Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (736)

Search Parameters:
Keywords = summer 2021

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3285 KB  
Article
Performance Evaluation of GEDI for Monitoring Changes in Mountain Glacier Elevation: A Case Study in the Southeastern Tibetan Plateau
by Zhijie Zhang, Yong Han, Liming Jiang, Shuanggen Jin, Guodong Chen and Yadi Song
Remote Sens. 2025, 17(17), 2945; https://doi.org/10.3390/rs17172945 - 25 Aug 2025
Abstract
Mountain glaciers are the most direct and sensitive indicators of climate change. In the context of global warming, monitoring changes in glacier elevation has become a crucial issue in modern cryosphere research. The Global Ecosystem Dynamics Investigation (GEDI) is a full-waveform laser altimeter [...] Read more.
Mountain glaciers are the most direct and sensitive indicators of climate change. In the context of global warming, monitoring changes in glacier elevation has become a crucial issue in modern cryosphere research. The Global Ecosystem Dynamics Investigation (GEDI) is a full-waveform laser altimeter with a multi-beam that provides unprecedented measurements of the Earth’s surface. Many studies have investigated its applications in assessing the vertical structure of various forests. However, few studies have assessed GEDI’s performance in detecting variations in glacier elevation in land ice in high-mountain Asia. To address this limitation, we selected the Southeastern Tibetan Plateau (SETP), one of the most sensitive areas to climate change, as a test area to assess the feasibility of using GEDI to monitor glacier elevation changes by comparing it with ICESat-2 ATL06 and the reference TanDEM-X DEM products. Moreover, this study further analyzes the influence of environmental factors (e.g., terrain slope and aspect, and altitude distribution) and glacier attributes (e.g., glacier area and debris cover) on changes in glacier elevation. The results show the following: (1) Compared to ICESat-2, in most cases, GEDI overestimated glacier thinning (i.e., elevation reduction) to some extent from 2019 to 2021, with an average overestimation value of about −0.29 m, while the annual average rate of elevation change was relatively close, at −0.70 ± 0.12 m/yr versus −0.62 ± 0.08 m/yr, respectively. (2) In terms of time, GEDI reflected glacier elevation changes at interannual and seasonal scales, and the trend of change was consistent with that found with ICESat-2. The results indicate that glacier accumulation mainly occurred in spring and winter, while the melting rate accelerated in summer and autumn. (3) GEDI effectively monitored and revealed the characteristics and patterns of glacier elevation changes with different terrain features, glacier area grades, etc.; however, as the slope increased, the accuracy of the reported changes in glacier elevation gradually decreased. Nonetheless, GEDI still provided reasonable estimates for changes in mountain glacier elevation. (4) The spatial distribution of GEDI footprints was uneven, directly affecting the accuracy of the monitoring results. Thus, to improve analyses of changes in glacier elevation, terrain factors should be comprehensively considered in further research. Overall, these promising results have the potential to be used as a basic dataset for further investigations of glacier mass and global climate change research. Full article
Show Figures

Graphical abstract

20 pages, 2346 KB  
Article
Synoptic-Scale Modulation of Surface O3, NO2, and SO2 by the North Atlantic Oscillation in São Miguel Island, Azores (2017–2021)
by Helena Cristina Vasconcelos, Ana Catarina Ferreira and Maria Gabriela Meirelles
Pollutants 2025, 5(3), 27; https://doi.org/10.3390/pollutants5030027 - 25 Aug 2025
Abstract
This study investigated the extent to which the North Atlantic Oscillation (NAO) modulated daily surface-level concentrations of ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) on São Miguel Island, Azores, between 2017 and 2021. Using validated [...] Read more.
This study investigated the extent to which the North Atlantic Oscillation (NAO) modulated daily surface-level concentrations of ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) on São Miguel Island, Azores, between 2017 and 2021. Using validated data from two air quality monitoring stations, São Gonçalo (SG) (urban background) and Ribeira Grande (RG) (semi-urban), we applied descriptive statistics, seasonal Pearson correlations, and robust linear regression models to assess pollutant responses to NAO variability. The results reveal a significant and positive association between NAO phases and O3 concentrations, particularly in spring and summer. NO2 levels exhibited a strong negative correlation with NAO during summer in urban settings, indicating enhanced atmospheric dispersion. In contrast, SO2 concentrations showed weak and inconsistent relationships with the NAO index, likely reflecting the influence of local and episodic sources. These findings demonstrate that large-scale synoptic drivers such as the NAO can significantly modulate pollutant dynamics in island environments and should be integrated into air quality forecasting and environmental health planning strategies in small island territories. Full article
Show Figures

