Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Housing
2.2. Experimental Diets
2.3. Chemical Analysis
2.4. Measurements and Samplings
2.5. Digestibility and Metabolisable Energy Calculations
- Nutr. digestibility = nutrient digestibility (%);
- Nutr.diet = nutrient content of the diet (g/kg);
- Nutr.excreta = nutrient content of the excreta (g/kg);
- TiO2 diet = TiO2 content of the diet (g/kg);
- TiO2 excreta = TiO2 content of the excreta (g/kg).
- AME = apparent metabolisable energy (KJ/g);
- GE diet = gross energy content of the diet (KJ/g);
- GE excreta = gross energy content of the excreta (KJ/g);
- TiO2 diet = TiO2 content of the diet (g/kg);
- TiO2 excreta = TiO2 content of the excreta (g/kg).
- Nitrogen ret. = nitrogen retention (%);
- Ndiet = nitrogen content of the diet (g/kg);
- Nexcreta = nitrogen content of the excreta (g/kg);
- TiO2 diet = TiO2 content of the diet (g/kg);
- TiO2 excreta = TiO2 content of the excreta (g/kg).
- AMEn = apparent metabolisable energy nitrogen corrected zero N retention;
- AME = apparent metabolisable energy (KJ/g);
- Nretention = nitrogen retention (gN/gdiet);
- 34.4 = constant, the GE value of uric acid (KJ/g N).
2.6. Viscosity Measurement
2.7. Determination of Total N, NH4-N, and Uric Acid-N Contents of the Excreta Samples
2.8. Short-Chain Fatty Acid (SCFA) Determination
2.9. Statistical Analysis
3. Results
3.1. Production Traits
3.2. Effects of Dietary Treatments on Carcass Composition
3.3. Nutrient Digestibility and Metabolisable Energy Measurements
3.4. Effects of Dietary Treatments on the Dry Matter Content and Nitrogen Forms of Excreta
3.5. The Jejunal Digesta Viscosity and Caecal SCFA Results
4. Discussion
4.1. Production Traits
4.2. Carcass Yield and Abdominal Fat Percentage
4.3. Nutrient Digestibility, Metabolisable Energy, and Nitrogen Excretion
4.4. Digesta Viscosity and Short-Chain Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Deek, A.A.; Abdel-Wareth, A.A.A.; Osman, M.; El-Shafey, M.; Khalifah, A.M.; Elkomy, A.E.; Lohakare, J. Alternative Feed Ingredients in the Finisher Diets for Sustainable Broiler Production. Sci. Rep. 2020, 10, 17743. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2025–2034; OECD-FAO Agricultural Outlook; OECD Publishing: Paris, France; Rome, Italy, 2025; ISBN 9789264406155. [Google Scholar]
- Liselotte, J.; Hourdin, C. Climate Change Impacts on Food Security in the European Union; European Parliamentary Research Service: Brussels, Belgium, 2025. [Google Scholar]
- Desai, D.; Ranade, A.; Avari, P. Effect on Broilers Fed with Diets Containing Sunflower Meal Supplemented with Protease. Int. J. Livest. Res. 2018, 8, 196. [Google Scholar] [CrossRef]
- Alhotan, R.A. Commercial Poultry Feed Formulation: Current Status, Challenges, and Future Expectations. Worlds Poult. Sci. J. 2021, 77, 279–299. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Konieczka, P.; Bucław, M.; Majewska, D.; Pietruszka, A.; Zych, S.; Szczerbińska, D. Analysis of the Production and Economic Indicators of Broiler Chicken Rearing in 2020–2023: A Case Study of a Polish Farm. Agriculture 2025, 15, 139. [Google Scholar] [CrossRef]
- WITS Soya Bean Flour and Meal Imports by Country|2024. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2024/tradeflow/Imports/partner/WLD/product/120810?utm_source=chatgpt.com (accessed on 11 December 2025).
