Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = sulphur metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3794 KB  
Article
Microbial Deodorization of Gastrodia elata: Aroma Profile Improvement and Gastrodin Enrichment via ANN-GA-Guided Fermentation
by Longhuan Qian, Shiying Song, Shengling He, Luona Zhou, Yumei Tan and Yongxiang Liu
Fermentation 2025, 11(11), 651; https://doi.org/10.3390/fermentation11110651 - 19 Nov 2025
Viewed by 154
Abstract
The industrial potential of Gastrodia elata is constrained by its distinct sensory characteristics. This work employed a computational optimization approach to refine the solid-state biotransformation using Aspergillus cristatus, aiming to boost the yield of the target metabolite while addressing undesirable volatiles. Through [...] Read more.
The industrial potential of Gastrodia elata is constrained by its distinct sensory characteristics. This work employed a computational optimization approach to refine the solid-state biotransformation using Aspergillus cristatus, aiming to boost the yield of the target metabolite while addressing undesirable volatiles. Through this strategy, the content of the principal bioactive compound reached 0.3887 ± 0.05 mg/g, marking a 1.5-fold increase compared to untreated samples (p = 0.023). Volatile profiling via HS-SPME-GC/MS revealed significant reductions in three major off-flavour contributors: phenethyl alcohol (90.9% decrease, p < 0.01), 3-mercapto-2-pentanone (85.6% decrease, p < 0.01), and 4-aminopyridine (82.8% decrease, p < 0.01). Metabolic analysis elucidated two underlying mechanisms: the suppression of sulphur-containing volatiles through the downregulation of the glutathione and glucosinolate pathways, and the generation of favourable notes via the augmented synthesis of (E, Z)-2,6-nonadienal (7.4-fold) and 2,4-undecadienal (3.3-fold). This study demonstrates how machine learning-driven microbial processing can simultaneously enhance functional constituents and mitigate sensory limitations in herbal materials, offering a viable route for value-added utilization. Full article
(This article belongs to the Special Issue Advances in Functional Fermented Foods)
Show Figures

Figure 1

32 pages, 14182 KB  
Article
Effects of Soybean Meal Replacement on Growth Performance, Rumen Fermentation, Rumen Microorganisms, and Metabolites in Dumont Lambs
by Henan Lu, Hairong Wang, Boyang Li, Zenghao Lv, Shufang Li, Yuhao Xia and Lina Wang
Animals 2025, 15(21), 3096; https://doi.org/10.3390/ani15213096 - 24 Oct 2025
Viewed by 350
Abstract
This study investigated the effects of replacing part of the soybean meal in the diet of Dumont lambs with urea, rapeseed meal, and cottonseed meal on their growth performance and rumen fermentation and combined rumen microbial metagenomics and metabolomics to explain the reasons [...] Read more.
This study investigated the effects of replacing part of the soybean meal in the diet of Dumont lambs with urea, rapeseed meal, and cottonseed meal on their growth performance and rumen fermentation and combined rumen microbial metagenomics and metabolomics to explain the reasons for the changes in phenotypic data. Twenty-four healthy male Dumont lambs were divided into four groups: soybean meal group (T1, control group), group with 1.5% urea replacing 6.4% soybean meal (T2), group with 1% urea replacing 4.3% soybean meal (T3), and group with 1% urea + 6.6% cottonseed meal +5% rapeseed meal replacing all soybean meal (19%) (T4), following the principle of equal energy and nitrogen. Urea, rapeseed meal, and cottonseed meal have different degradation rates in the rumen, primarily stimulating arginine biosynthesis, sulphur metabolism, and carbon fixation in photosynthetic organisms through Prevotella genus mediation, thereby influencing the accumulation of metabolites such as 9,10-DiHOME, DG (PGJ2/a-15:0/0:0), isonicotinate and taxifolin, affecting rumen fermentation. Compared with the T1 group, the T2 group showed significantly increased ammonia nitrogen (NH3-N) and microbial protein (MCP) content (p < 0.01) and improved fructose and mannose metabolic capacity (p < 0.05). The T3 group showed a significant increase in total volatile fatty acids (TVFA) and MCP content (p < 0.01), which facilitated the absorption of subsequent nutrients. In the T4 group, different degradation rates of nitrogen resources and rapeseed meal + cottonseed meal contained abundant and complementary amino acids, which improved rumen fermentation, enhanced rumen microbial and metabolite diversity, and optimized the synergistic metabolic efficiency of carbon, nitrogen and sulphur. However, the specific mechanisms of post-rumen metabolism and absorption require further investigation. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

