Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = subwavelength metamaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 152 KB  
Editorial
Metamaterials and Their Devices, Second Edition
by YoungPak Lee
Crystals 2026, 16(2), 92; https://doi.org/10.3390/cryst16020092 - 28 Jan 2026
Viewed by 74
Abstract
Over the past two decades, metamaterials (MMs) have led a revolution in new material science through the artificial arrangement of electric and magnetic resonance structures (meta-atoms) at subwavelength scale [...] Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
12 pages, 2137 KB  
Article
Low Loss and Compact TE-Pass Polarizer on LNOI Platform with Subwavelength Grating Metamaterials
by Yingyi Liu, Chuang Cheng, Hongliang Chen, Yang Lan, Xin Fu and Lin Yang
Photonics 2026, 13(1), 64; https://doi.org/10.3390/photonics13010064 - 9 Jan 2026
Viewed by 260
Abstract
Polarization management is a key technique in integrated photonic circuits. In this paper, a low loss and compact TE-pass polarizer based on lithium niobate on insulator (LNOI) platform is presented. By utilizing subwavelength grating (SWG) metamaterials and inverse design algorithm, the TE0 [...] Read more.
Polarization management is a key technique in integrated photonic circuits. In this paper, a low loss and compact TE-pass polarizer based on lithium niobate on insulator (LNOI) platform is presented. By utilizing subwavelength grating (SWG) metamaterials and inverse design algorithm, the TE0 mode propagates through the SWG region with minimal loss, while the TM0 mode is efficiently coupled out and suppressed through shape-optimized algorithm, thereby achieving an expanded bandwidth of the polarization extinction ratio (PER). With a footprint of 66 μm, the polarizer exhibits low insertion loss (IL) < 0.174 dB and a PER > 10 dB over 176 nm (1465–1641 nm), reaching 33.2 dB at 1550 nm. Furthermore, the proposed polarizer demonstrates superior overall performance, along with promising potential for polarization management and mode conversion in high-performance LNOI-based integrated photonic systems. Full article
Show Figures

Figure 1

30 pages, 6057 KB  
Article
Theoretical Analysis, Neural Network-Based Inverse Design, and Experimental Verification of Multilayer Thin-Plate Acoustic Metamaterial Unit Cells
by An Wang, Chi Cai, Ying You, Yizhe Huang, Xin Zhan, Linfeng Gao and Zhifu Zhang
Materials 2026, 19(1), 152; https://doi.org/10.3390/ma19010152 - 1 Jan 2026
Viewed by 261
Abstract
Acoustic metamaterials are artificially engineered materials composed of subwavelength structural units, whose effective acoustic properties are primarily determined by structural design rather than intrinsic material composition. By introducing local resonances, these materials can exhibit unconventional acoustic behavior, enabling enhanced sound insulation beyond the [...] Read more.
Acoustic metamaterials are artificially engineered materials composed of subwavelength structural units, whose effective acoustic properties are primarily determined by structural design rather than intrinsic material composition. By introducing local resonances, these materials can exhibit unconventional acoustic behavior, enabling enhanced sound insulation beyond the limitations of conventional structures. In this study, a thin plate (thin sheet) refers to a structural element whose thickness is much smaller than its in-plane dimensions and can be accurately described using classical thin-plate vibration theory. When resonant mass blocks are attached to a thin plate, a thin-plate acoustic metamaterial is formed through the coupling between plate bending vibrations and local resonances. Thin-plate acoustic metamaterials exhibit excellent sound insulation performance in the low- and mid-frequency ranges. Multilayer configurations and the combination with porous materials can effectively broaden the insulation bandwidth and improve overall performance. However, the large number of structural parameters in multilayer composite thin-plate acoustic metamaterials significantly increases design complexity, making conventional trial-and-error approaches inefficient. To address this challenge, a neural-network-based inverse design framework is proposed for multilayer composite thin-plate acoustic metamaterials. An analytical model of thin-plate metamaterials with multiple attached cylindrical masses is established using the point matching and modal superposition methods and validated by finite element simulations. A multilayer composite unit cell is then constructed, and a dataset of 30,000 samples is generated through numerical simulations. Based on this dataset, a forward prediction network achieves a test error of 1.06%, while the inverse design network converges to an error of 2.27%. The inverse-designed structure is finally validated through impedance tube experiments. The objective of this study is to establish a systematic theoretical and neural-network-assisted inverse design framework for multilayer thin-plate acoustic metamaterials. The main novelties include the development of an accurate analytical model for thin-plate metamaterials with multiple attached masses, the construction of a large-scale simulation dataset, and the proposal of a neural-network-assisted inverse design strategy to address non-uniqueness in inverse design. The proposed approach provides an efficient and practical solution for low-frequency sound insulation design. Full article
(This article belongs to the Special Issue Advanced Materials in Acoustics and Vibration)
Show Figures

