Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = sunflower productivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2136 KB  
Article
Comparative Effects of Amendment Practices on Soil Quality, Crop Productivity, and Ecosystem Services in Arid Saline–Alkali Farmland: A Three-Year Field Study
by Min Hu, Yue Li, Yao Zhang and Zhongyi Qu
Agronomy 2026, 16(3), 283; https://doi.org/10.3390/agronomy16030283 - 23 Jan 2026
Abstract
Soil salinization severely constrains crop productivity and ecosystem services in arid regions. While the application of soil amendments represents a promising mitigation strategy, it remains uncertain whether this practice can effectively enhance soil quality index (SQI), crop productivity, and ecosystem service value (ESV) [...] Read more.
Soil salinization severely constrains crop productivity and ecosystem services in arid regions. While the application of soil amendments represents a promising mitigation strategy, it remains uncertain whether this practice can effectively enhance soil quality index (SQI), crop productivity, and ecosystem service value (ESV) in saline–alkali farmlands. To address this, a three-year field experiment was conducted to analyze the effects of different amendments (rotary-tilled straw return (RT), plowed straw return (PL), biochar (BC), desulfurized gypsum (DG), DG combined with organic fertilizer (DGO), and an unamended control (CK)) on SQI, sunflower productivity, and ESV in a saline–alkali farmland of arid Northwest China. Results indicated that the BC treatment significantly reduced bulk density by 5.1–7.6% and increased porosity by 6.3–8.3% compared to CK. Both BC and DGO significantly increased soil organic matter and available nutrients while reducing saline ions (HCO3, Cl, Na+), which reduced soil salinity by 21.2–33.6% and 19.9–26.5%, respectively. These synergistic improvements enhanced the SQI by 76.8% and 74.1% for BC and DGO, respectively, relative to CK. Correlation analysis revealed strong positive relationships between SQI and crop nitrogen uptake and yield. Accordingly, BC and DGO increased nitrogen uptake by 74.9–129.0% and yield by 12.2–45.2%, with BC offering more stable benefits over time. Furthermore, BC increased the values of agricultural product supply, nutrient accumulation and climate regulation, thereby increasing the total ESV by 13.7–53.9% relative to CK. In summary, BC and DGO are effective strategies to synergistically enhance soil quality, crop productivity, and ecosystem services in saline–alkali farmlands of arid regions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