Figure 1

19 pages, 1451 KB  
Article
Assessing the Productivity of Colonies Headed by Preheated Honeybee Queens
by Abd Al-Majeed Al-Ghzawi, Shahera Talat Zaitoun, Mohammad Nafi Solaiman Al-Sabi, Salem Saleh Mazari, Ilham Mustafa Al-Omari and Maqbool Saed Altalhi
Insects 2025, 16(8), 858; https://doi.org/10.3390/insects16080858 - 18 Aug 2025
Viewed by 419
Abstract
This study investigated the effects of preheat hardening on the egg-laying capacity of honeybee queens and the flight performance of their daughter workers. A honeybee queen was confined in a cage with a two-section frame for 12 h. Then, 48 h old eggs [...] Read more.
This study investigated the effects of preheat hardening on the egg-laying capacity of honeybee queens and the flight performance of their daughter workers. A honeybee queen was confined in a cage with a two-section frame for 12 h. Then, 48 h old eggs from one section were incubated for 15 min at 41 °C and 70% relative humidity (RH). The queens (n = 12) raised in this section were named the pre-heat-treated queens (pH-TQs). Eggs from the second section were exposed to 34.5 °C and 70% RH for 15 min, and the queens raised in this section were named the non-heat-treated queens (nH-TQs) (n = 12). After mating, both groups were introduced to queenless hives in order to produce workers. The results show that, during the study period (2021 and 2022), the colonies headed by the pH-TQs reared significantly more brood cells and worker adults (especially during the summer), collected and stored more pollen, had less tendency to rear drone brood, and constructed fewer swarm cells than the colonies headed by the nH-TQs. Preheat hardening can be a promising method for improving honeybee workers’ reproductive potential and adaptability, allowing for better adaptation to environmental changes, thus compensating for the mass fatalities of honeybees globally. Full article
Show Figures

Figure 1

17 pages, 2321 KB  
Article
Variations in the Surface Atmospheric Electric Field on the Qinghai–Tibet Plateau: Observations at China’s Gar Station
by Jia-Nan Peng, Shuai Fu, Yan-Yan Xu, Gang Li, Tao Chen and En-Ming Xu
Atmosphere 2025, 16(8), 976; https://doi.org/10.3390/atmos16080976 - 17 Aug 2025
Viewed by 353
Abstract
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of [...] Read more.
The Qinghai-Tibet Plateau, known as the “third pole” of the Earth with an average elevation of approximately 4500 m, offers a unique natural laboratory for probing the dynamic behavior of the global electric circuit. In this study, we conduct a comprehensive analysis of near-surface vertical atmospheric electric field (AEF) measurements collected at the Gar Station (80.1° E, 32.5° N; 4259 m a.s.l.) on the western Tibetan Plateau, spanning the period from November 2021 to December 2024. Fair-weather conditions are imposed. The annual mean AEF at Gar is ∼0.331 kV/m, significantly higher than values observed at lowland and plain sites, indicating a pronounced enhancement in atmospheric electricity associated with high-altitude conditions. Moreover, the AEF exhibits marked seasonal variability, peaking in December (∼0.411–0.559 kV/m) and valleying around July–August (∼0.150–0.242 kV/m), yielding an overall amplitude of approximately 0.3 kV/m. We speculate that this seasonal pattern is primarily driven by variations in aerosol concentration. During winter, increased aerosol loading from residential heating and vehicle emissions due to incomplete combustion reduces atmospheric conductivity by depleting free ions and decreasing ion mobility, thereby enhancing the near-surface AEF. In contrast, lower aerosol concentrations in summer lead to weaker AEF. This seasonal decline in aerosol levels is likely facilitated by stronger winds and more frequent rainfall in summer, which enhance aerosol dispersion and wet scavenging, whereas weaker winds and limited precipitation in winter favor near-surface aerosol accumulation. On diurnal timescales, the Gar AEF curve deviates significantly from the classical Carnegie curve, showing a distinct double-peak and double-trough structure, with maxima at ∼03:00 and 14:00 UT and minima near 00:00 and 10:00 UT. This deviation may partly reflect local influences related to sunrise and sunset. This study presents the longest ground-based AEF observations over the Qinghai–Tibet Plateau, providing a unique reference for future studies on altitude-dependent AEF variations and their coupling with space weather and climate processes. Full article
Show Figures