Figure 1

4 pages, 186 KB  
Editorial
Advances in Metamaterials: Structure, Properties and Applications
by Bin Zheng and Peixuan Zhu
Materials 2026, 19(1), 85; https://doi.org/10.3390/ma19010085 - 25 Dec 2025
Viewed by 648
Abstract
Metamaterials, leveraging the unique characteristics of subwavelength structures, have led to significant research progress in fields such as acoustics, optics, and electromagnetics [...] Full article
(This article belongs to the Special Issue Advances in Metamaterials: Structure, Properties and Applications)
16 pages, 2955 KB  
Article
Sound Insulation Mechanism and Multi-Field Regulation of MXene Dielectric-Tunable Subwavelength Piezoelectric Metamaterials
by Peizheng Cao, Xianwen Zhao, Cheng Mei and Xuefei Ma
Materials 2025, 18(23), 5440; https://doi.org/10.3390/ma18235440 - 2 Dec 2025
Viewed by 320
Abstract
To address the bottleneck of insufficient broadband sound insulation performance of traditional sound insulation materials at the subwavelength scale, this paper designs a composite subwavelength sound insulation unit (size: 20 mm × 20 mm × 5 mm) composed of Ti3C2 [...] Read more.
To address the bottleneck of insufficient broadband sound insulation performance of traditional sound insulation materials at the subwavelength scale, this paper designs a composite subwavelength sound insulation unit (size: 20 mm × 20 mm × 5 mm) composed of Ti3C2Tx MXene, and PZT-5H piezoelectric ceramics, and porous aluminum alloy. Based on the electromagnetic-structural-acoustic multi-physics field coupling theory, the regulation laws of external electric field intensity and effect of MXene layer number on sound insulation performance are systematically investigated via numerical simulation, and the sound insulation enhancement mechanism dominated by dielectric tunability is clarified. The results show that the dielectric constant of MXene increases monotonically with the external electric field intensity, and the optimal regulation sensitivity is achieved when the layer number N = 3; when the electric field intensity increases from 0 V to 500 V, the equivalent density of the system increases from 1.25 g/cm3 to 1.87 g/cm3, the acoustic impedance increases from 3.42 × 106 Pa·s/m3 to 5.13 × 106 Pa·s/m3, the average transmission loss TL in the 200–600 Hz frequency band is increased by 2 dB compared with the state without electric field, and the sound pressure on the transmission side is reduced by 3.56% at 400 Hz; the vibration displacement of PZT decreases from 0.0055 mm to nearly 0 mm with the increase in electric field, and the electric field energy density increases from 0 J/m3 to 7.47056 × 103 J/m3, verifying the core mechanism of converting electromagnetic energy into structural damping through dielectric loss. This study supplements parameter sensitivity analysis and literature benchmark comparison to compensate for the lack of experimental data, confirming the stability and rationality of the simulation results. The established cross-field coupling framework of “dielectric regulation–density optimization–impedance matching–sound insulation enhancement” fills the theoretical gap of the coupling mechanism of MXene in the field of subwavelength sound insulation, and provides new theoretical and technical pathways for the design of broadband active sound insulation materials in the 200–1000 Hz frequency range. Full article
(This article belongs to the Special Issue MXene-Based Electromagnetic Functional Devices)
Show Figures

Figure 1

11 pages, 5998 KB  
Proceeding Paper
High-Fidelity Versus Reduced-Order Numerical Models for Sound Transmission Loss Prediction of Acoustic Metamaterials
by Ali Bin Naveed, Aamir Mubashar, Muhammad Khizer Ali Khan, Ammar Tariq and Kamran A. Khan
Eng. Proc. 2025, 111(1), 17; https://doi.org/10.3390/engproc2025111017 - 21 Oct 2025
Viewed by 586
Abstract
This paper proposes a comprehensive numerical methodology for predicting Sound Transmission Loss (STL) in acoustic metamaterials. It integrates a high-fidelity model (HFM), using Thermoviscous Acoustics for detailed characterization, with a reduced-order model (ROM), employing Pressure Acoustics in COMSOL Multiphysics. The goal is a [...] Read more.
This paper proposes a comprehensive numerical methodology for predicting Sound Transmission Loss (STL) in acoustic metamaterials. It integrates a high-fidelity model (HFM), using Thermoviscous Acoustics for detailed characterization, with a reduced-order model (ROM), employing Pressure Acoustics in COMSOL Multiphysics. The goal is a hierarchical approach balancing computational cost with predictive accuracy for metamaterial designs. The results show that HFM is crucial for understanding complex dissipative mechanisms, especially viscous and thermal losses in sub-wavelength features. The ROM offers rapid predictions for broader design exploration. The case studies compare these models against each other and to experimental results in the low-to-mid frequency range. The average STL values for both models diverged by a marginal 6 dB. Full article
Show Figures