32 pages, 4450 KB  
Article
On-Farm Assessment of No-Till Onion Production and Cover Crop Effects on Soil Physical and Chemical Properties and Greenhouse Gas Emissions
by Paulo Henrique da Silva Câmara, Bruna da Rosa Dutra, Guilherme Wilbert Ferreira, Lucas Dupont Giumbelli, Lucas Raimundo Rauber, Denílson Dortzbach, Júlio César Ramos, Marisa de Cássia Piccolo, José Luiz Rodrigues Torres, Daniel Pena Pereira, Claudinei Kurtz, Cimélio Bayer, Jucinei José Comin and Arcângelo Loss
Agronomy 2026, 16(3), 278; https://doi.org/10.3390/agronomy16030278 - 23 Jan 2026
Abstract
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating [...] Read more.
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating soil management systems for onion (Allium cepa L.) production in a Humic Dystrudept (Cambissolo Húmico Distrófico, Brazilian Soil Classification System) in Southern Brazil. Three management systems based on permanent soil cover and crop diversification were evaluated in an onion–maize rotation: conventional tillage (CT) without cover crops, no-till (NT) without cover crops, and a no-till vegetable system (NTV) with a summer cover crop mixture of pearl millet (Pennisetum americanum), velvet bean (Mucuna aterrima), and sunflower (Helianthus annuus). Short-term GHG emissions were monitored during one onion growing season (106 days), while soil chemical and physical properties reflect long-term management effects. Evaluations included (i) daily and cumulative GHG (N2O, CH4, and CO2) emissions, (ii) soil carbon (C) and nitrogen (N) stocks, (iii) soil aggregation, porosity, and bulk density in different soil layers (0.00–0.05, 0.05–0.10, and 0.10–0.30 m), and (iv) onion yield and cover crop dry matter production. The NTV system improved soil physical and chemical quality and increased onion yield compared to NT and CT. However, higher cumulative N2O emissions were observed in NTV, highlighting a short-term trade-off between increased N2O emissions and long-term improvements in soil quality and crop productivity. All systems acted as methane sinks, with greater CH4 uptake under NTV. Despite higher short-term emissions, the NTV system maintained a positive C balance due to long-term C accumulation in soil. Short-term greenhouse gas emissions were assessed during a single onion growing season, whereas soil carbon stocks reflect long-term management effects; CO2 fluxes measured using static chambers represent ecosystem respiration rather than net ecosystem carbon balance. These results provide an initial baseline of GHG dynamics within a long-term agroecological system and support future multi-year assessments aimed at refining mitigation strategies in diversified vegetable production systems. Full article
22 pages, 6811 KB  
Article
Plant Accumulation of Metals from Soils Impacted by the JSC Qarmet Industrial Activities, Central Kazakhstan
by Bakhytzhan K. Yelikbayev, Kanay Rysbekov, Assel Sankabayeva, Dinara Baltabayeva and Rafiq Islam
Environments 2026, 13(1), 64; https://doi.org/10.3390/environments13010064 (registering DOI) - 22 Jan 2026
Abstract
Metal pollution from metallurgical emissions poses serious environmental and public health risks in Kazakhstan. A replicated pot-culture experiment (n = 4) in a completely randomized design under controlled phytotron conditions evaluated biomass production and metal accumulation in six crop and forage species, alfalfa [...] Read more.
Metal pollution from metallurgical emissions poses serious environmental and public health risks in Kazakhstan. A replicated pot-culture experiment (n = 4) in a completely randomized design under controlled phytotron conditions evaluated biomass production and metal accumulation in six crop and forage species, alfalfa (Medicago sativa), amaranth (Amaranthus spp.), corn (Zea mays), mustard (Brassica juncea), rapeseed (Brassica napus), and sunflower (Helianthus annuus); three ornamental species, purple coneflower (Echinacea purpurea), marigold (Tagetes spp., ‘Tiger Eyes’), and sweet alyssum (Lobularia maritima); and three native wild plants, greater burdock (Arctium lappa), horse sorrel (Rumex confertus), and mug wort (Artemisia vulgaris). Plants were grown in soils collected from the Qarmet industrial zone in Temirtau, central Kazakhstan. Initial soil analysis revealed substantial mixed-metal contamination, ranked as Mn > Ba > Zn > Sr > Cr > Pb > Cu > Ni > B > Co. Mn reached 1059 mg·kg−1, ~50-fold higher than B (22.7 mg·kg−1). Ba (620 mg·kg−1) exceeded FAO/WHO limits sixfold, Zn (204 mg·kg−1) surpassed the lower threshold, and Pb (41.6 mg·kg−1) approached permissible levels, while Cr, Cu, Ni, Co, and Sr were lower. Biomass production varied markedly among species: corn and sunflower produced the highest shoot biomass (126.8 and 60.9 g·plant−1), whereas horse sorrel had the greatest root biomass (54.4 g·plant−1). Root-to-shoot ratios indicated shoot-oriented growth (>1–8) in most species, except horse sorrel and burdock (<1). Metal accumulation was strongly species-specific. Corn and marigold accumulated Co, Pb, Cr, Mn, Ni, Cu, B, and Ba but showed limited translocation (transfer function, TF < 0.5), whereas sunflower, amaranth, and mug wort exhibited moderate to high translocation (TF > 0.8 to <1) for selected metals. Corn is recommended for high-biomass metal removal, marigold for stabilization, sunflower, horse sorrel, and mug wort for multi-metal extraction, and amaranth and coneflower for targeted Co, Ni, and Cu translocation, supporting sustainable remediation of industrially contaminated soils. Full article
Show Figures