- Peng, D.; Zhang, H.; Zhang, Y.; Yu, L.; Chen, M.; Chen, J.M.; You, L.; Li, P.; Liu, J.; Zhang, X.; et al. Global Soybean Trade Dynamics: Drivers, Impacts, and Sustainability. Innovation 2025, 7, 101124. [Google Scholar] [CrossRef]
- Hamed, R.; Lesk, C.; Shepherd, T.G.; Goulart, H.M.D.; van Garderen, L.; Hurk, B.V.D.; Coumou, D. One-Third of the Global Soybean Production Failure in 2012 Is Attributable to Climate Change. Commun. Earth Environ. 2025, 6, 199. [Google Scholar] [CrossRef]
- Aziz, S.R.; Rashid, S.A. Impact of Using Sunflower Seed Meal in Broiler Male Diets on Performance Traits and Carcass Characteristics. Anbar J. Agric. Sci. 2023, 21, 148–157. [Google Scholar] [CrossRef]
- Dotas, V.; Symeon, G.; Dublecz, K. Editorial: Introducing Novel Trends in the Nutrition of Monogastric Farm Animals for the Production of High-Quality Livestock Products. Front. Vet. Sci. 2025, 11, 1514197. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Miranda, E.J.; Bulle, C.; Couto, E.G.; Johnson, M.S. Land Occupation and Transformation Impacts of Soybean Production in Southern Amazonia, Brazil. J. Clean. Prod. 2017, 149, 680–689. [Google Scholar] [CrossRef]
- Al-Molah, M.I.; Kloor, I.S.; Al-Taee, R.N.D. The Effect of Adding Xylanase Enzyme to Diets of Broilers Containing De-Hulled Sunflower Meal as a Substitute for Soybean Meal on Growth, Gastrointestinal Mass, Biology, and Intestinal Morphology, Blood Serum Biochemical Traits. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 072008. [Google Scholar] [CrossRef]
- Mbukwane, M.J.; Nkukwana, T.T.; Plumstead, P.W.; Snyman, N. Sunflower Meal Inclusion Rate and the Effect of Exogenous Enzymes on Growth Performance of Broiler Chickens. Animals 2022, 12, 253. [Google Scholar] [CrossRef]
- Berger, Q.; Guettier, E.; Urvoix, S.; Bernard, J.; Ganier, P.; Chahnamian, M.; Le Bihan-Duval, E.; Mignon-Grasteau, S. The Kinetics of Growth, Feed Intake, and Feed Efficiency Reveal a Good Capacity of Adaptation of Slow and Rapid Growing Broilers to Alternative Diets. Poult. Sci. 2021, 100, 101010. [Google Scholar] [CrossRef]
- Pilorgé, E. Sunflower in the Global Vegetable Oil System: Situation, Specificities and Perspectives. OCL Oilseeds Fats Crops Lipids 2020, 27, 34. [Google Scholar] [CrossRef]
- Rodríguez, M.L.; Ortiz, L.T.; Alzueta, C.; Rebolé, A.; Treviñ, J. Nutritive Value of High-Oleic Acid Sunflower Seed for Broiler Chickens. Poult. Sci. 2005, 84, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Konyalı, S. Sunflower Production, Consumption, Foreign Trade and Agricultural Policies in Turkey. Social Sci. Res. J. 2017, 6, 11–19. [Google Scholar]
- Chobanova, S. Effects of Compound Poultry Feed with Different Content of High-Protein Sunflower Meal on Growth Performance of Broiler Chickens. Bulg. J. Agric. Sci. 2019, 25, 91–94. [Google Scholar]
- Li, Y.; Li, Z.; Liu, H.; Noblet, J.; Liu, L.; Li, D.; Wang, F.; Lai, C. Net Energy Content of Rice Bran, Corn Germ Meal, Corn Gluten Feed, Peanut Meal, and Sunflower Meal in Growing Pigs. Asian Australas. J. Anim. Sci. 2018, 31, 1481–1490. [Google Scholar] [CrossRef]
- Pereira, L.F.P.; Adeola, O. Energy and Phosphorus Values of Sunflower Meal and Rice Bran for Broiler Chickens Using the Regression Method. Poult. Sci. 2016, 95, 2081–2089. [Google Scholar] [CrossRef]
- Papanikou, E. Sunflower Meal an Unappreciated Source of Protein, Fiber. Available online: https://www.feedstrategy.com/blogs/feed-ingredient-insights/blog/15444690/sunflower-meal-an-unappreciated-source-of-protein-fiber (accessed on 11 December 2025).
- TESEO EU-27 Oilseeds Prices: Sunflower Seed Meal Prices in Europe. Available online: https://teseo.clal.it/en/?section=oilseeds-price-eu (accessed on 14 December 2025).
- Rakita, S.; Kokić, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods 2023, 12, 432. [Google Scholar] [CrossRef]
- Yaqoob, M.U.; Yousaf, M.; Imran, S.; Hassan, S.; Iqbal, W.; Zahid, M.U.; Ahmad, N.; Wang, M. Effect of Partially Replacing Soybean Meal with Sunflower Meal with Supplementation of Multienzymes on Growth Performance, Carcass Characteristics, Meat Quality, Ileal Digestibility, Digestive Enzyme Activity and Caecal Microbiota in Broilers. Anim. Biosci. 2022, 35, 1575–1584. [Google Scholar] [CrossRef]
- Gerzilov, V.; Petrov, P.B. Effects of Partial Substitution of Soybean Meal with High Protein Sunflower Meal in Broiler Diets. Bulg. J. Agric. Sci. 2022, 28, 151–157. [Google Scholar]
- Berwanger, E.; Nunes, R.V.; Pasquetti, T.; Murakami, A.E.; De Oliveira, T.M.M.; Bayerle, D.F.; Frank, R. Sunflower Cake with or without Enzymatic Complex for Broiler Chickens Feeding. Asian Australas. J. Anim. Sci. 2017, 30, 410–416. [Google Scholar] [CrossRef]
- Munawar, Z.; Amjid, S.; Ramzan, F.; Rafique, A.; Hassan, S.; Anwar, U.; Mehmood, M.; Farooq, U.; Khalid, M.F.; Mustafa, R.; et al. Effects of Partial Soybean Meal Replacement with Sunflower Meal and Non-Starch Polysaccharide Degrading Enzymes Supplementation on Broiler Growth Performance, Nutrient Digestibility, and Gut Morphology. Vet. World 2025, 18, 695–704. [Google Scholar] [CrossRef]
- Amerah, A.M.; van de Belt, K.; van Der Klis, J.D. Effect of Different Levels of Rapeseed Meal and Sunflower Meal and Enzyme Combination on the Performance, Digesta Viscosity and Carcass Traits of Broiler Chickens Fed Wheat-Based Diets. Animal 2015, 9, 1131–1137. [Google Scholar] [CrossRef]
- Such, N.; Ákos, M.; Brigitta, K.; Pál, L.; Rawash, M.A.; Tewelde, K.G.; Dublecz, K. Effect of Feeding Extracted Sunflower Meal-Based Diets, with and without NSP Degrading Enzyme, on the Viscosity of the Jejunal and Ileal Intestinal Content of Pullets and Laying He. In Proceedings of the 22. BOKU-Symposium Tierernährung 2024, Vienna, Austria, 29 February 2024; pp. 184–187. [Google Scholar]
- Azam, F.; Qaisrani, S.N.; Khalique, A.; Bibi, F.; Akram, C.A.; Naveed, S.; Pasha, T.N. Exploring Nutritive Profile, Metabolizable Energy, Protein, and Digestible Amino Acids Contents of Indigenous Protein Sources of Different Locations for Male Broilers. Poult. Sci. 2019, 98, 4664–4672. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; El-Awady, A.; Amber, K.; Eid, Y.Z.; Alzawqari, M.H.; Selim, S.; Soliman, M.M.; Shukry, M. Effects of Sunflower Meal Supplementation as a Complementary Protein Source in the Laying Hen’s Diet on Productive Performance, Egg Quality, and Nutrient Digestibility. Sustainability 2021, 13, 3557. [Google Scholar] [CrossRef]
- van Harn, J.; Dijkslag, M.A.; van Krimpen, M.M. Effect of Low Protein Diets Supplemented with Free Amino Acids on Growth Performance, Slaughter Yield, Litter Quality, and Footpad Lesions of Male Broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Strifler, P.; Horváth, B.; Such, N.; Farkas, V.; Wágner, L.; Dublecz, K.; Pál, L. Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers. Animals 2023, 13, 1476. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Pál, L.; Strifler, P.; Horváth, B.; Koltay, I.A.; Rawash, M.A.; Farkas, V.; Mezőlaki, Á.; Wágner, L.; Dublecz, K. Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture 2021, 11, 781. [Google Scholar] [CrossRef]
- Such, N.; Mezőlaki, Á.; Tewelde, K.G.; Pál, L.; Horváth, B.; Poór, J.; Dublecz, K. Feeding Sunflower Meal with Pullets and Laying Hens Even at a 30% Inclusion Rate Does Not Impair the Ileal Digestibility of Most Amino Acids. Front. Vet. Sci. 2024, 11, 1347374. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Management Handbook; Aviagen: Huntsville, AL, USA, 2018; Available online: www.aviagen.com (accessed on 29 December 2025).
- VanSoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 152/2009 of 27 January 2009, Annex III, Method I (Polarimetric method) for Starch Determination in Animal Feeding Stuffs. Available online: http://data.europa.eu/eli/reg/2009/152/oj (accessed on 29 December 2025).
- ISO 13903:2005; Animal Feeding Stuffs—Determination of Amino acids Content. ISO: Geneva, Switzerland, 2005.
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Peters, J.; Wolf, A.; Wolf, N. Recomended Methods of Manure Analysis; Cooperative Extension Publishing; University of Minnesota Libraries Publishing: Minneapolis, MN, USA, 2003. [Google Scholar]
- Marquardt, R.R.; Ward, A.T.; Campbell, L.D. A Rapid High-Performance Liquid Chromatographic Method for the Quantitation of Uric Acid in Excreta and Tissue Samples. Poult. Sci. 1983, 62, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Atteh, J.O.; Onagbesan, O.M.; Tona, K.; Decuypere, E.; Geuns, J.M.C.; Buyse, J. Evaluation of Supplementary Stevia (Stevia rebaudiana, Bertoni) Leaves and Stevioside in Broiler Diets: Effects on Feed Intake, Nutrient Metabolism, Blood Parameters and Growth Performance. J. Anim. Physiol. Anim. Nutr. 2008, 92, 640–649. [Google Scholar] [CrossRef]
- Agubosi, O.C.P.; James, A.; Alagbe, J.O. Influence of Dietary Inclusion of Sunflower (Helianthus annus) Oil on Growth Performance and Oxidative Status of Broiler Chicks. Cent. Asian J. Med. Nat. Sci. 2022, 2, 187–195. [Google Scholar]
- Waititu, S.M.; Kim, J.W.; Sanjayan, N.; Leterme, P.; Nyachoti, C.M. Metabolizable Energy and Standardized Ileal Digestible Amino Acid Contents of a High-Protein Sunflower Meal Fed to Broiler Chicks. Can. J. Anim. Sci. 2018, 98, 517–524. [Google Scholar] [CrossRef]
- Ditta, Y.A.; King, A.J. Recent Advances in Sunflower Seed Meal as an Alternate Source of Protein in Broilers. Worlds Poult. Sci. J. 2017, 73, 527–542. [Google Scholar] [CrossRef]
- Bilal, M.; Mirza, M.A.; Kaleem, M.; Saeed, M.; Ul-Ferdous, R.; El-Hack, M.E.A. Significant Effect of NSP-ase Enzyme Supplementation in Sunflower Meal-based Diet on the Growth and Nutrient Digestibility in Broilers. J. Anim. Physiol. Anim. Nutr. 2017, 101, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Molah, M.I.; Kloor, I.S. The Effect of Substituting De-Hulled Sunflower Meal Instead of Soybean Meal with or Without Adding Xylanase Enzyme to the Ration on Productive Performance and Carcass Characteristics of Broiler Chicks. IOP Conf. Ser. Earth Environ. Sci. 2023, 1259, 012074. [Google Scholar] [CrossRef]
- Horvatovic, M.; Glamocic, D.; Zikic, D.; Hadnadjev, T. Performance and Some Intestinal Functions of Broilers Fed Diets with Different Inclusion Levels of Sunflower Meal and Supplemented or Not with Enzymes. Rev. Bras. Cienc. Avic. 2015, 17, 25–30. [Google Scholar] [CrossRef]
- Attia, G.; Hassanein, E.; El-Eraky, W.; El-Gamal, M. Effect of Dietary Inclusion of Sunflower Meal on Performance, Carcass Traits, Litter Moisture and Economic Efficiency of Broiler Chickens. Zagazig Vet. J. 2016, 44, 234–243. [Google Scholar] [CrossRef]
- Sangsoponjit, S.; Suphalucksana, W.; Srikijkasemwat, K. Effect of Feeding Sunflower Meal on the Performance and Carcass Characteristics of Broiler Chickens. Chem. Eng. Trans. 2017, 58, 841–846. [Google Scholar] [CrossRef]
- Berwanger, E.; Nunes, R.V.; De Oliveira, T.M.M.; Bayerle, D.F.; Bruno, L.D.G. Performance and Carcass Yield of Broilers Fed Increasing Levels of Sunflower Cake. Rev. Caatinga 2017, 30, 201–212. [Google Scholar] [CrossRef]
- Oluwafemi, R.A.; Uankhoba, I.P.; Alagbe, J.O. Effects of Turmeric Oil as a Dietary Supplements on the Growth Performance and Carcass Characteristics of Broiler Chickens. Int. J. Orange Technol. 2021, 3, 54–62. [Google Scholar]
- Vivares, G.; de Nanclares, M.P.; Conde-Aguilera, A.; de Vries, S. Quantifying the Interactions between Dietary Fibers and Macronutrient Digestibility in Broiler Chickens: The Importance of Considering Fiber Solubility. Anim. Feed. Sci. Technol. 2025, 321, 116241. [Google Scholar] [CrossRef]
- Karkelanov, N.; Chobanova, S.; Dimitrova, K.; Whiting, I.; Rose, S.; Pirgozliev, V. Feeding Value of De-Hulled Sunflower Seed Meal for Broilers. Acta Agrophysica 2020, 27, 31–38. [Google Scholar] [CrossRef]
- Applegate, T.J. Protein and Amino Acid Requirements for Poultry Feed Management A Key Ingredient in Livestock and Poultry Nutrient Management. Purdue University Roselina Angel—University of Maryland, College Park. 2008; pp. 1—11. Available online: https://wpcdn.web.wsu.edu/wp-puyallup/uploads/sites/346/2014/11/Protein-and-amino-acid-for-poultry-final.pdf (accessed on 29 December 2025).
- Nahm, K.H. Evaluation of the Nitrogen Content in Poultry Manure. Worlds Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
- Vilela, M.D.O.; Gates, R.S.; Souza, C.D.F.; Junior, C.G.D.S.T.; Sousa, F.C. Nitrogen Transformation Stages into Ammonia in Broiler Production: Sources, Deposition, Transformation and Emission to Environment. Dyna 2020, 87, 221–228. [Google Scholar] [CrossRef]
| Nutrients | HFSM 1 | LFSM 2 |
|---|---|---|
| Dry matter | 90.19 | 89.93 |
| Crude protein | 38.39 | 43.84 |
| Crude fat | 0.52 | 1.14 |
| Crude fibre | 16.68 | 10.35 |
| Ash | 6.73 | 7.68 |
| Starch | 2.45 | 2.65 |
| Neutral detergent fibre | 24.92 | 20.02 |
| Acid detergent fibre | 19.51 | 14.11 |
| Insoluble dietary fibre | 34.12 | 24.85 |
| Soluble dietary fibre | 7.97 | 8.72 |
| Arginine | 0.67 | 0.70 |
| Isoleucine | 0.91 | 1.10 |
| Lysine | 1.72 | 2.00 |
| Methionine | 7.92 | 9.38 |
| Threonine | 2.33 | 2.72 |
| Valine | 2.08 | 2.15 |
| Cystine | 1.00 | 1.09 |
| Ingredients | Starter | Grower | Finisher | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| C | HFSM 20 | HFSM 30 | LFSM 20 | LFSM 30 | C | HFSM 20 | HFSM 30 | LFSM 20 | LFSM 30 | ||
| Corn | 392 | 403 | 324 | 284 | 401 | 402 | 469 | 386 | 347 | 465 | 459 |
| Wheat | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Extracted Soybean | 400 | 376 | 221 | 143 | 161 | 53 | 317 | 163 | 85 | 103 | 0 |
| HFSM 1 | 55 | 0 | 200 | 300 | 0 | 0 | 0 | 200 | 300 | 0 | 0 |
| LFSM 2 | 0 | 0 | 0 | 0 | 200 | 300 | 0 | 0 | 0 | 200 | 300 |
| Sunflower Oil | 0 | 75 | 108 | 124 | 89 | 95 | 71 | 105 | 121 | 85 | 93 |
| MCP 3 | 16 | 15 | 15 | 16 | 16 | 16 | 13 | 14 | 14 | 14 | 14 |
| Limestone | 18 | 15 | 13 | 13 | 14 | 13 | 13 | 12 | 11 | 12 | 11 |
| Premix 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| Salt | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Sodium Bicarbonate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Lysine (Biolys) | 4 | 2 | 5 | 7 | 6 | 8 | 3 | 6 | 8 | 7 | 9 |
| Methionine | 4 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 |
| Threonine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| Valine | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Total (g) | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Nutrients | Starter | Growers | Finishers | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| C | HFSM 20 | HFSM 30 | LFSM 20 | LFSM 30 | C | HFSM 20 | HFSM 30 | LFSM 20 | LFSM 30 | ||
| Dry matter | 89.62 | 89.63 | 90.58 | 90.55 | 89.65 | 91.31 | 89.42 | 89.81 | 90.01 | 89.93 | 89.75 |
| Crude protein | 23.28 | 22.09 | 21.95 | 21.95 | 22.09 | 21.87 | 20.94 | 20.04 | 19.41 | 20.09 | 19.99 |
| Crude fat | 7.37 | 9.05 | 12.94 | 13.48 | 11.43 | 11.50 | 9.07 | 10.23 | 13.10 | 9.83 | 10.33 |
| Crude fibre | 2.68 | 3.40 | 6.02 | 7.67 | 5.53 | 6.57 | 3.50 | 7.16 | 8.39 | 4.61 | 5.57 |