Figure 1

27 pages, 8496 KB  
Review
Progress in Electromagnetic Wave Absorption of Multifunctional Structured Metamaterials
by Zhuo Lu, Luwei Liu, Zhou Chen, Changxian Wang, Xiaolei Zhu, Xiaofeng Lu, Hui Yuan and Hao Huang
Polymers 2025, 17(18), 2559; https://doi.org/10.3390/polym17182559 - 22 Sep 2025
Cited by 1 | Viewed by 2644
Abstract
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. [...] Read more.
This review summarizes recent advances in multifunctional metamaterials (MF-MMs) for electromagnetic (EM) wave absorption. MF-MMs overcome the key limitations of conventional absorbers—such as narrow bandwidth, limited functionality, and poor environmental adaptability—offering enhanced protection against EM security threats in radar, aerospace, and defense applications. This review focuses on an integrated structure-material-function co-design strategy, highlighting advances in three-dimensional (3D) lattice architectures, composite laminates, conformal geometries, bio-inspired topologies, and metasurfaces. When synergized with multicomponent composites, these structural innovations enable the co-regulation of impedance matching and EM loss mechanisms (dielectric, magnetic, and resistive dissipation), thereby achieving broadband absorption and enhanced multifunctionality. Key findings demonstrate that 3D lattice structures enhance mechanical load-bearing capacity by up to 935% while enabling low-frequency broadband absorption. Composite laminates achieve breakthroughs in ultra-broadband coverage (1.26–40 GHz), subwavelength thickness (<5 mm), and high flexural strength (>23 MPa). Bio-inspired topologies provide wide-incident-angle absorption with bandwidths up to 31.64 GHz. Metasurfaces facilitate multiphysics functional integration. Despite the significant potential of MF-MMs in resolving broadband stealth and multifunctional synergy challenges via EM wave absorption, their practical application is constrained by several limitations: limited dynamic tunability, incomplete multiphysics coupling mechanisms, insufficient adaptability to extreme environments, and difficulties in scalable manufacturing and reliability assurance. Future research should prioritize intelligent dynamic response, deeper integration of multiphysics functionalities, and performance optimization under extreme conditions. Full article
Show Figures

Figure 1

21 pages, 1209 KB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Viewed by 1861
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

13 pages, 2055 KB  
Article
Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
by Jing Wang, Yumeng Sun, Yongfu Wang, Ying Li and Xiaojiao Gu
Materials 2025, 18(15), 3616; https://doi.org/10.3390/ma18153616 - 31 Jul 2025
Cited by 1 | Viewed by 904
Abstract
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, [...] Read more.
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, enabling outstanding sound-insulation performance within a deep-subwavelength thickness. Finite-element and transfer-matrix analyses show that increasing the fractal order from one to three raises the number of bandgaps from three to five and expands total stop-band coverage from 17% to over 40% within a deep-subwavelength thickness. Four-microphone impedance-tube measurements on the third-order sample validate a peak transmission loss of 75 dB at 495 Hz, in excellent agreement with simulations. Compared to conventional zigzag and Hilbert-maze designs, this curve fractal architecture delivers enhanced low-frequency broadband insulation, structural lightweighting, and ease of fabrication, making it a promising solution for noise control in machine rooms, ducting systems, and traffic environments. The method proposed in this paper can be applied to noise reduction of transmission parts for ceramic automation production. Full article
Show Figures