Figure 1

25 pages, 5632 KB  
Article
Chaos-Enhanced, Optimization-Based Interpretable Classification Model and Performance Evaluation in Food Drying
by Cagri Kaymak, Bilal Alatas, Suna Yildirim, Ebru Akpinar, Gizem Gul Katircioglu, Murat Catalkaya, Orhan E. Akay and Mehmet Das
Biomimetics 2026, 11(1), 78; https://doi.org/10.3390/biomimetics11010078 - 18 Jan 2026
Viewed by 79
Abstract
Food drying is a widely used preservation technique; however, achieving high energy efficiency while maintaining product quality remains a significant challenge. This study aims to analyze comprehensive experimental data obtained during the hot-air drying process of the Paşa pear (regional pear) and the [...] Read more.
Food drying is a widely used preservation technique; however, achieving high energy efficiency while maintaining product quality remains a significant challenge. This study aims to analyze comprehensive experimental data obtained during the hot-air drying process of the Paşa pear (regional pear) and the system’s autonomous control structure using an explainable artificial intelligence (XAI)-based method. The intelligent drying system, operating for approximately 17.5 h under two temperatures (50 °C and 65 °C) and two air speeds (0.63 m/s and 1.03 m/s), continuously adjusted the temperature and air speed using a PLC-based control mechanism; it ensured stable control throughout the process by monitoring parameters such as product weight, moisture, inlet–outlet temperatures, and air speed in real time. Experimental results showed that drying performance varied significantly with operating conditions, with product mass decreasing from 450 g to 103 g. The innovative aspect of the study is that it obtained quantitative, interpretable rules without discretization by applying the oscillatory chaotic sunflower optimization algorithm (OCSFO) to multidimensional control and process data for the first time. Thanks to its chaotic search mechanism, OCSFO accurately analyzed complex drying dynamics and created rules that achieved over 90% success for high, medium, and low performance classes. The obtained explainable rules clearly demonstrate that drying temperature and air velocity are the dominant determining parameters for drying efficiency, while energy consumption and cabin temperature distribution play a supporting role in distinguishing between efficiency classes. These rules clearly demonstrate how changes in controlled temperature and air velocity, combined with product weight and heat transfer, affect drying performance. Thus, the study offers a robust framework that identifies critical factors affecting drying performance through a transparent artificial intelligence approach that leverages both the autonomous control system and XAI-based rule mining. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

21 pages, 10397 KB  
Article
Physicochemical Characteristics of Potato Starch Extrudates Enriched with Edible Oils
by Marzena Włodarczyk-Stasiak, Małgorzata Jurak and Agnieszka Ewa Wiącek
Molecules 2026, 31(2), 293; https://doi.org/10.3390/molecules31020293 - 14 Jan 2026
Viewed by 105
Abstract
Starch systems and their extrudates can be used as edible films, carriers, and encapsulants for bioactive substances in various industries, primarily the food, medicine, and pharmacy industries. Using appropriate modification methods, it is possible to alter their physicochemical properties to improve specific functional [...] Read more.
Starch systems and their extrudates can be used as edible films, carriers, and encapsulants for bioactive substances in various industries, primarily the food, medicine, and pharmacy industries. Using appropriate modification methods, it is possible to alter their physicochemical properties to improve specific functional parameters, thereby enhancing their application potential. The aim of this study was to characterize potato starch extrudates enriched with two types of edible oils (rapeseed or sunflower) at concentrations of 3%, 6%, and 9%. Chemical modification was carried out using K2CO3 as a catalyst. The structure of native and modified starch extrudates was examined using optical/confocal microscopy, FTIR, and LTNA (low-temperature nitrogen adsorption). Analogous starch dispersions were studied using static and dynamic light scattering, SLS/DLS, nephelometric methods, and electrophoretic mobility measurements to determine surface charge levels and stability. Additionally, viscosity curves were determined as a function of time and temperature. It was found that starch extrudates with 6% sunflower oil content showed optimal functional properties, characterized by greater stability, higher structural order, and better oil complexation. These findings directly translate into significant potential applications, including the development of functional products in the food industry. Full article
Show Figures