24 pages, 1710 KB  
Article
Mitigation of Salt Stress in Tomato (Solanum lycopersicum L.) Through Sulphur, Calcium, and Nitric Oxide: Impacts on Ionic Balance, Nitrogen-Sulphur Metabolism, and Oxidative Stress
by Bilal Ahmad Mir, Zubair Ahmad Parrey, Preedhi Kapoor, Parul Parihar and Gurmeen Rakhra
Nitrogen 2025, 6(4), 93; https://doi.org/10.3390/nitrogen6040093 - 13 Oct 2025
Viewed by 471
Abstract
Background: In this study, hydroponic experiments were conducted to examine the roles of sulphur (S), calcium (Ca), and nitric oxide (NO) in alleviating salt stress (20 mM NaCl) in tomato (Solanum lycopersicum L.) seedlings. Methods: Analyses included Na+/K [...] Read more.
Background: In this study, hydroponic experiments were conducted to examine the roles of sulphur (S), calcium (Ca), and nitric oxide (NO) in alleviating salt stress (20 mM NaCl) in tomato (Solanum lycopersicum L.) seedlings. Methods: Analyses included Na+/K+ contents, inorganic nitrogen (nitrate, nitrite, ammonium), nitrogen- and ammonium-assimilating enzymes (NR, NiR, GS, GOGAT), sulphur-assimilating enzymes (ATPS, OASTL), protein content, ROS (O2∙−, H2O2), and in vivo NO visualization were conducted. Results: We observed that salt stress increased Na+, reduced K+, disrupted nitrogen and sulphur metabolism, elevated ROS, and decreased NO, causing oxidative stress and reduced enzymatic activity. Supplementation with potassium sulphate (40 µM), calcium chloride (30 µM), and sodium nitroprusside (SNP; 40 µM) mitigated these effects, enhancing enzymatic activities, restoring Na+/K+ balance, improving protein content, and lowering ROS. The protective role of NO was confirmed using inhibitors L-NAME (500 µM) and cPTIO (100 µM), which reversed SNP’s benefits and aggravated stress damage. Conclusion: Overall, S, Ca, and NO were found to synergistically improve salt stress tolerance by modulating ion homeostasis, nitrogen and sulphur metabolism, and oxidative balance, offering nutrient- and signal-based strategies to enhance tomato resilience under salinity. Full article
Show Figures

Figure 1

16 pages, 3864 KB  
Article
Structural and Functional Differences in the Bacterial Community of Chernozem Soil Under Conventional and Organic Farming Conditions
by Darya V. Poshvina, Alexander S. Balkin, Anastasia V. Teslya, Diana S. Dilbaryan, Artyom A. Stepanov, Sergey V. Kravchenko and Alexey S. Vasilchenko
Agriculture 2024, 14(12), 2127; https://doi.org/10.3390/agriculture14122127 - 24 Nov 2024
Cited by 1 | Viewed by 1709
Abstract
The conventional farming system, which predominates in most countries, is based on the use of agrochemical deep ploughing and other special methods. However, intensive farming has several negative impacts, including soil and water pollution and reduced biodiversity. The microbial community plays a crucial [...] Read more.
The conventional farming system, which predominates in most countries, is based on the use of agrochemical deep ploughing and other special methods. However, intensive farming has several negative impacts, including soil and water pollution and reduced biodiversity. The microbial community plays a crucial role in maintaining the health of agricultural ecosystems. In this context, we need to study how different agricultural practices affect the structural and functional characteristics of agricultural ecosystems. This study assessed the diversity, structure, and functional characteristics of the soil bacterial community in two different cropping systems. The subjects of the study were soil samples from Chernozem, which had been cultivated using the organic method for 11 years and the conventional method for 20 years. The fields are located in the southern part of the Russian Federation. Our results indicated minimal differences in the microbial diversity and soil community composition between the two systems studied. The profiling of the soil bacterial community revealed differences in the abundances of Proteobacteria, Bacteroidota, and Cyanobacteria, which were predominated in the conventional farming system (CFS), while Methylomirabilota and Fusobacteriota were more abundant in the organic farming system (OFS). Bacterial taxa and functional genes associated with nitrogen, phosphorus, and sulphur cycling were found to be more abundant in CFS soils than in OFS soils. The instrumental measurement of soil metabolic activity and microbial biomass content showed that CFS soils had higher microbiome activity than OFS soils. Overall, the study found that the agronomic practices used in conventional farming not only help to maintain the functional properties of the soil microbiome, but also significantly increase its microbiological activity and nutrient bioconversion, compared to organic farming practices. Full article
Show Figures