Figure 1

27 pages, 5760 KB  
Review
Recent Advances in Soft Acoustic Metamaterials: A Comprehensive Review of Geometry, Mechanisms, and System Responsiveness
by Ju-Hee Lee, Haesol Kwak, Eunjik Kim and Min-Woo Han
Appl. Sci. 2025, 15(14), 7910; https://doi.org/10.3390/app15147910 - 16 Jul 2025
Cited by 2 | Viewed by 8303
Abstract
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable [...] Read more.
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable structures to achieve enhanced acoustic functionality. These systems make use of the inherent flexibility of their materials or the deformability of their geometry to support passive, active, and adaptive functions. To capture this structural and functional diversity, we introduce a three-dimensional classification that considers geometry, acoustic control mechanisms, and functional responsiveness as interrelated aspects. The geometry is classified into two-dimensional metasurfaces and three-dimensional bulk structures. The control mechanisms include local resonance, phase modulation, attenuation, and structural reconfiguration. The response type refers to whether the system behaves passively, actively, or adaptively. Using this approach, we provide an overview of representative implementations and compare different design approaches to highlight their working principles and application areas. This review presents a structured classification for soft acoustic metamaterials and offers a foundation for future research, with broad potential in intelligent sound systems, wearable acoustics, and architectural applications. Full article
Show Figures

Figure 1

20 pages, 4340 KB  
Article
Spectral Tuning and Angular–Gap Interrogation of Terahertz Spoof Surface Plasmon Resonances Excited on Rectangular Subwavelength Grating Using Attenuated Total Reflection in Otto Configuration
by Oleg Kameshkov, Vasily Gerasimov, Boris Goldenberg and Vladimir Nazmov
Photonics 2025, 12(7), 651; https://doi.org/10.3390/photonics12070651 - 26 Jun 2025
Cited by 1 | Viewed by 1016
Abstract
In this paper, we experimentally investigated the excitation of spoof surface plasmon polaritons (SSPPs) supported by a 1D subwavelength grating with a rectangular profile in the terahertz (THz) frequency range. Using the attenuated total reflection technique and the THz radiation of the Novosibirsk [...] Read more.
In this paper, we experimentally investigated the excitation of spoof surface plasmon polaritons (SSPPs) supported by a 1D subwavelength grating with a rectangular profile in the terahertz (THz) frequency range. Using the attenuated total reflection technique and the THz radiation of the Novosibirsk free electron laser, we carried out detailed studies of both angular and gap spectra at several wavelengths. A shallow grating supporting a fundamental mode was fabricated by means of multibeam X-ray lithography and used as a test sample. The results indicated that we achieved 1-THz tunability of resonance in the frequency range from 1.51 to 2.54 THz on a single grating, which cannot be obtained with active tunable metamaterials. The Q factors of the resonances in the angular spectra were within the range of 19.4–37.6, while the resonances of the gap spectra had a Q factor lying within the 1.17–2.03 range. The gap adjustment capability of the setup shown in the work has great potential in modulation of the absorption efficiency, whereas the angular tuning and recording data from each point of the grating will enable real-time monitoring of changes in the surrounding medium. All of this is highly important for enhanced terahertz real-time absorption spectroscopy and imaging. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

16 pages, 5240 KB  
Article
Numerical Study of Optical Nonreciprocal Transmission via Liquid Metamaterial Nonlinearity
by Tiesheng Wu, Xin Cheng, Yujing Lan, Zhenyu Li, Changpeng Feng, Yingshuang Huang, Yingtao Tang, Hongyun Li and Yiwei Peng
Materials 2025, 18(10), 2241; https://doi.org/10.3390/ma18102241 - 12 May 2025
Cited by 1 | Viewed by 817
Abstract
This study proposes and numerically demonstrates a novel nonreciprocal electromagnetic metasurface by integrating a highly nonlinear liquid metamaterial (LMM) with a simple two-dimensional silicon dielectric grating. The transmission characteristics of the proposed structure were investigated using a full-vector finite-element method. We demonstrated that [...] Read more.
This study proposes and numerically demonstrates a novel nonreciprocal electromagnetic metasurface by integrating a highly nonlinear liquid metamaterial (LMM) with a simple two-dimensional silicon dielectric grating. The transmission characteristics of the proposed structure were investigated using a full-vector finite-element method. We demonstrated that the proposed subwavelength-thickness metasurface achieves a transmission coefficient contrast of up to 0.96 between forward and backward propagation. Highly nonlinear LMMs, when employed as nonreciprocal media, significantly lower the radiation power needed to induce a nonlinear response compared to natural materials. Furthermore, we numerically analyzed the effects of the grating’s structural parameters, LMM thickness, and packing fraction on transmittance. The proposed design holds promise for applications in optical isolators. Full article
(This article belongs to the Special Issue Advances in Metamaterials: Structure, Properties and Applications)
Show Figures