Figure 1

23 pages, 1540 KB  
Article
Assessment of Evapotranspiration–Yield Relationships in Northern China Tea Plantations: A Basis for Crop Water Productivity Improvement
by Quanru Liu, Zongzhi Wang, Liang Cheng, Kun Wang, Ying Bai, Qi Ding, Ziyue Shao and Yongbing Zhang
Agronomy 2025, 15(8), 1955; https://doi.org/10.3390/agronomy15081955 - 13 Aug 2025
Viewed by 483
Abstract
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, [...] Read more.
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, and it is highly sensitive to environmental factors such as temperature and moisture. In northern hilly tea-producing areas, tea plantations often encounter multiple challenges including uneven rainfall distribution and poor soil water retention, resulting in prominent water supply–demand imbalances that critically limit stable and efficient tea production. To explore efficient water-saving irrigation strategies adapted to such ecological conditions, this study was conducted in the Yushan Tea Plantation, Rizhao City, Shandong Province, China. Based on field monitoring data across three growing seasons (spring, summer, and autumn) from 2021 to 2023, five irrigation treatments were evaluated: conventional sprinkler irrigation (CK), drip irrigation (D), micro-sprinkler irrigation (W), drip irrigation with straw mulching (SD), and micro-sprinkler irrigation with straw mulching (SW). Actual crop evapotranspiration (ETc act) was estimated using the soil water balance method, and actual fresh tea leaf yield (FTLY) and crop water productivity (CWP) were measured. Results showed that the SW treatment significantly improved both FTLY and CWP across all three seasons, with summer FTLY in 2022 increasing by 56.58% compared to CK and maximum CWP in spring and autumn reaching 0.916 kg/m3, demonstrating excellent stability and adaptability. Among all irrigation strategies, the SW treatment also exhibited the best regression fitting and yield prediction accuracy. The regression model validated by leave-one-out cross-validation (LOOCV) for the SW treatment demonstrated strong robustness and reliability (R2 = 0.734; RMSE = 208.12 kg/ha; MAE = 183.31 kg/ha). Notably, the samples with the largest prediction errors across all treatments were nearly all associated with the highest or near-highest ETc act values, indicating that model accuracy tends to decrease under extreme evapotranspiration conditions. The results show the synergistic effect of irrigation–mulching integration on enhancing CWP in northern perennial tea systems, providing empirical evidence and theoretical support for developing efficient irrigation strategies in hilly tea-growing regions of Northern China. Full article
Show Figures

Figure 1

20 pages, 2761 KB  
Article
Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea
by Minsun Kim, Jongho Won and Hyungkyoo Kim
Land 2025, 14(8), 1628; https://doi.org/10.3390/land14081628 - 12 Aug 2025
Viewed by 509
Abstract
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. [...] Read more.
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. Using spatial regression models and temperature data collected during July and August 2021, the analysis identifies key environmental factors associated with urban heat dynamics. The results show that medium- and high-density residential areas, industrial zones, and roads consistently increase temperatures, while greenery, taller buildings, and greater urban porosity contribute to cooling effects. The findings highlight the need for urban planning strategies that expand green spaces, promote vertical development with attention to ventilation, and reconfigure built environments to enhance thermal comfort. This study provides robust empirical insights and offers evidence-based recommendations for climate-responsive urban planning and policies in Seoul and similar high-density cities worldwide. Full article
(This article belongs to the Special Issue Urban Form and the Urban Heat Island Effect (Second Edition))
Show Figures