Figure 1

19 pages, 1229 KB  
Review
Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens
by Iwona Ciereszko and Elżbieta Kuźniak
Int. J. Mol. Sci. 2024, 25(22), 12134; https://doi.org/10.3390/ijms252212134 - 12 Nov 2024
Cited by 6 | Viewed by 2597
Abstract
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth–defence trade-offs have important implications for plant fitness and productivity and influence the outcome of [...] Read more.
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth–defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant–pathogen interactions. Biotic stress strongly affects plant cells’ primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic–photorespiratory metabolism for plant defence against bacterial and fungal pathogens. Full article
(This article belongs to the Special Issue Plant Respiration in the Light and Photorespiration)
Show Figures

Figure 1

22 pages, 1333 KB  
Review
Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction
by María J. Torres, Carmen M. Bellido-Pedraza and Angel Llamas
Life 2024, 14(8), 940; https://doi.org/10.3390/life14080940 - 27 Jul 2024
Cited by 14 | Viewed by 4420
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving [...] Read more.
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas–bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas–bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential. Full article
(This article belongs to the Special Issue Lipid Metabolism, Regulation and Biosynthesis of Microalgae)
Show Figures

Figure 1

61 pages, 16027 KB  
Review
High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders
by Mohammad Vikas Ashraf, Sajid Khan, Surya Misri, Kailash S. Gaira, Sandeep Rawat, Balwant Rawat, M. A. Hannan Khan, Ali Asghar Shah, Mohd Asgher and Shoeb Ahmad
Pharmaceuticals 2024, 17(8), 975; https://doi.org/10.3390/ph17080975 - 23 Jul 2024
Cited by 31 | Viewed by 6499
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, [...] Read more.
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches. Full article
Show Figures

Figure 1

32 pages, 6256 KB  
Article
Cadmium Highlights Common and Specific Responses of Two Freshwater Sentinel Species, Dreissena polymorpha and Dreissena rostriformis bugensis
by Florence Bultelle, Aimie Le Saux, Elise David, Arnaud Tanguy, Simon Devin, Stéphanie Olivier, Agnès Poret, Philippe Chan, Fanny Louis, Laurence Delahaut, Sandrine Pain-Devin, Romain Péden, David Vaudry, Frank Le Foll and Béatrice Rocher
Proteomes 2024, 12(2), 10; https://doi.org/10.3390/proteomes12020010 - 26 Mar 2024
Cited by 2 | Viewed by 2604
Abstract
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel’s use in environmental survey. To better characterise [...] Read more.
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel’s use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L−1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM. Full article
Show Figures

Figure 1

15 pages, 2281 KB  
Article
Exploration of In Vitro Voltage Production by a Consortium of Chemolithotrophic Microorganisms Using Galena (PbS) as a Sulphur Source
by Susana Citlaly Gaucin Gutiérrez, Juan Antonio Rojas-Contreras, David Enrique Zazueta-Álvarez, Efren Delgado, Perla Guadalupe Vázquez Ortega, Hiram Medrano Roldán and Damián Reyes Jáquez
Clean Technol. 2024, 6(1), 62-76; https://doi.org/10.3390/cleantechnol6010005 - 3 Jan 2024
Viewed by 2638
Abstract
Sulphur plays a fundamental role in the biological processes of chemolithotrophic microorganisms. Due to the redox characteristics of sulphur, microorganisms use it for metabolic processes. Such is the case of the dissimilatory processes in the anaerobic respiration of reducing microorganisms. The production of [...] Read more.
Sulphur plays a fundamental role in the biological processes of chemolithotrophic microorganisms. Due to the redox characteristics of sulphur, microorganisms use it for metabolic processes. Such is the case of the dissimilatory processes in the anaerobic respiration of reducing microorganisms. The production of electrical energy from the metabolism of native microorganisms using sulphur as substrate from inorganic mineral sources in the form of Galena (PbS) was achieved using MR mineral medium with 15% (w/v) of PbS mineral concentrate. At 400 h of growth, the highest voltage produced in an experimental unit under anaerobic conditions was 644 mV. The inoculum was composed of microorganisms with spiral morphology, and at the final stages of energy production, the only microorganism identified was Bacillus clausii. This microorganism has not been reported in bioelectrochemical systems, but it has been reported to be present in corrosive environments and reducing anoxic environments. Full article
(This article belongs to the Special Issue Valorization of Industrial and Agro Waste)
Show Figures