| Ash | 6.48 | 6.41 | 6.29 | 6.44 | 6.55 | 6.53 | 6.25 | 6.20 | 6.13 | 6.23 | 6.34 |
| Calcium | 1.06 | 1.02 | 1.00 | 1.04 | 0.99 | 1.03 | 0.92 | 0.93 | 0.95 | 0.91 | 0.96 |
| Phosphorus | 0.61 | 0.66 | 0.78 | 0.85 | 0.73 | 0.90 | 0.62 | 0.78 | 0.82 | 0.77 | 0.83 |
| Starch | 32.16 | 36.14 | 30.22 | 27.70 | 32.68 | 30.99 | 38.16 | 32.90 | 30.98 | 37.61 | 36.22 |
| GE 1 (kJ/g) | 17.61 | 18.08 | 18.83 | 19.22 | 18.86 | 19.39 | 17.86 | 18.81 | 18.98 | 18.53 | 18.57 |
| NDF 2 | 14.99 | 13.56 | 15.58 | 16.32 | 15.57 | 16.63 | 13.79 | 15.66 | 16.50 | 15.91 | 16.80 |
| Arginine | 1.55 | 1.46 | 1.52 | 1.54 | 1.52 | 1.54 | 1.35 | 1.30 | 1.27 | 1.45 | 1.28 |
| Isoleucine | 0.98 | 0.92 | 0.91 | 0.88 | 0.88 | 0.83 | 0.86 | 0.79 | 0.74 | 0.75 | 0.73 |
| Lysine | 1.49 | 1.25 | 1.28 | 1.28 | 1.27 | 1.26 | 1.17 | 1.13 | 1.12 | 1.11 | 1.08 |
| Methionine | 0.65 | 0.60 | 0.60 | 0.59 | 0.60 | 0.67 | 0.56 | 0.57 | 0.55 | 0.58 | 0.57 |
| Threonine | 0.97 | 0.92 | 0.93 | 0.90 | 0.91 | 0.89 | 0.87 | 0.82 | 0.90 | 0.91 | 0.92 |
| Valine | 0.36 | 0.34 | 0.35 | 0.35 | 0.35 | 0.35 | 0.33 | 0.32 | 0.32 | 0.32 | 0.33 |
| Parameters | Treatment | Grower Phase (Days 11–24) | Finisher Phase (Days 25–38) | Overall Mean (Days 0–38) |
|---|---|---|---|---|
| FI 1 (g) | C | 1084.33 ± 32.08 | 2100.91 ± 138.46 | 3185.24 ± 158.23 |
| HFSM20 | 1137.93 ± 31.41 | 2205.36 ± 59.25 | 3343.28 ± 89.40 | |
| HFSM30 | 1105.41 ± 20.12 | 2270.53 ± 22.55 | 3375.93 ± 36.17 | |
| LFSM20 | 1152.94 ± 18.45 | 2162.95 ± 64.83 | 3315.89 ± 81.92 | |
| LFSM30 | 1119.34 ± 21.63 | 2086.25 ± 73.94 | 3205.59 ± 90.93 | |
| p-value | 0.375 | 0.495 | 0.581 | |
| BWG 2 (g) | C | 858.14 ± 32.65 | 1547.10 ± 63.96 b | 2405.24 ± 90.46 |
| HFSM20 | 835.74 ± 24.26 | 1553.57 ± 29.96 b | 2389.31 ± 52.82 | |
| HFSM30 | 815.14 ± 11.87 | 1603.41 ± 32.22 a | 2418.55 ± 38.29 | |
| LFSM20 | 848.20 ± 22.81 | 1430.40 ± 36.39 bc | 2278.60 ± 58.42 | |
| LFSM30 | 824.81 ± 23.34 | 1389.32 ± 42.80 c | 2214.13 ± 62.30 | |
| p-value | 0.719 | 0.023 | 0.125 | |
| FCR 3 (g/g) | C | 1.27 ± 0.01 b | 1.36 ± 0.07 b | 1.32 ± 0.04 b |
| HFSM20 | 1.36 ± 0.02 a | 1.42 ± 0.02 ab | 1.40 ± 0.02 ab | |
| HFSM30 | 1.36 ± 0.01 a | 1.42 ± 0.02 ab | 1.40 ± 0.01 ab | |
| LFSM20 | 1.36 ± 0.02 a | 1.51 ± 0.03 a | 1.46 ± 0.02 a | |
| LFSM30 | 1.36 ± 0.02 a | 1.50 ± 0.02 ab | 1.45 ± 0.01 a | |
| p-value | 0.001 | 0.036 | 0.008 |
| Treatments | Carcass (%) | Breast Meat (%) | Thigh (%) | Abdominal Fat (%) |
|---|---|---|---|---|
| C | 67.89 ± 0.76 | 23.08 ± 0.66 | 19.42 ± 0.47 | 0.83 ± 0.11 ab |
| HFSM20 | 67.19 ± 0.63 | 22.43 ± 0.81 | 19.51 ± 0.54 | 0.70 ± 0.10 ab |
| HFSM30 | 66.96 ± 0.61 | 21.66 ± 0.57 | 19.32 ± 0.56 | 0.64 ± 0.11 b |
| LFSM20 | 63.70 ± 2.93 | 21.91 ± 0.64 | 18.71 ± 0.41 | 1.18 ± 0.19 a |