Figure 1

14 pages, 2038 KB  
Article
Herbicide-Induced Fragmentation: Regenerative Ability of Cabomba Fragments After Exposure to Flumioxazin
by Junfeng Xu, Tobias Oliver Bickel and Steve Adkins
Biology 2025, 14(8), 1023; https://doi.org/10.3390/biology14081023 - 8 Aug 2025
Viewed by 215
Abstract
Cabomba caroliniana A. Gray (cabomba) is an invasive alien aquatic plant (IAAP) posing a significant threat to aquatic ecosystems in Australia. Its ongoing spread is primarily driven by its rapid growth rate and ability to readily regenerate from stem fragments. Flumioxazin, an effective [...] Read more.
Cabomba caroliniana A. Gray (cabomba) is an invasive alien aquatic plant (IAAP) posing a significant threat to aquatic ecosystems in Australia. Its ongoing spread is primarily driven by its rapid growth rate and ability to readily regenerate from stem fragments. Flumioxazin, an effective herbicide for controlling cabomba, has been registered for use in Australia since 2021. However, exposing cabomba to flumioxazin can induce stem fragmentation, potentially facilitating further spread. This study aims to determine whether stem fragments of cabomba following treatment at different flumioxazin doses (i.e., 25, 50, 100, or 200 ppb a.i.) can regenerate new healthy shoots that could contribute to its future spread in a new environment, in either summer or winter. This study also aims to investigate how this regrowth potential changes over time after herbicide application. Results show that flumioxazin suppressed the regeneration of replanted stem fragments in a dose-dependent manner in both winter and summer. In winter, complete regeneration was suppressed at the highest concentration tested (200 ppb a.i.), while low concentrations (25 and 50 ppb a.i.) resulted in an average 45% lower regeneration rate and 93% lower regenerated biomass than the control. In summer, suppression of regeneration was lower; at 200 ppb a.i., partial regeneration (18%) occurred with a 97% biomass reduction. At lower concentrations (25 and 50 ppb a.i.), more stem fragments regenerated (66%) and biomass reduction was lower (69%) compared to winter. Furthermore, in summer, the plants gradually regained their ability to regenerate over time after herbicide exposure, regardless of flumioxazin concentration, while no such recovery occurred in winter at any concentration. The findings show that the highest tested dose (200 ppb a.i.) can effectively suppress cabomba regenerative ability, which will greatly reduce the risk of new infestations caused by dispersed fragments, particularly in winter, when cooler temperatures and lower light are suboptimal for cabomba growth. This suggests that winter may be a more effective season for flumioxazin application. However, since some regeneration still occurred in summer, even at the highest tested dose, the highest registered label rate (400 ppb a.i.) may be necessary to ensure effective suppression under warmer conditions. Further studies are needed to evaluate this higher dose and its long-term efficacy. Full article
Show Figures

Figure 1

20 pages, 16139 KB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 330
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

21 pages, 7111 KB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 449
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

24 pages, 6020 KB  
Article
Seasonal Patterns of Preterm Birth During the COVID-19 Pandemic: A Retrospective Cohort Study in Romania
by Paula Trif, Cristian Sava, Diana Mudura, Boris W. Kramer, Radu Galiș, Maria Livia Ognean, Alin Iuhas and Claudia Maria Jurca
Medicina 2025, 61(8), 1398; https://doi.org/10.3390/medicina61081398 - 1 Aug 2025
Viewed by 399
Abstract
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with [...] Read more.
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with changes in physical activity and lower exposure to community-acquired infections due to lockdown measures, altered social interaction patterns or reduced access to antenatal care. Assessing seasonal variation may offer insights into whether lifestyle changes during the COVID-19 lockdown period influenced preterm birth rates. Materials and Methods: This retrospective cohort study used data from the electronic medical records of Bihor and Sibiu counties. Preterm deliveries (<37 weeks) and stillbirths during the COVID-19 pandemic (2020 and 2021) were compared with the corresponding pre-pandemic (2018 and 2019) and post-pandemic (2022 and 2023) period. Preterm birth rates during summer and winter in the pre-pandemic, pandemic, and post-pandemic years were analyzed. A comparison with rates during strict lockdown was made. Results: Out of 52,021 newborn infants, 4473 were born preterm. Preterm birth rates remained stable across all three periods (p = 0.13), and no significant seasonal pattern was identified (p = 0.65). In contrast, stillbirth rates increased notably during the strict lockdown period, with the median incidence almost doubling compared to other periods (0.87%, p = 0.05), while remaining unchanged during the rest of the pandemic (p = 0.52). Conclusions: Our study found that preterm birth rates remained unaffected by the pandemic and lockdown periods, while stillbirths increased significantly during the strict lockdown. These findings highlight the importance of maintaining access to timely antenatal care during public health emergencies to prevent adverse perinatal outcomes. Full article
(This article belongs to the Special Issue Advances in Obstetrics and Maternal-Fetal Medicine)
Show Figures