Figure 1

25 pages, 6951 KB  
Article
Alleviation of Adverse Effects of Drought Stress on Growth and Nitrogen Metabolism in Mungbean (Vigna radiata) by Sulphur and Nitric Oxide Involves Up-Regulation of Antioxidant and Osmolyte Metabolism and Gene Expression
by Huida Lian, Cheng Qin, Jie Shen and Mohammad Abass Ahanger
Plants 2023, 12(17), 3082; https://doi.org/10.3390/plants12173082 - 28 Aug 2023
Cited by 22 | Viewed by 3326
Abstract
The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, [...] Read more.
The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, carotenoids and the content of nitrogen, phosphorous, potassium and sulphur. The foliar applications of NO and sulphur each individually alleviated the decline, with a greater alleviation observed in seedlings treated with both NO and sulphur. The reduction in intermediates of chlorophyll synthesis pathways and photosynthesis were alleviated by NO and sulphur. Oxidative stress was evident through the increased hydrogen peroxide, superoxide and activity of lipoxygenase and protease which were significantly assuaged by NO, sulphur and NO + sulphur treatments. A reduction in the activity of nitrate reductase, glutamine synthetase and glutamate synthase was mitigated due to the application of NO and the supplementation of sulphur. The endogenous concentration of NO and hydrogen sulphide (HS) was increased due to PEG; however, the PEG-induced increase in NO and HS was lowered due to NO and sulphur. Furthermore, NO and sulphur treatments to PEG-stressed seedlings further enhanced the functioning of the antioxidant system, osmolytes and secondary metabolite accumulation. Activities of γ-glutamyl kinase and phenylalanine ammonia lyase were up-regulated due to NO and S treatments. The treatment of NO and S regulated the expression of the Cu/ZnSOD, POD, CAT, RLP, HSP70 and LEA genes significantly under normal and drought stress. The present study advocates for the beneficial use of NO and sulphur in the mitigation of drought-induced alterations in the metabolism of Vigna radiata. Full article
Show Figures

Figure 1

20 pages, 3940 KB  
Article
The Effect of Yeast Inoculation Methods on the Metabolite Composition of Sauvignon Blanc Wines
by Farhana R. Pinu, Lily Stuart, Taylan Topal, Abby Albright, Damian Martin and Claire Grose
Fermentation 2023, 9(8), 759; https://doi.org/10.3390/fermentation9080759 - 14 Aug 2023
Cited by 5 | Viewed by 6323 | Correction
Abstract
Evidence from the literature suggests that different inoculation strategies using either active dry yeast (ADY) or freshly prepared yeast cultures affect wine yeast performance, thus altering biomass and many primary and secondary metabolites produced during fermentation. Here, we investigated how different inoculation methods [...] Read more.
Evidence from the literature suggests that different inoculation strategies using either active dry yeast (ADY) or freshly prepared yeast cultures affect wine yeast performance, thus altering biomass and many primary and secondary metabolites produced during fermentation. Here, we investigated how different inoculation methods changed the fermentation behaviour and metabolism of a commercial wine yeast. Using a commercial Sauvignon blanc (SB) grape juice, fermentation was carried out with two different inoculum preparation protocols using Saccharomyces cerevisiae X5: rehydration of commercial ADY and preparation of pre-inoculum in a rich laboratory medium. We also determined the effect of different numbers of yeast cells inoculation (varying from 1 × 106 to 1 × 1012) and successive inoculation on fermentation and end-product formation. The yeast inoculation method and number of cells significantly affected the fermentation time. Principal component analysis (PCA) using 60 wine metabolites showed a separation pattern between wines produced from the two inoculation methods. Inoculation methods influenced the production of amino acids and different aroma compounds, including ethyl and acetate esters. Varietal thiols, 3-mercaptohexanol (3MH), and 4-methyl-4-mercaptopentan-2-one (4MMP) in the wines were affected by the inoculation methods and numbers of inoculated cells, while little impact was observed on 3-mercaptohexyl acetate (3MHA) production. Pathway analysis using these quantified metabolites allowed us to identify the most significant pathways, most of which were related to central carbon metabolism, particularly metabolic pathways involving nitrogen and sulphur metabolism. Altogether, these results suggest that inoculation method and number of inoculated cells should be considered in the production of different wine styles. Full article
Show Figures

Figure 1

18 pages, 5067 KB  
Article
Salicylic Acid Mitigates Arsenic Stress in Rice (Oryza sativa) via Modulation of Nitrogen–Sulfur Assimilation, Ethylene Biosynthesis, and Defense Systems
by Moksh Mahajan, Faroza Nazir, Badar Jahan, Manzer H. Siddiqui, Noushina Iqbal and M. Iqbal R. Khan
Agriculture 2023, 13(7), 1293; https://doi.org/10.3390/agriculture13071293 - 24 Jun 2023
Cited by 10 | Viewed by 2538
Abstract
During climate change, various unparalleled perils to agricultural systems have been observed worldwide. The detrimental impacts of heavy metal toxicity (HMs) lead to a considerable decrease in crop productivity and yield, thereby putting the agricultural system at risk and exerting a significant impact [...] Read more.
During climate change, various unparalleled perils to agricultural systems have been observed worldwide. The detrimental impacts of heavy metal toxicity (HMs) lead to a considerable decrease in crop productivity and yield, thereby putting the agricultural system at risk and exerting a significant impact on food production. This has sparked significant worry regarding the achievement of the sustainable development goals (SDGs) pertaining to ensuring food and nutritional security for the constantly growing global population. In the current study, we have endeavored to reveal the significance of salicylic acid (SA) under arsenic (As) stress conditions in rice (Oryza sativa) plants. Being a toxic metalloid, As has adverse effects on the efficiency of photosynthesis and the assimilation of nitrogen (N) and sulphur (S) growth, and also causes alterations in defense systems and ethylene biosynthesis. The study revealed that the positive influence of SA in promoting nutrient metabolism, photosynthesis and growth under As stress was the result of its interplay with ethylene biosynthesis and the enhanced capacity of defense systems to reduce oxidative stress-mediated cellular injuries and cell deaths. In conclusion, SA can be considered a crucial physiological criterion for the development of As-tolerant rice plants. Full article
(This article belongs to the Special Issue The Role of Phytohormones in Crop Plant Growth and Development)
Show Figures

Figure 1

19 pages, 2776 KB  
Article
Beta-Diversity Enhancement by Archaeological Structures: Bacterial Communities of an Historical Tannery Area of the City of Jena (Germany) Reflect the Ancient Human Impact
by Johann Michael Köhler, Linda Ehrhardt, Jialan Cao, Frances Möller, Tim Schüler and Peter Mike Günther
Ecologies 2023, 4(2), 325-343; https://doi.org/10.3390/ecologies4020021 - 20 May 2023
Cited by 6 | Viewed by 2338
Abstract
Soil samples taken during archaeological investigations of a historical tannery area in the eastern suburb of the medieval city of Jena have been investigated by 16S r-RNA gene profiling. The analyses supplied a large spectrum of interesting bacteria, among them Patescibacteria, Methylomirabilota, Asgardarchaeota, [...] Read more.
Soil samples taken during archaeological investigations of a historical tannery area in the eastern suburb of the medieval city of Jena have been investigated by 16S r-RNA gene profiling. The analyses supplied a large spectrum of interesting bacteria, among them Patescibacteria, Methylomirabilota, Asgardarchaeota, Zixibacteria, Sideroxydans and Sulfurifustis. Samples taken from soil inside the residues of large vats show large differences in comparison to the environmental soil. The PCAs for different abundance classes clearly reflect the higher similarity between the bacterial communities of the outside-vat soils in comparison with three of the inside-vat soil communities. Two of the in-side vat soils are distinguishable from the other samples by separate use of each abundance class, but classes of lower abundance are better applicable than the highly abundant bacteria for distinguishing the sampling sites by PCA, in general. This effect could be interpreted by the assumption that less abundant types in the 16S r-RNA data tend to be more related to an earlier state of soil development than the more abundant and might be, therefore, better suited for conclusions on the state of the soils in an earlier local situation. In addition, the analyses allowed identification of specific features of each single sampling site. In one site specifically, DNA hints of animal residue-related bacteria were found. Obviously, the special situation in the in-site vat soils contributes to the diversity of the place, and enhances its Beta-diversity. Very high abundancies of several ammonia-metabolizing and of sulphur compound-oxidizing genera in the metagenomics data can be interpreted as an echo of the former tannery activities using urine and processing keratin-rich animal materials. In summary, it can be concluded that the 16S r-RNA analysis of such archaeological places can supply a lot of data related to ancient human impacts, representing a kind of “ecological memory of soil”. Full article
(This article belongs to the Special Issue Feature Papers of Ecologies 2023)
Show Figures

Figure 1

18 pages, 3402 KB  
Article
Differences in the Volatilomic Urinary Biosignature of Prostate Cancer Patients as a Feasibility Study for the Detection of Potential Biomarkers
by Giulia Riccio, Cristina V. Berenguer, Rosa Perestrelo, Ferdinando Pereira, Pedro Berenguer, Cristina P. Ornelas, Ana Célia Sousa, João Aragão Vital, Maria do Carmo Pinto, Jorge A. M. Pereira, Viviana Greco and José S. Câmara
Curr. Oncol. 2023, 30(5), 4904-4921; https://doi.org/10.3390/curroncol30050370 - 10 May 2023
Cited by 4 | Viewed by 4505
Abstract
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information [...] Read more.
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed. Full article
(This article belongs to the Collection New Insights into Prostate Cancer Diagnosis and Treatment)
Show Figures

Figure 1

23 pages, 5672 KB  
Article
Taurine Supplementation to Plant-Based Diets Improves Lipid Metabolism in Senegalese Sole
by Cláudia Aragão, Rita Teodósio, Rita Colen, Nadège Richard, Ivar Rønnestad, Jorge Dias, Luís E. C. Conceição and Laura Ribeiro
Animals 2023, 13(9), 1501; https://doi.org/10.3390/ani13091501 - 28 Apr 2023
Cited by 10 | Viewed by 5700
Abstract
Taurine is a sulphur-containing amino acid with important physiological roles and a key compound for the synthesis of bile salts, which are essential for the emulsion and absorption of dietary lipids. This study aimed to evaluate the effects of taurine supplementation to low-fishmeal [...] Read more.
Taurine is a sulphur-containing amino acid with important physiological roles and a key compound for the synthesis of bile salts, which are essential for the emulsion and absorption of dietary lipids. This study aimed to evaluate the effects of taurine supplementation to low-fishmeal diets on the metabolism of taurine, bile acids, and lipids of Senegalese sole. A fishmeal (FM) and a plant-protein-based (PP0) diet were formulated, and the latter was supplemented with taurine at 0.5 and 1.5% (diets PP0.5 and PP1.5). Diets were assigned to triplicate tanks containing 35 fish (initial weight ~14 g) for 6 weeks. Fish from the PP0 treatment presented lower taurine and bile-acid concentrations compared with the FM treatment, and a downregulation of cyp7a1 and abcb11 was observed. Triolein catabolism decreased in PP0-fed fish, resulting in increased hepatic fat content and plasma triglycerides, while no effects on plasma cholesterol were observed. Taurine supplementation to plant-based diets resulted in a higher taurine accumulation in fish tissues, increased bile-acid concentration, and upregulation of cyp7a1 and abcb11. Hepatic fat content and plasma triglycerides decreased with increasing dietary taurine supplementation. Taurine supplementation mitigated part of the negative effects of plant-based diets, leading to better lipid utilisation. Full article
(This article belongs to the Special Issue Amino Acid Supplementation in Fish Nutrition and Welfare)
Show Figures

Figure 1

Back to TopTop