| LFSM30 | 65.13 ± 1.48 | 20.08 ± 0.95 | 18.47 ± 0.35 | 0.95 ± 0.08 ab |
| p-value | 0.289 | 0.083 | 0.479 | 0.030 |
| Treatments | Fat (%) | Starch (%) | AME 1 (kJ/g) | AMEn 2 (kJ/g) | N Retention (%) |
|---|---|---|---|---|---|
| Day 27 | |||||
| C | 91.3 ± 0.24 b | 85.2 ± 0.26 a | 13.9 ± 0.12 c | 13.7 ± 0.12 c | 63.1 ± 1.16 b |
| HFSM20 | 92.0 ± 0.50 abc | 82.1 ± 0.36 bc | 13.7 ± 0.04 c | 13.5 ± 0.04 c | 64.7 ± 0.81 b |
| HFSM30 | 90.5 ± 0.50 bc | 79.0 ± 0.27 d | 13.9 ± 0.06 c | 13.7 ± 0.06 c | 63.6 ± 1.02 b |
| LFSM20 | 93.5 ± 0.16 a | 83.0 ± 0.17 b | 14.5 ± 0.08 b | 14.3 ± 0.08 b | 66.1 ± 0.66 ab |
| LFSM30 | 93.7 ± 0.34 a | 81.4 ± 0.32 c | 15.2 ± 0.12 a | 15.0 ± 0.12 a | 69.4 ± 0.96 a |
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
| Day 41 | |||||
| C | 88.1 ± 0.53 b | 82.9 ± 0.62 a | 13.4 ± 0.30 bc | 13.2 ± 0.30 bc | 64.0 ± 1.52 |
| HFSM20 | 84.4 ± 0.42 c | 79.9 ± 0.74 bc | 13.5 ± 0.32 bc | 13.3± 0.32 bc | 63.6 ± 1.24 |
| HFSM30 | 87.5 ± 0.51 b | 76.3 ± 0.43 d | 13.4 ± 0.55 c | 13.1 ± 0.55 c | 62.3 ± 1.50 |
| LFSM20 | 88.5 ± 0.64 b | 81.3 ± 0.61 ab | 14.0 ± 0.47 ab | 13.8 ± 0.46 ab | 66.9 ± 1.61 |
| LFSM30 | 92.2 ± 0.42 a | 78.3 ± 0.60 cd | 14.2 ± 0.44 a | 13.9 ± 0.42 a | 65.7 ± 2.83 |
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.424 |
| Age | Treatment | Faecal DM | NH4-N | Uric Acid-N | Urinary-N | Faecal-N | Total N |
|---|---|---|---|---|---|---|---|
| Day 27 | C | 20.62 ± 0.41 | 0.10 ± 0.00 a | 0.27 ± 0.01 a | 0.37 ± 0.01 a | 0.48 ± 0.03 | 0.85 ± 0.04 a |
| HFSM20 | 21.21 ± 0.59 | 0.08 ± 0.01 bc | 0.24 ± 0.01 ab | 0.31 ± 0.01 b | 0.42 ± 0.02 | 0.73 ± 0.03 ab | |
| HFSM30 | 20.65 ± 0.60 | 0.08 ± 0.00 bc | 0.22 ± 0.01 b | 0.29 ± 0.01 b | 0.43 ± 0.02 | 0.72 ± 0.02 b | |
| LFSM20 | 20.98 ± 0.25 | 0.07 ± 0.01 c | 0.24 ± 0.00 ab | 0.31 ± 0.01 b | 0.44 ± 0.01 | 0.75 ± 0.02 ab | |
| LFSM30 | 20.77 ± 0.32 | 0.09 ± 0.01 ab | 0.23 ± 0.02 b | 0.32 ± 0.02 ab | 0.40 ± 0.02 | 0.72 ± 0.04 b | |
| p-value | 0.879 | 0.001 | 0.004 | 0.002 | 0.121 | 0.028 | |
| Day 41 | C | 18.52 ± 0.50 | 0.08 ± 0.00 | 0.21 ± 0.01 | 0.30 ± 0.01 | 0.38 ± 0.02 | 0.68 ± 0.03 |
| HFSM20 | 19.05 ± 0.56 | 0.08 ± 0.00 | 0.19 ± 0.01 | 0.28 ± 0.01 | 0.32 ± 0.01 | 0.60 ± 0.02 | |
| HFSM30 | 19.46 ± 0.48 | 0.08 ± 0.00 | 0.19 ± 0.00 | 0.26 ± 0.01 | 0.32 ± 0.01 | 0.59 ± 0.02 | |
| LFSM20 | 18.27 ± 0.58 | 0.09 ± 0.00 | 0.20 ± 0.01 | 0.29 ± 0.01 | 0.34 ± 0.02 | 0.63 ± 0.03 | |
| LFSM30 | 18.65 ± 0.49 | 0.08 ± 0.00 | 0.21 ± 0.01 | 0.29 ± 0.02 | 0.33 ± 0.02 | 0.62 ± 0.04 | |
| p-value | 0.646 | 0.430 | 0.222 | 0.324 | 0.118 | 0.156 |
| Age | Feed | Viscosity |
|---|---|---|
| Day 27 | C | 4.0 ± 0.12 a |
| HFSM20 | 3.7 ± 0.17 ab | |
| HFSM30 | 3.2 ± 0.07 b | |
| LFSM20 | 3.7 ± 0.11 ab | |
| LFSM30 | 3.5 ± 0.17 ab | |
| p-value | <0.001 | |
| Day 41 | C | 4.0 ± 0.08 ab |