Figure 1

26 pages, 5975 KB  
Article
A Detailed Performance Evaluation of the GK2A Fog Detection Algorithm Using Ground-Based Visibility Meter Data (2021–2023, Part I)
by Hyun-Kyoung Lee and Myoung-Seok Suh
Remote Sens. 2025, 17(15), 2596; https://doi.org/10.3390/rs17152596 - 25 Jul 2025
Viewed by 431
Abstract
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood [...] Read more.
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood pixel approaches to the visibility meter, the 3-year average probability of detection (POD) is 0.59 and 0.70, the false alarm ratio (FAR) is 0.86 and 0.81, and the bias is 4.25 and 3.73, respectively. POD is highest during daytime (0.72; bias: 7.34), decreases at night (0.57; bias: 3.89), and is lowest at twilight (0.52; bias: 2.36). The seasonal mean POD is 0.65 in winter, 0.61 in spring and autumn, and 0.47 in summer, with August reaching the minimum value, 0.33. While POD is higher in coastal areas than inland areas, inland regions show lower FAR, indicating more stable performance. Over-detections occurred regardless of geographic location and time, mainly due to the misclassification of low-level clouds and cloud edges as fog. Especially after sunrise, the fog dissipated and transformed into low-level clouds. These findings suggest that there are limitations to improving fog detection levels using satellite data alone, especially when the surface is obscured by clouds, indicating the need to utilize other data sources, such as objective ground-based analysis data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

25 pages, 4161 KB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 571
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

19 pages, 3568 KB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 426
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

14 pages, 7931 KB  
Article
Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau
by Dai-Ping Zhang, Wen-Bo Gu, Ali Esamdin, Chun-Hai Bai, Hu-Biao Niu, Li-Yong Liu and Ji-Cheng Zhang
Atmosphere 2025, 16(8), 897; https://doi.org/10.3390/atmos16080897 - 23 Jul 2025
Viewed by 271
Abstract
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study [...] Read more.
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study the characteristics of the surface temperature inversion and its effect on astronomical seeing at the site. The results show the following: The temperature inversion at the Muztagh-Ata site is highly pronounced at night; it is typically distributed below a height of about 18 m; it weakens and disappears gradually after sunrise, while it forms gradually after sunset and remains stable during the night; and it is weaker in spring and summer but stronger in autumn and winter. Correlation studies with meteorological parameters show the following: increases in both cloud coverage and humidity weaken temperature inversion; the distribution of inversion with wind speed exhibits a bimodal distribution; southwesterly winds prevail at a frequency of 73.76% and are typically accompanied by strong temperature inversions. Finally, by statistical patterns, we found that strong temperature inversion at the Muztagh-Ata site usually bring better seeing by suppressing atmospheric optical turbulence. Full article
Show Figures

Figure 1

16 pages, 1049 KB  
Article
Limited Short-Term Impact of Annual Cover Crops on Soil Carbon and Soil Enzyme Activity in Subtropical Tree Crop Systems
by Abraham J. Gibson, Lee J. Kearney, Karina Griffin, Michael T. Rose and Terry J. Rose
Agronomy 2025, 15(7), 1750; https://doi.org/10.3390/agronomy15071750 - 21 Jul 2025
Viewed by 397
Abstract
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in [...] Read more.
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in these systems. To investigate this, farmer participatory field trials were conducted in commercial avocado, macadamia, and coffee plantations in the wet Australian subtropics. Cover crops were direct-seeded into existing inter-row groundcovers in winter (cool season cover crops), and into the same plots the following summer (warm season cover crops). Inter-row biomass was quantified at the end of winter and summer in the control (no cover crop) and cover crops treatments. Soil carbon and nutrient cycling parameters including hot water extractable carbon, water soluble carbon, autoclavable citrate-extractable protein and soil enzyme activities were quantified every two months from early spring (September) 2021 to late autumn (May) 2022. Seeded cover crops produced 500 to 800 kg ha−1 more total inter-row biomass over winter at the avocado coffee sites, and 3000 kg ha−1 biomass in summer at the coffee site. However, they had no effect on biomass production in either season at the macadamia site. Soil functional parameters changed with season (i.e., time of sampling), with few significant effects of cover crop treatments on soil function parameters across the three sits. Growing a highly productive annual summer cover crop at the coffee site led to suppression and death of perennial groundcovers, exposing bare soil in the inter-row by 3 weeks after termination of the summer cover crop. Annual cover crops seeded into existing perennial groundcovers in tree crop systems had few significant impacts on soil biological function over the 12-month period, and their integration needs careful management to avoid investment losses and exacerbating the risk of soil erosion on sloping lands in the wet subtropics. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop