Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = substrate to microorganism ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2211 KB  
Review
Changed Characteristics of Bacterial Cellulose Due to Its In Situ Biosynthesis as a Part of Composite Materials
by Elena Efremenko, Nikolay Stepanov, Aysel Aslanli, Olga Maslova, Ivan Chumachenko, Olga Senko and Amrik Bhattacharya
Polysaccharides 2025, 6(4), 114; https://doi.org/10.3390/polysaccharides6040114 - 14 Dec 2025
Viewed by 371
Abstract
In recent years, the sustained and even increasing interest in the development and application of novel composite materials based on the polysaccharide bacterial cellulose (BC) has been driven by the accumulation of experimental data and the emergence of analytical reviews that narratively summarize [...] Read more.
In recent years, the sustained and even increasing interest in the development and application of novel composite materials based on the polysaccharide bacterial cellulose (BC) has been driven by the accumulation of experimental data and the emergence of analytical reviews that narratively summarize these findings. This review presents a comparative and critical analysis of various approaches to the fabrication of BC-based composites. Among them, in situ biosynthesis is highlighted as the most promising strategy. In this approach, different additives are introduced directly into the culture medium of BC-producing microorganisms, enabling the formation of materials with different mechanical and physicochemical properties. Such a method also allows imparting to the composites a range of properties that BC itself does not possess, including antibacterial and enzymatic activity, as well as electrical conductivity. During the so-called “cell weaving” stage, performed by BC-producing microorganisms, diverse substances and microorganisms can be incorporated into the cultivation medium. By varying the concentrations of the introduced compounds, their ratios to the synthesized BC, and by employing different BC-producing strains and substrates, it becomes possible to regulate the characteristics of the resulting composites. Special attention is given to the role of various polysaccharides that are either introduced into the medium during BC biosynthesis or co-synthesized alongside BC within the same environment. Depending on the mode of incorporation of these additional polysaccharides, the resulting materials demonstrate variations in Young’s modulus and tensile strength. Nevertheless, they almost invariably exhibit a decreased degree of BC crystallinity within the composite structure and an enhanced water absorption capacity compared to the pure polymer. Full article
Show Figures

Graphical abstract

13 pages, 951 KB  
Article
Assessment of the Use of Coconut Water as a Cultivation Medium for Limnospira (Arthrospira) platensis (Gomont): Effects on Productivity and Phycocyanin Concentration
by Maria Rafaele Oliveira Bezerra da Silva, Bruna Emanuelle Gomes do Nascimento, Maria Eduarda Moura Mendes, Rayane Oliveira Bezerra da Silva, Silvana de Fátima Ferreira da Silva, Romero Marcos Pedrosa Brandão Costa and Daniela de Araújo Viana Marques
Phycology 2025, 5(4), 82; https://doi.org/10.3390/phycology5040082 - 1 Dec 2025
Viewed by 518
Abstract
Due to the scarcity of sustainable inputs for photosynthetic microorganisms’ biotechnology, the search for natural substrates such as coconut water has gained prominence. This by-product is a substrate rich in macro- and micronutrients, as well as endogenous phytohormones that support microbial growth. In [...] Read more.
Due to the scarcity of sustainable inputs for photosynthetic microorganisms’ biotechnology, the search for natural substrates such as coconut water has gained prominence. This by-product is a substrate rich in macro- and micronutrients, as well as endogenous phytohormones that support microbial growth. In this context, this study aimed to use it as an alternative cultivation medium for Limnospira platensis (Gomont), formerly known as Arthrospira platensis, a high-value cyanobacterium. We evaluated growth parameters, phycocyanin concentration, purity, and biomass yield cultivated in coconut water and in SAG1x medium, a modified Zarrouk medium. Over 35 days of cultivation, both media efficiently supported cyanobacterial growth. In coconut water, the specific growth rate was 0.305 d−1, the maximum growth rate was 0.629 d−1, and the productivity was 0.256 g L−1 d−1. In SAG1x medium, the values obtained were 0.240 d−1, 0.676 d−1, and 0.218 g L−1 d−1, respectively. Phycocyanin obtained from cultivation in SAG1x medium presented food-grade purity (OD620/OD280 ratio > 0.7), while in coconut water, it was 0.6. The pigment concentration and yield in SAG1x (19.1 mg/L and 34.3%, respectively) also slightly exceeded those obtained with coconut water (14.3 mg/L and 25.5%, respectively). Despite this, the data reinforce the potential of coconut water as a viable and economically competitive alternative to conventional media for L. platensis production. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Graphical abstract

22 pages, 6131 KB  
Article
Effects of Differential Tobacco Straw Incorporation on Functional Gene Profiles and Functional Groups of Soil Microorganisms
by Hui Zhang, Longjun Chen, Yanshuang Yu, Chenqiang Lin, Yu Fang and Xianbo Jia
Agriculture 2025, 15(22), 2384; https://doi.org/10.3390/agriculture15222384 - 19 Nov 2025
Viewed by 440
Abstract
Straw returning is a critical practice with profound strategic importance for sustainable agricultural development. However, within a comprehensive soil health evaluation framework, research analyzing the impact of tobacco straw returning on soil ecosystem health from the perspectives of microbial taxa and functional genes [...] Read more.
Straw returning is a critical practice with profound strategic importance for sustainable agricultural development. However, within a comprehensive soil health evaluation framework, research analyzing the impact of tobacco straw returning on soil ecosystem health from the perspectives of microbial taxa and functional genes remains insufficient. To investigate the effects of tobacco straw returning on virulence factor genes (VFGs), methane-cycling genes (MCGs), nitrogen-cycling genes (NCGs), carbohydrate-active enzyme genes (CAZyGs), antibiotic resistance genes (ARGs), and their host microorganisms in soil, this study collected soil samples from a long-term tobacco-rice rotation field with continuous tobacco straw incorporation in Shaowu City, Fujian Province. Metagenomic high-throughput sequencing was performed on the samples. The results demonstrated that long-term tobacco straw returning influenced the diversity of soil VFGs, MCGs, NCGs, CAZyGs, ARGs, and their host microorganisms, with richness significantly increasing compared to the CK treatment (p < 0.05). In the microbially mediated methane cycle, long-term tobacco straw returning resulted in a significant decrease in the abundance of the key methanogenesis gene mttB and the methanogenic archaeon Methanosarcina, along with a reduced mtaB/pmoA functional gene abundance ratio compared to CK. This suggests enhanced CH4 oxidation in the tobacco-rice rotation field under straw returning. Notably, the abundance of plant pathogens increased significantly under tobacco straw returning. Furthermore, a significantly higher norB/nosZ functional gene abundance ratio was observed, indicating a reduced capacity of soil microorganisms to convert N2O in the tobacco-rice rotation field under straw amendment. Based on the observation that the full-rate tobacco straw returning treatment (JT2) resulted in the lowest abundances of functional genes prkC, stkP, mttB, and the highest abundances of nirK, norB, malZ, and bglX, it can be concluded that shifts in soil physicochemical properties and energy substrates drove a transition in microbial metabolic strategies. This transition is characterized by a decreased pathogenic potential of soil bacteria, alongside an enhanced potential for microbial denitrification and cellulose degradation. Non-parametric analysis of matrix correlations revealed that soil organic carbon, dissolved organic carbon, alkaline-hydrolyzable nitrogen, available phosphorus, and available potassium were significantly correlated with the composition of soil functional groups (p < 0.05). In conclusion, long-term tobacco straw returning may increase the risk of soil-borne diseases in tobacco-rice rotation systems while potentially elevating N2O and reducing CH4 greenhouse gas emission rates. Analysis of functional gene abundance changes identified the full-rate tobacco straw returning treatment as the most effective among all treatments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 725 KB  
Article
Effects of Low Benzoic Acid Concentrations on Growth and Substrate Utilization in Black Soldier Fly Larvae
by Thor Brødsted Christiansen and Niels Thomas Eriksen
Insects 2025, 16(11), 1155; https://doi.org/10.3390/insects16111155 - 12 Nov 2025
Viewed by 607
Abstract
Black soldier fly (BSF) larvae are among the most widely mass-reared insects and develop in moist feed substrates where larvae and microorganisms jointly degrade organic matter but also compete for nutrients. Microbial activity introduces variability and often decreases substrate conversion efficiency (SCE), defined [...] Read more.
Black soldier fly (BSF) larvae are among the most widely mass-reared insects and develop in moist feed substrates where larvae and microorganisms jointly degrade organic matter but also compete for nutrients. Microbial activity introduces variability and often decreases substrate conversion efficiency (SCE), defined as the ratio of larval biomass produced to substrate consumed. Supplementing feed substrates with antimicrobial agents may suppress microbial activities and thereby enhance the SCE. In this study, BSF larvae were reared on chicken feed supplemented with 0–0.2% benzoic acid at either initial pH = 7.6 or pH ≤ 4, under varying larval densities. Larval weights and CO2 production from both larvae and substrates were measured periodically. At low pH, benzoic acid lowered the CO2 evolution from the feed substrate while the substrate reduction rate (SRR) diminished dose dependently, indicating suppressed microbial activity. Despite the lower SRR, larval biomass yield remained unchanged, resulting in a dose-dependent increase in SCE. The effect was most pronounced in feed-sufficient larvae. Benzoic acid had no effect on larval performances in terms of maximal larval weight, specific growth rate, or mortality. Their overall net growth efficiency (larval weight gain relative to assimilated substrate) even increased dose-dependently. However, the low pH needed for benzoic acid to be active did have minor negative effects on larval performances. These findings demonstrate that microbial activity influences SCE during productions of BSF larvae and that substrate conversion efficiency can be manipulated and potentially optimized without harming the larvae through the inclusion of antimicrobial agents such as benzoic acid in their feed substrates. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