| HFSM20 | 4.2 ± 0.16 a | |
| HFSM30 | 3.4 ± 0.03 b | |
| LFSM20 | 4.4 ± 0.14 a | |
| LFSM30 | 4.3 ± 0.17 a | |
| p-value | <0.001 | |
| SEM | 0.06 | |
| Feed | C | 4. 0 ± 0.09 a |
| HFSM20 | 4.0 ± 0. 09 a | |
| HFSM30 | 3.3 ± 0. 09 b | |
| LFSM20 | 4.0 ± 0. 09 a | |
| LFSM30 | 3.9 ± 0.11 a | |
| Age | Day 27 | 3.6 ± 0.06 b |
| Day 41 | 4.1 ± 0.06 a | |
| p-values | Feed | <0.001 |
| Age | <0.001 | |
| Feed X age | 0.005 |
| Age | Treatments | Acetic Acid | Propionic Acid | Isobutyric Acid | Butyric Acid | Isovaleric Acid | Valeric Acid |
|---|---|---|---|---|---|---|---|
| Day 27 | C | 2.28 ± 0.19 | 0.52 ±0.07 | 0.07 ± 0.01 | 0.50 ± 0.07 | 0.07 ± 0.02 | 0.07 ± 0.02 |
| HFSM20 | 2.16 ± 0.24 | 0.51 ± 0.06 | 0.06 ± 0.01 | 0.43 ± 0.06 | 0.08 ± 0.02 | 0.08 ± 0.01 | |
| HFSM30 | 2.16 ± 0.25 | 0.49 ± 0.06 | 0.07 ± 0.01 | 0.46 ± 0.06 | 0.08 ± 0.02 | 0.07 ± 0.01 | |
| LFSM20 | 2.43 ± 0.24 | 0.50 ± 0.06 | 0.06 ± 0.01 | 0.50 ± 0.07 | 0.06 ± 0.01 | 0.09 ± 0.01 | |
| LFSM30 | 2.33 ± 0.24 | 0.43 ± 0.06 | 0.06 ±0.01 | 0.57 ± 0.07 | 0.07 ± 0.01 | 0.08 ± 0.01 | |
| p-value | 0.918 | 0.888 | 0.974 | 0.692 | 0.816 | 0.938 | |
| Day 41 | C | 2.23 ± 0.23 | 0.50 ± 0.06 | 0.06 ± 0.01 | 0.40 ± 0.04 | 0.07 ± 0.01 | 0.06 ± 0.01 |
| HFSM20 | 2.47 ± 0.20 | 0.52 ± 0.06 | 0.06 ± 0.01 | 0.47 ± 0.06 | 0.07 ± 0.01 | 0.07 ± 0.02 | |
| HFSM30 | 2.13 ± 0.24 | 0.50 ± 0.09 | 0.04 ± 0.01 | 0.46 ± 0.07 | 0.06 ± 0.01 | 0.05 ± 0.01 | |
| LFSM20 | 2.26 ± 0.26 | 0.48 ± 0.06 | 0.06 ± 0.01 | 0.51 ± 0.06 | 0.07 ± 0.01 | 0.06 ± 0.01 | |
| LFSM30 | 2.30 ± 0.26 | 0.49 ± 0.06 | 0.06 ± 0.01 | 0.48 ± 0.05 | 0.07 ± 0.01 | 0.07 ± 0.01 | |
| p-value | 0.903 | 0.991 | 0.488 | 0.724 | 0.974 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tewelde, K.G.; Kiss, B.; Csiszér, T.; Pál, L.; Such, N.; Bartos, Á.; Dublecz, K. Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content. Animals 2026, 16, 162. https://doi.org/10.3390/ani16020162
Tewelde KG, Kiss B, Csiszér T, Pál L, Such N, Bartos Á, Dublecz K. Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content. Animals. 2026; 16(2):162. https://doi.org/10.3390/ani16020162
Chicago/Turabian StyleTewelde, Kesete Goitom, Brigitta Kiss, Tivadar Csiszér, László Pál, Nikoletta Such, Ádám Bartos, and Károly Dublecz. 2026. "Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content" Animals 16, no. 2: 162. https://doi.org/10.3390/ani16020162
APA StyleTewelde, K. G., Kiss, B., Csiszér, T., Pál, L., Such, N., Bartos, Á., & Dublecz, K. (2026). Feeding Low- and High-Fibre Sunflower Meal to Broiler Chickens—Effects of Inclusion Rate and Age of Birds on the Production Traits, Carcass Composition, Nutrient Digestibility, Gut Viscosity, and Caecal Short-Chain Fatty Acid Content. Animals, 16(2), 162. https://doi.org/10.3390/ani16020162