Graphical abstract

16 pages, 1204 KB  
Article
Waste Sunflower Oil as a Feedstock for Efficient Single-Cell Oil and Biomass Production by Yarrowia lipolytica
by Bilge Sayın
Foods 2026, 15(2), 290; https://doi.org/10.3390/foods15020290 - 13 Jan 2026
Viewed by 164
Abstract
In this study, single-cell oil (SCO) production from waste sunflower oil was optimized using Yarrowia lipolytica IFP29 (ATCC 20460). Optimizations were performed via a multi-response approach based on the Taguchi orthogonal array design (L16), targeting maximum biomass concentration and lipid content (based on [...] Read more.
In this study, single-cell oil (SCO) production from waste sunflower oil was optimized using Yarrowia lipolytica IFP29 (ATCC 20460). Optimizations were performed via a multi-response approach based on the Taguchi orthogonal array design (L16), targeting maximum biomass concentration and lipid content (based on dry cell weight). A total of 16 experimental conditions were tested with five key parameters: nitrogen concentration (0, 1, 2, and 4 g/L), WCO concentration (20, 40, 60, and 80 g/L), Tween 80 content (0, 0.5, 1, and 2%) as well as the application of sonication and sterilization. Analysis of variance revealed that all tested factors, except Tween 80 and sonication, had statistically significant effects on lipid content (p < 0.05). The highest lipid content (72.86% of dry cell weight) was obtained in a sterilized, sonicated medium containing 80 g/L WCO and 2% Tween 80, under conditions without nitrogen supplementation. In contrast, maximum biomass production (4.18 g/L) was achieved in sterile cultures with high nitrogen (4%) and high WCO (80 g/L) in the absence of Tween 80 and sonication. Palmitic acid (C16:0) content was also successfully optimized, with nitrogen concentration and Tween 80 supplementation exerting a statistically significant effect (p < 0.05). These results highlight the potential of waste sunflower oil as a low-cost feedstock for SCO production and support the development of economically and environmentally sustainable bioprocesses. Full article
(This article belongs to the Special Issue Advances in Food Biotechnology and Enzyme Engineering)
Show Figures

Graphical abstract

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 133
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

36 pages, 3587 KB  
Article
The Influence of Sunflower Seed Hull Content on the Mechanical, Thermal, and Functional Properties of PHBV-Based Biocomposites
by Grzegorz Janowski, Marta Wójcik, Irena Krešić, Wiesław Frącz, Łukasz Bąk, Ivan Gajdoš and Emil Spišák
Materials 2026, 19(2), 268; https://doi.org/10.3390/ma19020268 - 8 Jan 2026
Viewed by 205
Abstract
This paper presents the potential use of sunflower seed hulls (SSH) as a sustainable filler for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites. Ground SSH were incorporated into the PHBV matrix at loadings of 15, 30, and 45 wt% via extrusion and injection molding. The Fourier Transform [...] Read more.
This paper presents the potential use of sunflower seed hulls (SSH) as a sustainable filler for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites. Ground SSH were incorporated into the PHBV matrix at loadings of 15, 30, and 45 wt% via extrusion and injection molding. The Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the presence of possible interactions between the filler and the matrix. Mechanical testing revealed a significant increase in stiffness, with the tensile modulus increasing from 2.6 GPa for pure PHBV to approximately 4.5 GPa for the composite containing 45 wt% SSH. However, the tensile strength decreased by approximately 10–40%, while elongation at break dropped to 1.0–1.5%, depending on the SSH dosage, respectively. The thermal analysis indicated that high filler contents suppress crystallization during cooling under laboratory conditions in Differential Scanning Calorimetry (DSC) analysis due to the confinement effect. The key practical advantage is the exceptional improvement in dimensional stability with a processing shrinkage reduction of approximately 80% in the thickness direction. Although water absorption increased with filler loading, biocomposites containing 15–30 wt% SSH exhibited the optimal balance of high stiffness, hardness, and dimensional accuracy. These properties make the developed material a promising option for the production of precise technical molded parts. Full article
(This article belongs to the Special Issue Processing and Mechanical Properties of Polymer Composites)
Show Figures

