Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,256)

Search Parameters:
Keywords = structure plane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2925 KiB  
Article
Study on Modifying Mechanical Properties and Electronic Structure of Aerospace Material γ-TiAl Alloy
by Mingji Fang, Chunhong Zhang and Wanjun Yan
Crystals 2025, 15(8), 726; https://doi.org/10.3390/cryst15080726 (registering DOI) - 16 Aug 2025
Abstract
γ-TiAl alloy is a lightweight high-temperature structural material, featuring low density, excellent high-temperature strength, creep resistance, etc. It is a key material in the aerospace field. However, the essential defects of γ-TiAl alloys, such as poor room-temperature plasticity and low fracture toughness, have [...] Read more.
γ-TiAl alloy is a lightweight high-temperature structural material, featuring low density, excellent high-temperature strength, creep resistance, etc. It is a key material in the aerospace field. However, the essential defects of γ-TiAl alloys, such as poor room-temperature plasticity and low fracture toughness, have become the biggest obstacles to their practical application. Therefore, in this paper, the physical mechanism of modification of the mechanical properties and electronic structure of γ-TiAl alloys by doping with Sc, V, and Si was investigated by using the first-principles pseudopotential plane wave method. This paper specifically calculates the geometric structure, phonon spectrum, mechanical properties, electron density of states, Mulliken population analysis, and differential charge density of γ-TiAl alloys before and after doping. The results show that after doping, the structural parameters of γ-TiAl have changed significantly, and the doping models all have thermodynamic stability. The B, G, and E values of the doped system are, respectively, within the range of 94–112, 57–69, and 143–170 GPa, indicating that the material’s ability to resist compressive deformation is weakened. Moreover, the B/G values change from 1.5287 to 1.6350, 1.7279, and 1.6327, respectively, and a transformation from brittleness to plasticity occurs. However, it is still lower than the critical value of 1.75, indicating that the doped γ-TiAl alloy material retains its high-strength characteristics while also exhibiting a certain degree of toughness. The total elastic anisotropy index of the doped system increases, and the degree of anisotropy of mechanical behavior significantly increases. The total electron density of states diagram indicates that γ-TiAl alloys possess conductive properties. The covalent interactions between doped atoms and adjacent atoms have been weakened to varying degrees, which is manifested as a significant change in the charge distribution around each atom. The above results indicate that the doping of Sc, V, and Si can effectively tune the mechanical properties and electronic structure of γ-TiAl alloys. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

23 pages, 13423 KiB  
Article
A Lightweight LiDAR–Visual Odometry Based on Centroid Distance in a Similar Indoor Environment
by Zongkun Zhou, Weiping Jiang, Chi Guo, Yibo Liu and Xingyu Zhou
Remote Sens. 2025, 17(16), 2850; https://doi.org/10.3390/rs17162850 (registering DOI) - 16 Aug 2025
Abstract
Simultaneous Localization and Mapping (SLAM) is a critical technology for robot intelligence. Compared to cameras, Light Detection and Ranging (LiDAR) sensors achieve higher accuracy and stability in indoor environments. However, LiDAR can only capture the geometric structure of the environment, and LiDAR-based SLAM [...] Read more.
Simultaneous Localization and Mapping (SLAM) is a critical technology for robot intelligence. Compared to cameras, Light Detection and Ranging (LiDAR) sensors achieve higher accuracy and stability in indoor environments. However, LiDAR can only capture the geometric structure of the environment, and LiDAR-based SLAM often fails in scenarios with insufficient geometric features or highly similar structures. Furthermore, low-cost mechanical LiDARs, constrained by sparse point cloud density, are particularly prone to odometry drift along the Z-axis, especially in environments such as tunnels or long corridors. To address the localization issues in such scenarios, we propose a forward-enhanced SLAM algorithm. Utilizing a 16-line LiDAR and a monocular camera, we construct a dense colored point cloud input and apply an efficient multi-modal feature extraction algorithm based on centroid distance to extract a set of feature points with significant geometric and color features. These points are then optimized in the back end based on constraints from points, lines, and planes. We compare our method with several classic SLAM algorithms in terms of feature extraction, localization, and elevation constraint. Experimental results demonstrate that our method achieves high-precision real-time operation and exhibits excellent adaptability to indoor environments with similar structures. Full article
Show Figures

Figure 1

21 pages, 1756 KiB  
Article
Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine
by Xiangqian Zhu, Siming Yang, Zhiqiang Yang, Chang Cai, Lei Zhang, Qing’an Li and Jin-Hwan Choi
Energies 2025, 18(16), 4362; https://doi.org/10.3390/en18164362 - 15 Aug 2025
Abstract
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and [...] Read more.
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and aerodynamic center along the blade span and enables efficient computation of 3D nonlinear deformation using 1D beam elements. Material and structural function equations are established based on actual 2D airfoil sections, and the chord vector is obtained from leading and trailing edge coordinates to calculate the angle of attack and aerodynamic loads. Torsional stiffness data defined at the shear center is corrected to the mass center using the axis shift theorem, ensuring a unified principal axis model. The proposed model is employed to simulate the dynamic behavior of wind turbine blades under both shutdown and operating conditions, and the results are compared to those obtained from the commercial software Bladed. Under shutdown conditions, the blade tip deformation error in the y-direction remains within 5% when subjected only to gravity, and within 8% when wind loads are applied perpendicular to the rotor plane. Under operating conditions, although simplified aerodynamic calculations, structural nonlinearity, and material property deviations introduce greater discrepancies, the x-direction deformation error remains within 15% across different wind speeds. These results confirm that the model maintains reasonable accuracy in capturing blade deformation characteristics and can provide useful support for early-stage dynamic analysis. Full article
15 pages, 8766 KiB  
Article
Strong-Field Interaction of Molecules with Linearly Polarized Light: Pathway to Circularly Polarized Harmonic Generation
by Shushan Zhou, Hao Wang, Nan Xu, Dan Wu and Muhong Hu
Symmetry 2025, 17(8), 1329; https://doi.org/10.3390/sym17081329 - 15 Aug 2025
Abstract
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered [...] Read more.
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered targets, limiting their experimental feasibility. In this study, we present a streamlined and effective approach to producing circularly polarized attosecond pulses by employing a linearly polarized laser field in conjunction with a stereosymmetric linear molecule, 1-butyne (C4H6). The generation of high-order harmonics by this molecular system reveals a distinct plateau in the perpendicular polarization component, which facilitates the generation of isolated attosecond pulses with circular polarization. Through a detailed analysis of the time-dependent charge density dynamics across atomic sites, we identify the atoms primarily responsible for the emission of circularly polarized harmonics in the plane orthogonal to the driving field. Moreover, we explore the role of multi-orbital contributions in shaping the polarization properties of the harmonic spectra. Our findings underscore the importance of molecular symmetry and the electronic structure in tailoring the harmonic polarization, and they demonstrate a viable pathway for using circularly polarized attosecond pulses to probe molecular chirality. This method offers a balance between simplicity and performance, opening new avenues for practical applications in chiral recognition and ultrafast stereochemical analysis. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

34 pages, 15138 KiB  
Article
Equivalent Porous Medium (EPM) Modeling of Karst Features for Slope Stability Analysis in Karst-Prone Weak Rock Masses
by Joan Atieno Onyango, Takashi Sasaoka, Hideki Shimada, Akihiro Hamanaka and Dyson Moses
Modelling 2025, 6(3), 81; https://doi.org/10.3390/modelling6030081 - 14 Aug 2025
Abstract
In weak carbonate rock masses, small-sized karst features ranging from greater than 2 cm to over 1 m in diameter can significantly compromise slope stability, yet they are often overlooked in traditional geotechnical models. This study employs the equivalent porous medium (EPM) approach [...] Read more.
In weak carbonate rock masses, small-sized karst features ranging from greater than 2 cm to over 1 m in diameter can significantly compromise slope stability, yet they are often overlooked in traditional geotechnical models. This study employs the equivalent porous medium (EPM) approach to incorporate these small-sized voids into two-dimensional finite element slope stability analysis using RS2 software (Version 11.022). By treating the matrix of karst hollows as a porous continuum, we simulate the mechanical and hydraulic influence of their presence on pit slope performance. Results show that even small voids substantially reduce the factor of safety, with destabilization intensifying as void density and pore fluid infiltration increase. Distinct failure mechanisms—including circular sliding, localized subsidence due to cavity collapse, and rockfalls from intersecting shear planes—emerge from the simulations. The stress trajectories and yield elements highlight how minor voids influence the distribution and initiation of shear and tensile failures. These findings reveal that karst features previously considered negligible can be critical structural discontinuities that trigger failure. The EPM framework thus provides a computationally efficient and mechanistically sound means of modelling the cumulative impact of small-sized karst features, bridging a significant gap in geotechnical design for karst-prone weak rock slopes. Full article
Show Figures

