materials-logo

Journal Browser

Journal Browser

MXene-Based Electromagnetic Functional Devices

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Electronic Materials".

Deadline for manuscript submissions: 20 May 2026 | Viewed by 482

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Atomic Manufacturing, Beihang University, Beijing 100191, China
Interests: atomic-level manufacturing of low-dimensional materials and micro/nano-devices
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
State Key Laboratory of New Ceramic Materials, Tsinghua University, Beijing 100084, China
Interests: construction and characterization of absorbing materials and their metamaterials for extreme environments

Special Issue Information

Dear Colleagues,

The rapid development of MXenes—emerging two-dimensional transition metal carbides/nitrides—has opened unprecedented opportunities for next-generation electromagnetic (EM) functional devices. Their unique properties, including ultrahigh electrical conductivity, tunable surface chemistry, and mechanical flexibility, position MXenes as a transformative material for EM wave manipulation, energy conversion, and intelligent sensing.

This Special Issue aims to spotlight advances in MXene-based EM devices, addressing challenges and innovations in design, fabrication, and application.

Topics of interest include, but are not limited to, the following:

  • MXene synthesis and structural engineering for tailored EM responses.
  • EM shielding and absorption mechanisms, including performance optimization strategies.
  • MXene-integrated wireless and communication systems, antennas, and EM metamaterials.
  • Flexible and wearable EM devices for applications in healthcare, IoT, and smart environments.
  • Multifunctional composites combining EM performance with thermal/mechanical robustness.

We welcome contributions that explore the theoretical modeling, experimental validation, and interdisciplinary applications of MXene-based EM technologies. This Special Issue provides a timely platform for researchers to share insights and foster collaboration in this rapidly evolving field.

Dr. Zhifang Liu
Dr. Weijia Luo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • MXene synthesis
  • electromagnetic wave absorption
  • electromagnetic shielding
  • flexible and wearable devices
  • multifunctional composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2955 KB  
Article
Sound Insulation Mechanism and Multi-Field Regulation of MXene Dielectric-Tunable Subwavelength Piezoelectric Metamaterials
by Peizheng Cao, Xianwen Zhao, Cheng Mei and Xuefei Ma
Materials 2025, 18(23), 5440; https://doi.org/10.3390/ma18235440 - 2 Dec 2025
Viewed by 221
Abstract
To address the bottleneck of insufficient broadband sound insulation performance of traditional sound insulation materials at the subwavelength scale, this paper designs a composite subwavelength sound insulation unit (size: 20 mm × 20 mm × 5 mm) composed of Ti3C2 [...] Read more.
To address the bottleneck of insufficient broadband sound insulation performance of traditional sound insulation materials at the subwavelength scale, this paper designs a composite subwavelength sound insulation unit (size: 20 mm × 20 mm × 5 mm) composed of Ti3C2Tx MXene, and PZT-5H piezoelectric ceramics, and porous aluminum alloy. Based on the electromagnetic-structural-acoustic multi-physics field coupling theory, the regulation laws of external electric field intensity and effect of MXene layer number on sound insulation performance are systematically investigated via numerical simulation, and the sound insulation enhancement mechanism dominated by dielectric tunability is clarified. The results show that the dielectric constant of MXene increases monotonically with the external electric field intensity, and the optimal regulation sensitivity is achieved when the layer number N = 3; when the electric field intensity increases from 0 V to 500 V, the equivalent density of the system increases from 1.25 g/cm3 to 1.87 g/cm3, the acoustic impedance increases from 3.42 × 106 Pa·s/m3 to 5.13 × 106 Pa·s/m3, the average transmission loss TL in the 200–600 Hz frequency band is increased by 2 dB compared with the state without electric field, and the sound pressure on the transmission side is reduced by 3.56% at 400 Hz; the vibration displacement of PZT decreases from 0.0055 mm to nearly 0 mm with the increase in electric field, and the electric field energy density increases from 0 J/m3 to 7.47056 × 103 J/m3, verifying the core mechanism of converting electromagnetic energy into structural damping through dielectric loss. This study supplements parameter sensitivity analysis and literature benchmark comparison to compensate for the lack of experimental data, confirming the stability and rationality of the simulation results. The established cross-field coupling framework of “dielectric regulation–density optimization–impedance matching–sound insulation enhancement” fills the theoretical gap of the coupling mechanism of MXene in the field of subwavelength sound insulation, and provides new theoretical and technical pathways for the design of broadband active sound insulation materials in the 200–1000 Hz frequency range. Full article
(This article belongs to the Special Issue MXene-Based Electromagnetic Functional Devices)
Show Figures

Figure 1

Back to TopTop