utility of an Achillea millefolium (yarrow) extract in the control of H. pylori infection. The agar-well diffusions bioassay was applied to determine the antimicrobial activity of yarrow extracts. The supercritical anti-solvent fractionation process of yarrow extract was made to give two different fractions with polar phenolic compounds and monoterpenes and sesquiterpenes, respectively. Phenolic compounds were identified by HPLC-ESIMS by using the accurate masses of [M−H] ions and the characteristic product ions. However, some of the reported product ions seem to be disputable, as described below. Full article
Show Figures

Figure 1

15 pages, 3697 KiB  
Article
Blending of the Thermodynamically Incompatible Polyvinyl Chloride and High-Pressure Polyethylene Polymers Using a Supercritical Fluid Anti-Solvent Method (SEDS) Dispersion Process
by Vener F. Khairutdinov, Ilnar Sh. Khabriev, Farid M. Gumerov, Rafail M. Khuzakhanov, Ruslan M. Garipov, Lenar Yu. Yarullin and Ilmutdin M. Abdulagatov
Polymers 2023, 15(9), 1986; https://doi.org/10.3390/polym15091986 - 22 Apr 2023
Cited by 3 | Viewed by 2628
Abstract
The experimental solubility data of polyvinyl chloride (PVC) and high-pressure polyethylene (HPPE) in organic solvents (toluene, dichloromethane, and chloroform) at temperatures ranging from 308.15 to 373.15 K at atmospheric pressure are reported in the present paper. The solubility of the polymers (PVC and [...] Read more.
The experimental solubility data of polyvinyl chloride (PVC) and high-pressure polyethylene (HPPE) in organic solvents (toluene, dichloromethane, and chloroform) at temperatures ranging from 308.15 to 373.15 K at atmospheric pressure are reported in the present paper. The solubility of the polymers (PVC and HPPE) in organic solvents (toluene, dichloromethane, and chloroform) was studied at temperatures between 298 and 373 K. The supercritical SEDS dispersion of PVC and HPPE polymer blends at pressures between 8.0 and 25 MPa and at temperatures from 313 to 333 K are reported in the present work. The kinetics of crystallization and phase transformation in polymer blends obtained by blending in a melt, and using the supercritical SEDS method, have been studied. The effect of the HPPE/PVC ratio on the thermal and mechanical characteristics of the polymer blends has been studied. For all studied polymer blends and pure polymers obtained using the SEDS method, the heat of fusion ΔfusH exceeds the values obtained by blending in the melt by 1.5 to 5) times. The heat of fusion of the obtained polymer blends is higher than the additive value; therefore, the degree of crystallinity is higher, and this effect persists after heat treatment. The relative elongation decreases for all polymer blends, but their tensile strength increases significantly. Full article
(This article belongs to the Special Issue Plastics II)
Show Figures

Figure 1

11 pages, 19561 KiB  
Article
Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process
by Antonio Montes, Diego Valor, Clara Pereyra and Enrique Martínez de la Ossa
Sustain. Chem. 2023, 4(2), 143-153; https://doi.org/10.3390/suschem4020011 - 31 Mar 2023
Cited by 2 | Viewed by 2740
Abstract
The objective of this work was evaluation of the supercritical antisolvent extraction (SAE) process to generate microparticles with antioxidant activity from Moringa leaves. A biodegradable polymer was used as an inductor of particle precipitation. An ethanolic extract of 25 mg/mL was used in [...] Read more.
The objective of this work was evaluation of the supercritical antisolvent extraction (SAE) process to generate microparticles with antioxidant activity from Moringa leaves. A biodegradable polymer was used as an inductor of particle precipitation. An ethanolic extract of 25 mg/mL was used in the SAE process, during which the influences of pressure (100–200 bar), temperature (35–55 °C) and extract–polymer ratio (0.11–0.33) on particle size and antioxidant activity were evaluated. An extract flow rate of 3 mL/min, a supercritical CO2 (scCO2) flow rate of 30 g CO2/min and a nozzle diameter of 100 µm were kept constant. The identification of several compounds of Moringa leaves, namely, coumaric acid and quercetin 3D glucoside, were determined with ultra-performance liquid chromatography coupled with mass spectrometry. The antioxidant activity of the extract and the precipitates was measured with 2,2-Diphenyl-1-picrylhydrazyl. Spherical microparticles with diameters in the range of 2–5 µm were obtained, with moderate antioxidant activity. Full article
Show Figures

Figure 1

14 pages, 2543 KiB  
Article
Experimental Determination of a Chiral Ternary Solubility Diagram and Its Interpretation in Gas Antisolvent Fractionation
by Márton Kőrösi, Csaba Varga, Péter Tóth, Noémi Buczkó, Erzsébet Varga and Edit Székely
Molecules 2023, 28(5), 2115; https://doi.org/10.3390/molecules28052115 - 24 Feb 2023
Viewed by 1995
Abstract
Although crystallization has been widely applied for the enantiomeric enrichment of non-racemates both in research and in industrial applications, the physical–chemical background of chiral crystallizations is not as frequently discussed. A guide for the experimental determination of such phase equilibrium information is lacking. [...] Read more.
Although crystallization has been widely applied for the enantiomeric enrichment of non-racemates both in research and in industrial applications, the physical–chemical background of chiral crystallizations is not as frequently discussed. A guide for the experimental determination of such phase equilibrium information is lacking. In the current paper, the experimental investigation of chiral melting phase equilibria, chiral solubility phase diagrams and their application in atmospheric and supercritical carbon dioxide-assisted enantiomeric enrichment is described and compared. Benzylammonium mandelate is a racemic compound; it shows eutectic behavior when molten. A similar eutonic composition was observed in its methanol phase diagram at 1 °C. The influence of the ternary solubility plot could be unequivocally discovered in atmospheric recrystallization experiments, which proved that the crystalline solid phase and the liquid phase were in an equilibrium. The interpretation of the results obtained at 20 MPa and 40 °C, using the methanol–carbon dioxide mixture as a pseudo-component, was more challenging. Although the eutonic composition was found to be the limiting enantiomeric excess value in this purification process as well, the high-pressure gas antisolvent fractionation results were only clearly thermodynamically controlled in certain concentration ranges. Full article
(This article belongs to the Special Issue New Insights into the Preparation and Separation of Enantiomers)
Show Figures

Figure 1

Back to TopTop