Figure 1

13 pages, 5193 KB  
Article
Deep-Subwavelength Composite Metamaterial Unit for Concurrent Ventilation and Broadband Acoustic Insulation
by Xiaodong Zhang, Jinhong He, Jing Nie, Yang Liu, Huiyong Yu, Qi Chen and Jianxing Yang
Materials 2025, 18(9), 2029; https://doi.org/10.3390/ma18092029 - 29 Apr 2025
Cited by 2 | Viewed by 1123
Abstract
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents [...] Read more.
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents a ventilated composite metamaterial unit (VCMU) co-integrating optimized labyrinth channels and the Helmholtz resonators within a single-plane architecture. This design achieves exceptional ventilation efficiency through a central flow channel while maintaining sub-λ/30 thickness (λ/31 at 860 Hz). Coupled transfer matrix modeling and finite-element simulations reveal that Fano–Helmholtz resonance mechanisms synergistically generate broadband transmission loss (STL) spanning 860–1634 Hz, with six STL peaks in the 860 and 1634 Hz bands (mean 18.4 dB). Experimental validation via impedance tube testing confirmed excellent agreement with theoretical and simulation results. The geometric scalability allows customizable acoustic bandgaps through parametric control. This work provides a promising solution for integrated ventilation and noise reduction, with potential applications in building ventilation systems, industrial pipelines, and other noise-sensitive environments. Full article
Show Figures

Graphical abstract

19 pages, 5431 KB  
Article
Polarization-Insensitive Silicon Grating Couplers via Subwavelength Metamaterials and Metaheuristic Optimization
by Jorge Parra
Photonics 2025, 12(5), 428; https://doi.org/10.3390/photonics12050428 - 29 Apr 2025
Cited by 1 | Viewed by 2033
Abstract
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains [...] Read more.
Silicon photonics is the leading platform in photonic integrated circuits (PICs), enabling dense integration and low-cost manufacturing for applications such as data communications, artificial intelligence, and quantum processing, to name a few. However, efficient and polarization-insensitive fiber-to-PIC coupling for multipoint wafer characterization remains a challenge due to the birefringence of silicon waveguides. Here, we address this issue by proposing polarization-insensitive grating couplers based on subwavelength dielectric metamaterials and metaheuristic optimization. Subwavelength periodic structures were engineered to act as uniaxial homogeneous linear (UHL) materials, enabling tailored anisotropy. On the other hand, particle swarm optimization (PSO) was employed to optimize the coupling efficiency, bandwidth, and polarization-dependent loss (PDL). Numerical simulations demonstrated that a pitch of 100 nm ensures UHL behavior while minimizing leaky waves. Optimized grating couplers achieved coupling efficiencies higher than −3 dB and a PDL of below 1 dB across the telecom C-band (1530–1565 nm). Three optimization strategies were explored, balancing efficiency, the bandwidth, and the PDL while considering the Pareto front. This work establishes a robust framework combining metamaterial engineering with computational optimization, paving the way for high-performance polarization-insensitive grating couplers with potential uses in advanced photonic applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

22 pages, 9562 KB  
Article
Design of a Polarization-Insensitive and Wide-Angle Triple-Band Metamaterial Absorber
by Shaoxin Zheng, Manna Gu, Guilan Feng, Mingfeng Zheng, Tianqi Zhao and Xufeng Jing
Photonics 2025, 12(4), 386; https://doi.org/10.3390/photonics12040386 - 16 Apr 2025
Cited by 1 | Viewed by 1185
Abstract
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two [...] Read more.
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two absorption frequencies are in the C-band, while the third absorption frequency is in the Ku-band, both of which are commonly used in satellite communication. The designed absorber consists of three differently sized regular hexagonal rings. To analyze the interaction mechanism between the electromagnetic wave and the absorber, we applied the theory of impedance matching and equivalent media to analyze the metamaterial properties of the absorber. In addition, the equivalent circuit model of the absorber has been analyzed. We then determined the existence of coupled electromagnetic resonances between the top and bottom surfaces by analyzing the distribution of the electric field, magnetic field, and surface currents on the absorber. By varying the polarization angle and incident angle of the incoming wave, we found that the absorber exhibits polarization insensitivity and wide-angle absorption characteristics. The TE and TM waves maintain more than 90% absorption efficiency up to incident angles of 50° and 60°, respectively. The absorber’s thickness is 1.07 mm, which is 0.0154 times the wavelength corresponding to the lowest resonant frequency (λ0), and the edge length of the subunit’s regular hexagon is 7.5 mm (0.108λ0), making the absorber sub-wavelength in scale while maintaining its compactness. The proposed absorber operates in the C-band and Ku-band, and can be applied in the field of satellite communications, achieving functions such as electromagnetic shielding and stealth. Full article
(This article belongs to the Special Issue Novel Developments in Optoelectronic Materials and Devices)
Show Figures

Figure 1

Back to TopTop