16 pages, 1640 KB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Cited by 1 | Viewed by 1922
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

28 pages, 5525 KB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 1654
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

17 pages, 3122 KB  
Article
Carbon:Nitrogen Ratio Affects Differentially the Poly-β-hydroxybutyrate Synthesis in Bacillus thuringiensis Isolates from México
by Marco Tulio Romero Sanchez, Shirlley Elizabeth Martínez Tolibia, Laura Jeannette García Barrera, Pavel Sierra Martínez, Jorge Noel Gracida Rodríguez, Valentín López Gayou and Víctor Eric López y López
Polymers 2025, 17(14), 1978; https://doi.org/10.3390/polym17141978 - 18 Jul 2025
Cited by 1 | Viewed by 960
Abstract
Poly-β-hydroxybutyrate (P(3HB)) represents a suitable alternative for plastic replacement, since it consists of intracellularly produced polyesters by different microorganisms including Bacillus thuringiensis (Bt). P(3HB) conserves most of the properties of petroleum-derived plastics; however, some drawbacks are the production costs, processing times, and bioseparation [...] Read more.
Poly-β-hydroxybutyrate (P(3HB)) represents a suitable alternative for plastic replacement, since it consists of intracellularly produced polyesters by different microorganisms including Bacillus thuringiensis (Bt). P(3HB) conserves most of the properties of petroleum-derived plastics; however, some drawbacks are the production costs, processing times, and bioseparation techniques, limiting its extended use. Bt has production advantages over other microorganisms, such as those growing in conventional or non-conventional substrates, with short periods of fermentation, which make it an interesting candidate to develop optimized production processes. In this work, we identified P(3HB) producers from 72 isolates of Bt, from which we selected four potential candidates. These isolates were cultivated under different carbon:nitrogen (C:N) ratios of 3, 7, 30, and 50 in a complex medium named (CM). Here, the best conditions for growth in Bt isolates were C:N 3 and 7 ratios, whereas for P(3HB) production they were C:N 7 and 30. Following this, an experiment in a bioreactor was conducted with isolate 81C with the selected C:N ratio of 30, where the produced P(3HB) achieved a maximum at 10 h. Fourier transform infrared spectroscopy (FTIR)was used to characterize flask and bioreactor cultures. It must be mentioned that although a higher concentration of medium was used, this did not improve P(3HB) accumulation. This research demonstrates that C:N ratios can differentially influence growth and P(3HB) accumulation in Bt isolates, which can serve as a reference to develop P(3HB) production processes using Bt as a microbial production platform. Full article
Show Figures

Figure 1

8 pages, 830 KB  
Communication
Differential N2O-Producing Activity of Soil Fungi Across Agricultural Systems: High in Vegetable Fields and Vineyards, Low in Paddies
by Shutan Ma, Jintao Zhang, Ting Wu, Yuqing Miao, Hua Fang, Haitao Wang, Huayuan Niu and Lan Ma
Nitrogen 2025, 6(3), 57; https://doi.org/10.3390/nitrogen6030057 - 11 Jul 2025
Viewed by 591
Abstract
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, [...] Read more.
The substrate-induced respiration-inhibition (SIRIN) method has been used to estimate fungi-derived N2O emissions, but its contribution to soil N2O emissions remains unclear. There is a need to quantify the fungal fraction of N2O production more precisely. Here, using isotopocule analysis, we assessed the relative contribution of fungi to soil N2O production potential under denitrifying conditions, where key limiting factors of denitrification (soil moisture, soil NO3, and electron donor) were removed. The result showed that the ratio of fungi-derived N2O emissions (RF) was 0.83~4.28% in paddy soils, 13.80~23.21% in vineyard soils, and 15.34~65.94% in vegetable field soils, respectively. This indicated that the bacteria were the dominator of soil N2O production potential in most cases, but fungal pathways could be significant in vegetable field soils. The experiment with bactericide addition showed that inhibitors could affect non-target microorganisms in the SIRIN method. Our further analyses suggest that it is worth to explore the effect of soil organic carbon and microbial synergies on fungi-derived N2O emissions. Full article
Show Figures

Figure 1

21 pages, 3177 KB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 932
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 3738 KB  
Article
Field Experiments of Mineral Deposition by Cathodic Polarization as a Sustainable Management Strategy for the Reuse of Marine Steel Structures
by Tiziano Bellezze, Giuseppina Colaleo, Pasquale Contestabile, Pietro Forcellese, Simone Ranieri, Nicola Simoncini, Gianni Barucca, Cinzia Corinaldesi, Fabio Conversano, Oriano Francescangeli, Luigi Montalto, Michela Pisani, Simona Sabbatini, Francesco Vita, Diego Vicinanza and Antonio Dell’Anno
Sustainability 2025, 17(13), 5720; https://doi.org/10.3390/su17135720 - 21 Jun 2025
Viewed by 3260
Abstract
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to [...] Read more.
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to both protect steel from corrosion in the absence of a cathodic current, thus operating as an inorganic coating, and provide an effective substrate for colonization by microorganisms still needs to be fully explained. To this end, two identical steel structure prototypes were installed at a depth of 20 m: one was submitted to cathodic polarization, while the other was left under free corrosion for comparison. After 6 months, the current supplied to the electrified structure was interrupted. A multidisciplinary approach was used to analyze the deposits on steel round bars installed in the prototypes over time, in the presence and in the absence of a cathodic current. Different investigation techniques were employed to provide the following information on the deposit: the composition in terms of elements, compounds and macro-biofouling; the morphology; the thickness and the degree of protection estimated by electrochemical impedance spectroscopy (EIS). The results showed that under cathodic polarization, the thickness of the deposit increased to 2.5 mm and then remained almost constant after the current was interrupted. Conversely, the surface impedance decreased from 3 kΩ cm2 to about 1.5 kΩ cm2 at the same time, and the aragonite–brucite ratio also decreased. This indicates a deterioration in the protection performance and soundness of the deposit, respectively. Considering the trends in thickness and impedance together, it can be concluded that the preformed mineral deposit does not undergo generalized deterioration after current interruption, which would result in a reduction in thickness, but rather localized degradation. This phenomenon was attributed to the burrowing action of marine organisms, which created porosities and/or capillary pathways through the deposit. Therefore, the corrosion protection offered by the mineral deposit without a cathodic current is insufficient because it loses its protective properties. However, the necessary current can be quite limited in the presence of the deposit, which in any case provides a suitable substrate for sustaining the colonization and growth of sessile marine organisms, thus promoting biodiversity. Full article
Show Figures

Figure 1

13 pages, 1077 KB  
Article
Synergistic Effect of Microorganisms and Enzymes on Nutritional Value of Corn Stover and Wheat Straw
by Binglong Chen, Jiancheng Liu, Mengjian Liu, Huiling Zhang, Xuanyue Li, Congcong Tian and Yong Chen
Fermentation 2025, 11(4), 210; https://doi.org/10.3390/fermentation11040210 - 10 Apr 2025
Cited by 5 | Viewed by 1673
Abstract
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat [...] Read more.
In this study, Candida utilis, Lactobacillus plantarum, and non-starch polysaccharide enzymes (cellulase, laccase, β-glucanase, xylanase, and mannanase) were employed to examine the effects of various microorganism–enzyme combinations on the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Furthermore, the synergistic effects of these treatments were assessed through the use of in vitro rumen fermentation. The results showed that the microorganism–enzyme combinations significantly increased the crude protein content (p < 0.05), while reducing the acid detergent fiber and neutral detergent fiber levels (p < 0.05) in both substrates. The fermentation broth pH decreased (p = 0.06 for corn stover; p < 0.05 for wheat straw) as a result of the treatments, with a significant increase in the lactate concentration (p < 0.05). The reducing sugar levels varied across the treatments (p < 0.05). Mycotoxin analysis revealed trace amounts of zearalenone, well below the Chinese feed hygiene standard. Scanning electron microscopy showed structural modifications, including fiber breakage and surface wrinkling, in the treated substrates. In vitro rumen fermentation demonstrated significant changes in the NH3-N production and volatile fatty acid profiles (p < 0.05). In conclusion, the addition of different microorganism–enzyme combinations can effectively improve the nutritional composition, fiber structure, and fermentation quality of corn stover and wheat straw. Among the treatments, the T3 group (25% each of C. utilis, L. plantarum, cellulase, and laccase, with a total addition ratio of 0.3% w/w) exhibited the most pronounced improvement in nutritional value for both corn stover and wheat straw. These findings suggest that microorganism–enzyme combinations effectively enhance the nutritional and fermentative quality of agricultural residues. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