Figure 1

18 pages, 313 KB  
Article
Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content
by Kesete Goitom Tewelde, Brigitta Kiss, Tivadar Csiszér, László Pál, Nikoletta Such, Ádám Bartos and Károly Dublecz
Animals 2026, 16(2), 162; https://doi.org/10.3390/ani16020162 - 6 Jan 2026
Viewed by 419
Abstract
Sunflower meal (SM) is an economically important, inexpensive, and locally abundant alternative protein source in the Eurozone. The study aimed at investigating the effects of feeding two forms of SM on the production traits, carcass composition, nutrient digestibility, and some gut parameters of [...] Read more.
Sunflower meal (SM) is an economically important, inexpensive, and locally abundant alternative protein source in the Eurozone. The study aimed at investigating the effects of feeding two forms of SM on the production traits, carcass composition, nutrient digestibility, and some gut parameters of broiler chickens. A total of 600-day-old Ross 308 male broilers were fed five isocaloric and isonitrogenous diets. Besides the control diet (C), the high- and low-fibre SMs (HFSM and LFSM) were fed at 20% (HFSM20 and LFSM20) and 30% (HFSM30 and LFSM30). Compared to the C, feeding the SM-containing diets did not affect the feed intake (FI) of birds. In the finisher phase, the HFSM30 treatment resulted in significantly higher, while the LFSM30 diet in significantly lower body weight gain. All SM treatments impaired FCR, but the difference was significant only in the grower phase. In comparison with the C, the SM treatments failed to modify carcass composition. The fat digestibility and the AMEn content increased, while the starch digestibility decreased when SM was fed. Except the LFSM30 treatment in the grower phase, the Nitrogen retention of birds was not affected. The SM-containing diets reduced the urinary N excretion, and the total N excretion of growers. Furthermore, the HFSM30 reduced the jejunal viscosity during the grower and finisher phases. The treatments did not modify the short-chain fatty acid contents of the caeca. In conclusion, SM can be used even at 20 and 30% in the nutrition of broiler chickens. However, the responses are affected by the age and the fibre content of SM. Full article
(This article belongs to the Special Issue Optimizing Alternative Protein Sources for Sustainable Poultry Diet)
38 pages, 5541 KB  
Article
Impact of Sunflower (Helianthus annuus) Seed Meal Use on the Nutritional, Phytochemical, Rheological, Physicochemical, and Sensory Quality of Wheat Bread
by Sylvestre Dossa, Alexandru Rinovetz, Christine Neagu, Daniela Stoin, Dacian Lalescu, Călin Jianu, Isidora Radulov, Lelia Serpe, Adina Brinzeu and Ersilia Alexa
Appl. Sci. 2026, 16(1), 461; https://doi.org/10.3390/app16010461 - 1 Jan 2026
Viewed by 287
Abstract
This study aimed to examine the impact of using sunflower seed meal (SM) on the nutritional, phytochemical, rheological, physicochemical, and sensory qualities of wheat bread. Four bread types were formulated with 0, 10, 20, and 30% SM (CB, SMWB1, SMWB2, and SMWB3, respectively). [...] Read more.
This study aimed to examine the impact of using sunflower seed meal (SM) on the nutritional, phytochemical, rheological, physicochemical, and sensory qualities of wheat bread. Four bread types were formulated with 0, 10, 20, and 30% SM (CB, SMWB1, SMWB2, and SMWB3, respectively). Both the composite flours and the resulting breads were evaluated to assess the impact of increasing SM levels. The results revealed that SM was richer than wheat flour in minerals, protein, lipids, total polyphenols, and antioxidants activity. The gradual incorporation of SM into WF improved the composition of these substances in the composite flours and breads obtained. Among all formulations, SMWB1 (10% SM) exhibited the most balanced characteristics, combining nutritional enhancement with satisfactory technological quality. This bread showed a porous crumb structure (62.43% porosity), good elasticity (57.28%), and an acceptable height-to-diameter ratio (0.47). Based on these results, SMWB1 was selected for further technological optimization. The improved formulation (SMWB10) was rich in nutrients and had better physicochemical and organoleptic characteristics and a reduced antinutritional effect of phytic acid, thanks to the fermentation applied during its production. Thus, incorporating 10% sunflower meal into wheat bread improves its nutritional and phytochemical composition, particularly in terms of proteins, minerals, polyphenols, and antioxidants. Full article
Show Figures

Figure 1

29 pages, 738 KB  
Review
Occurrence and Management of Plant-Parasitic Nematodes in Mozambique: A Review
by Joaquim Cuvaca, Isabel Abrantes, Carla Maleita and Ivânia Esteves
Crops 2026, 6(1), 6; https://doi.org/10.3390/crops6010006 - 29 Dec 2025
Viewed by 430
Abstract
Plant-parasitic nematodes (PPNs) cause yield losses in various crops worldwide. Damage due to PPNs can be severe, causing billions of dollars of crop losses across the globe annually. Information about PPNs occurrence in Mozambique is limited. Based on the literature, twenty-five genera of [...] Read more.
Plant-parasitic nematodes (PPNs) cause yield losses in various crops worldwide. Damage due to PPNs can be severe, causing billions of dollars of crop losses across the globe annually. Information about PPNs occurrence in Mozambique is limited. Based on the literature, twenty-five genera of PPNs have been reported to affect several economically important crops, including root-knot nematodes (RKNs, Meloidogyne spp.), Scutellonema spp., root-lesion nematodes (RLNs, Pratylenchus spp.), spiral nematodes (Helicotylenchus spp.), and the dagger nematode (Xiphinema spp.), which are commonly associated with crops such as banana (Musa spp.), cassava (Manihot esculenta), cowpea (Vigna unguiculata), maize (Zea mays), sugarcane (Saccharum officinarum), and sunflower (Helianthus annuus). Dissemination of these nematodes is not yet fully understood, but the importation of plants, roots, rhizomes, and/or seeds likely contributes to the introduction and spread of PPNs. Although the implementation of PPN-mitigation strategies is crucial to crop production, their application is still limited in Mozambique, with quite a few reported uses of nematicides in the Manica and Maputo provinces. Therefore, adopting integrated management strategies that combine two or more practices, such as biological control, crop rotation, organic amendments, soil solarization, and, as a last resort, chemical nematicides, may be an option to effectively reduce the population of PPNs. This review gathers information on the occurrence and management of PPNs, as reported to date in Mozambique. Full article
Show Figures