17 pages, 4116 KB  
Article
Influence of Different Substrate and Microorganism Concentrations on Butyric Acid-Derived Biohydrogen Production
by Gizem Karakaya and Serpil Özmihçi
Processes 2025, 13(4), 1068; https://doi.org/10.3390/pr13041068 - 3 Apr 2025
Cited by 1 | Viewed by 1143
Abstract
This study examines the effect of inoculum (0.5–3 g/L) and substrate concentration (40–200 g/L) on butyric acid and biohydrogen production by batch dark fermentation at 37 °C. Clostridium pasteurianum DSM525 and Cheese Whey Powder (CWP) were used in the experiments. The results showed [...] Read more.
This study examines the effect of inoculum (0.5–3 g/L) and substrate concentration (40–200 g/L) on butyric acid and biohydrogen production by batch dark fermentation at 37 °C. Clostridium pasteurianum DSM525 and Cheese Whey Powder (CWP) were used in the experiments. The results showed that biohydrogen and butyric acid production increased with a 1.5 g/L microorganism concentration and 80 g/L CWP. A Cumulative Hydrogen Formation (CHF) of 458 mL, butyric acid (BA) of 1.523 g/L, butyric acid to acetic acid (BA/AA) ratio of 3.07 g BA/g AA, hydrogen production yield (YH2/TS) of 1278.63 mL H2/g TS, and butyric acid production yield (YBA/TS) of 0.37 g BA/g TS at 1.5 g/L inoculum concentration was achieved. The hydrogen (HPR) and butyric acid production rates (BAPR) were similarly the highest at 1.5 g/L. The maximum specific hydrogen (SHPR) and butyric acid rates (SBAPR) were obtained at 2 g/L and 1 g/L organism concentrations, respectively. In variations of substrate concentrations, 651.1 mL of CHF, 1.1 g/L of BA, 3.23 g BA/g AA of BA/AA ratio, 576 mL H2/g TS of YH2/TS, and 27.4 g BA/g TS of YBA/TS were accomplished. HPR and SHPR were the highest at 80 g/L CWP due to no substrate inhibition. The BAPR was at its maximum at 100 g/L, BA accumulation was faster, and the SBAPR was at maximum 40 g/L CWP. The results showed a good adaptation of C. pasteurianum to the butyric acid-derived hydrogen production pathway. This strategy could build a renewable and sustainable process with dual valuable outputs. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

20 pages, 3420 KB  
Article
The Effects of Chemically Modified Biochar on Biomethane Production from Glucose and Sugar Beet Pulp
by Julia K. Nowak, Joanna Rosik, Kacper Szadziński, Marvin T. Valentin, Katarzyna E. Kosiorowska, Andrzej Białowiec, Sylwia Stegenta-Dąbrowska and Kacper Świechowski
Materials 2025, 18(7), 1608; https://doi.org/10.3390/ma18071608 - 2 Apr 2025
Cited by 1 | Viewed by 1152
Abstract
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 [...] Read more.
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 acid and KOH base resulted in a change in biochar surface area properties and its functional group’s abundance and a decrease in biochar mass yield production. The anaerobic digestion process was performed in batch reactors kept at 37 °C for 20 days. The substrate-to-inoculum ratio by volatile solids was 0.5, while the mass of added biochar corresponded to 16 g·L−1. The results showed that neither the addition of biochar nor the chemically modified biochar had any positive effects on biomethane production or its kinetics in the case of both substrates. The highest methane production was found in reactors without biochar added, respectively, 385 and 324 mL·gVS−1 for glucose and sugar beet pulp. It is hypothesized that the anaerobic digestion process was performed under optimal conditions, and therefore, biochar could not enhance methane production. Additionally, biochar may have adsorbed some volatile fatty acids, making them less available to anaerobic microorganisms. Full article
Show Figures