Figure 1

19 pages, 913 KB  
Article
Effect of a Long-Term Integrated Multi-Crop Rotation and Cattle Grazing on No-Till Hard Red Spring Wheat (Triticum aestivum L.) Production, Soil Health, and Economics
by Songul Senturklu, Douglas Landblom and Larry J. Cihacek
Agriculture 2026, 16(1), 73; https://doi.org/10.3390/agriculture16010073 - 29 Dec 2025
Viewed by 263
Abstract
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) [...] Read more.
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) with spring wheat (HRSW-ROT) grown in a five-crop rotation: (1) spring wheat, (2) seven-species cover crop, (3) forage corn, (4) field pea/forage barley mix, and (5) sunflower. Yearling beef cattle steers grazed the field pea/forage barley mix, unharvested corn, and a seven-species cover crop. Spring wheat was marketed as a cash crop. Contrary to expectations, HRSW-ROT did not significantly increase grain yield or improve quality over HRSW-CTRL. Improved soil fertility was observed in the HRSW-ROT plots throughout the study relative to SOM, N, P, and K. However, the rotation with grazing management significantly reduced input costs but resulted in negligible gross and net returns over the 12-year period. Year-to-year weather variability was the cause of the differences between the two production management methods. Full article
Show Figures

Figure 1

28 pages, 3429 KB  
Article
Ensuring the Quality of Solid Biofuels from Orchard Biomass Through Supply Chain Optimization: A Case Study on Peach Biomass Briquettes
by Grigore Marian, Tatiana Alexiou Ivanova, Andrei Gudîma, Boris Nazar, Nicolae Daraduda, Leonid Malai, Alexandru Banari, Andrei Pavlenco and Teodor Marian
Agriculture 2025, 15(24), 2615; https://doi.org/10.3390/agriculture15242615 - 18 Dec 2025
Viewed by 330
Abstract
In the Republic of Moldova, orchard biomass represents an important resource for the production of densified solid biofuels, with peach having the highest sustainable energy potential (33.5 ± 6.54 GJ·ha−1). However, the quality of solid biofuels derived from orchard biomass is [...] Read more.
In the Republic of Moldova, orchard biomass represents an important resource for the production of densified solid biofuels, with peach having the highest sustainable energy potential (33.5 ± 6.54 GJ·ha−1). However, the quality of solid biofuels derived from orchard biomass is often constrained by heterogeneity in moisture content, uneven particle size distribution, and inadequate drying or blending practices along the supply chain. Optimizing the solid biofuel supply chain is therefore essential to minimize feedstock variability, ensure consistent densification quality, and reduce production costs. The aim of this study was to improve the process of producing densified solid biofuels from orchard biomass. Specifically, the study investigated how raw material moisture and particle size influence briquette density and durability, and how ternary mixtures of peach biomass, wheat straw, and sunflower residues can be optimized for enhanced energy performance. All experimental determinations were performed using validated methods and calibrated equipment. The results showed that optimal performance is achieved by shredding the biomass with 4–8 mm sieves and maintaining the moisture content between 6 and 14%, resulting in briquettes with the density of 1.00–1.05 g·cm−3, ash content below 3–5%, and an energy yield of 18.4–19.2 MJ·kg−1. Ternary diagrams confirmed the decisive role of peach lignocellulosic residues in achieving high density, low ash content, and increased energy yield, while wheat straw and sunflower residues can be used in controlled proportions to diversify resources and reduce costs. These findings provide quantitative insights into how mixture formulation and process parameters influence the briquette quality, contributing to the optimization of solid biofuel supply chains for orchard and agricultural residues. Overall, this study demonstrates that competitive solid biofuels can be produced through careful balancing of mixture composition and optimization of technological parameters, offering practical guidelines for sustainable bioenergy development in regions with abundant orchard residues. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 1412 KB  
Article
Identification and Fine-Mapping of a Novel Locus qSCL2.4 for Resistance to Sclerotinia sclerotiorum in Sunflower (Helianthus annuus)
by Mingzhu Zhao, Dexing Wang, Dianxiu Song, Xiaohong Liu, Bing Yi, Yuxuan Cao, Jingang Liu and Liangshan Feng
Plants 2025, 14(24), 3826; https://doi.org/10.3390/plants14243826 - 16 Dec 2025
Viewed by 327
Abstract
Helianthus annuus L. is one of the major oilseed crops worldwide, and its production is seriously affected by a highly destructive necrotrophic pathogen, Sclerotinia sclerotiorum (S. sclerotiorum). The use of resistant cultivars is the best control measure via molecular breeding; however, [...] Read more.
Helianthus annuus L. is one of the major oilseed crops worldwide, and its production is seriously affected by a highly destructive necrotrophic pathogen, Sclerotinia sclerotiorum (S. sclerotiorum). The use of resistant cultivars is the best control measure via molecular breeding; however, the gene action underlying resistance to this stress is not well-established. Here, we conducted QTL analysis for S. sclerotiorum resistance in a recombinant inbred line (RIL) population that were developed from parents with resistant (C6) and susceptible (B728) to the disease. A high-density genetic linkage map with 6059 single nucleotide polymorphism (SNP) markers and a total length of 2763 cM was developed. The lesion length (LL) and the lesion area (LA) in the field, under climate chamber conditions or greenhouse conditions, were assessed following standardized inoculation protocols. A total of 16 major QTL for LL and 12 for LA were detected across three experimental environments, explaining 1.58–32.86% of the phenotypic variation. Of these, a major-effect QTL, qSCL2.4 on chromosome 2, could explain 30.22% of phenotypic variance with alleles from parent C6 which had more increased resistance to S. sclerotiorum. Fine-mapping in the BC1F3 population narrowed the locus to a 226.7 kb interval. HaWRKY48, which encodes a WRKY transcription factor located in this region, was prioritized as the prime candidate gene. Polymorphism analysis of HaWRKY48 in 138 sunflower accessions revealed eight SNPs defining six haplotypes. Resistance was associated with Hap3 and susceptibility to Hap1/Hap6. These findings advance our understanding of the genetic mechanisms governing sunflower resistance to S. sclerotiorum and provide valuable genetic markers for molecular breeding of resistant cultivars. Full article
Show Figures