Graphical abstract

23 pages, 581 KB  
Article
Screening of Non-Conventional Yeasts on Low-Cost Carbon Sources and Valorization of Mizithra Secondary Cheese Whey for Metabolite Production
by Gabriel Vasilakis, Rezart Tefa, Antonios Georgoulakis, Dimitris Karayannis, Ioannis Politis and Seraphim Papanikolaou
BioTech 2025, 14(2), 24; https://doi.org/10.3390/biotech14020024 - 1 Apr 2025
Cited by 2 | Viewed by 1230
Abstract
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, [...] Read more.
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, Cutaneotrichosporon curvatus NRRL YB-775 and Papiliotrema laurentii NRRL Y-3594, were evaluated for their capability to grow on semi-defined lactose-, glycerol-, or glucose-based substrates and produce value-added metabolites. Three different nitrogen-to-carbon ratios (i.e., 20, 80, 160 mol/mol) were tested in shake-flask batch experiments. Pretreated secondary cheese whey (SCW) was used for fed-batch bioreactor cultivation of P. laurentii NRRL Y-3594, under nitrogen limitation. Based on the screening results, both strains can grow on low-cost substrates, yielding high concentrations of microbial biomass (>20 g/L) under nitrogen-excess conditions, with polysaccharides comprising the predominant component (>40%, w/w, of dry biomass). Glucose- and glycerol-based cultures of C. curvatus promote the secretion of mannitol (13.0 g/L in the case of glucose, under nitrogen-limited conditions). The lipids (maximum 2.2 g/L) produced by both strains were rich in oleic acid (≥40%, w/w) and could potentially be utilized to produce second-generation biodiesel. SCW was nutritionally sufficient to grow P. laurentii strain, resulting in exopolysaccharides secretion (25.6 g/L), along with dry biomass (37.9 g/L) and lipid (4.6 g/L) production. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

15 pages, 6934 KB  
Article
Alleviation of Organic Load Inhibition and Enhancement of Caproate Biosynthesis via Fe3O4 Addition in Anaerobic Fermentation of Food Waste
by Yue Wang, Yan Zhou, Pengyao Wang, Bo Wu, Xin Li, Hongbo Liu, Dara S. M. Ghasimi and Xuedong Zhang
Fermentation 2025, 11(4), 160; https://doi.org/10.3390/fermentation11040160 - 21 Mar 2025
Cited by 1 | Viewed by 1567
Abstract
The conversion of food waste into caproate via anaerobic chain elongation has gained increasing attention. However, limitations such as reliance on external electron donors, low carbon conversion efficiency under high loads, and unclear microbial mechanisms hinder its application. Fe3O4 reportedly [...] Read more.
The conversion of food waste into caproate via anaerobic chain elongation has gained increasing attention. However, limitations such as reliance on external electron donors, low carbon conversion efficiency under high loads, and unclear microbial mechanisms hinder its application. Fe3O4 reportedly can act as an electron shuttle and mitigate product inhibition during anaerobic digestion of sludge. Thus, Fe3O4 addition could overcome the challenges from high loads under certain conditions. In this study, the experiments were conducted under batch and semi-continuous conditions. This study investigated the effects of organic loads on the hydrolysis, acidification, and chain elongation of fermentation. Furthermore, the influences of Fe3O4 on caproate production and microbial profile under varying substrate-to-inoculation ratios and dosages were examined. The key results harvested from the semi-continuous trial indicate that high organic loads severely inhibited caproate production. And in batch tests, at an F/M ratio of 1:2, increasing Fe3O4 dosage evidently enhanced caproate production by promoting lactate conversion to butyrate and carbon chain elongation. At an F/M ratio of 6:1, maximum caproate yield reached 0.45 g COD/g COD at Fe3O4 of 2.0 g/L. High organic load reduced the abundance of butyrate-producing bacteria (Latilactobacillus and Stenotrophomonas). Nevertheless, the addition of Fe3O4 increased the abundance of butyrate-producing and caproate-producing bacteria (Caproiciproducens). In conclusion, Fe3O4 at an optimal dosage evidently enhanced caproate production under high organic loads by stimulating microbial electron transport and enriching relevant microorganisms. Full article
Show Figures

Figure 1

Back to TopTop