Figure 1

17 pages, 502 KB  
Article
Turning Mushy Lipids into Fruity Notes: Unlocking Lactone Biosynthesis Potential in Fat Industry Lipid Waste
by Jolanta Małajowicz, Katarzyna Wierzchowska, Karina Jasińska and Agata Fabiszewska
Foods 2025, 14(24), 4326; https://doi.org/10.3390/foods14244326 - 15 Dec 2025
Viewed by 278
Abstract
Waste from the fat-processing industry represents a challenging stream due to its physicochemical properties and environmental impact. Valorization through recovery and reuse offers ecological, economic, and social benefits. This study focused on mushy lipid residues generated during cold pressing of oilseeds (sunflower, flax, [...] Read more.
Waste from the fat-processing industry represents a challenging stream due to its physicochemical properties and environmental impact. Valorization through recovery and reuse offers ecological, economic, and social benefits. This study focused on mushy lipid residues generated during cold pressing of oilseeds (sunflower, flax, blue poppy, hemp, black cumin, and walnut) and evaluated their potential for lactone biosynthesis. The waste was analyzed for protein and fat content, while fatty acid profile, acid and peroxide values, oxidation stability, and health-related indices characterized the extracted oils. Polyphenol content and antioxidant activity of the residues were also determined. Subsequently, the waste was used as a substrate in biotransformation processes with Lactiplantibacillus plantarum and Yarrowia lipolytica. The results showed high protein (13.1–19.4%) and fat levels (65.0–77.3%) across all residues. The lipid fractions were rich in monounsaturated and polyunsaturated fatty acids, comprising nearly 90% of the total fatty acids, with oleic and linoleic acids being the dominant components. These features highlight their strong valorization potential, particularly for the microbial synthesis of aroma-active lactones. Under the applied conditions, the production of γ-dodecalactone and δ-decalactone reached 0.76 g/L and 1.62 g/L, respectively, confirming the suitability of cold-press residues as substrates for sustainable biotechnological applications. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

Back to TopTop