Figure 1

22 pages, 2608 KiB  
Article
Fast Buckling Analysis of Stiffened Composite Structures for Preliminary Aerospace Design
by Dimitrios G. Stamatelos and George N. Labeas
Aerospace 2025, 12(8), 726; https://doi.org/10.3390/aerospace12080726 - 14 Aug 2025
Abstract
Predicting buckling in large-scale composite structures is hindered by the need for highly detailed Finite Element (FE) models, which are computationally expensive and impractical for early-stage design iterations. This study introduces a macromodelling buckling framework that reduces those models to plate-level size without [...] Read more.
Predicting buckling in large-scale composite structures is hindered by the need for highly detailed Finite Element (FE) models, which are computationally expensive and impractical for early-stage design iterations. This study introduces a macromodelling buckling framework that reduces those models to plate-level size without sacrificing accuracy. An equivalent bending stiffness matrix is derived from strain–energy equivalence, rigorously retaining orthotropic in-plane terms, bending–extensional coupling, and—crucially—the eccentricity of compressive loads about an unsymmetrically stiffened mid-plane, effects overlooked by conventional Parallel-Axis smearing. These stiffness terms contribute to closed-form analytical solutions for homogeneous orthotropic plates, providing millisecond-level evaluations ideal for gradient-based design optimisation. The method is benchmarked against detailed FE simulations of panels with three to ten stringers under longitudinal and transverse compression, showing less than 5% deviation in critical load prediction. Its utility is demonstrated in the sizing optimisation of the upper cover of a scaled Airbus A330 composite wing-box, where the proposed model explores the design space in minutes on a standard workstation, orders of magnitude faster than full FE analyses. By combining analytical plate theory, enhanced smearing, and rapid optimisation capability, the framework provides an accurate, ultra-fast tool for buckling analysis and the preliminary design of large-scale stiffened composite structures. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

54 pages, 3867 KiB  
Review
Review of the Influence of the Interaction Between In-Plane and Out-of-Plane Behaviors on the Seismic Response of Non-Framed Unreinforced Masonry Walls
by Amirhossein Ghezelbash, Jan G. Rots and Francesco Messali
Buildings 2025, 15(16), 2874; https://doi.org/10.3390/buildings15162874 - 14 Aug 2025
Abstract
This study reviews existing research on the effects of the interaction between in-plane (IP) and out-of-plane (OOP) behaviors on the seismic response of non-framed unreinforced masonry (URM) structures. During earthquakes, masonry buildings exhibit complex behaviors. First, walls may experience simultaneous IP and OOP [...] Read more.
This study reviews existing research on the effects of the interaction between in-plane (IP) and out-of-plane (OOP) behaviors on the seismic response of non-framed unreinforced masonry (URM) structures. During earthquakes, masonry buildings exhibit complex behaviors. First, walls may experience simultaneous IP and OOP actions, or pre-existing IP and OOP damage, deformation, or loads that can alter their unidirectional IP or OOP seismic response. Second, the IP and OOP action of one wall can affect the behavior of its intersecting walls. However, the effects of these behaviors, referred to as “direct IP-OOP interactions” and “Flange effects”, respectively, are often disregarded in design and assessment provisions. To address this gap, this study explores findings from experimental and numerical research conducted at the wall level currently available in the literature, identifying the nature of these interaction effects and the key parameters that affect their extent. The available body of work includes only a few experimental studies on interaction effects, whereas numerical investigations are more extensive. However, most numerical studies focus on how OOP pre-damage/deformation influences the IP behaviors (OOP/IP interactions) and the role of flanges in IP response (F/IP interactions), leaving significant gaps in understanding the effects of IP pre-damage/deformation on the OOP response (IP/OOP interactions) and the OOP response in the presence of flanges (F/OOP interactions). Among the parameters studied, boundary conditions, wall height-to-length aspect ratio, and vertical overburden are found to have the most significant influence on interaction effects because of their relevance for the IP and OOP failure mechanisms. Other parameters, such as the restriction of top uplift, the presence of openings, or changes in slenderness ratio, are not comprehensively studied, and the available data are insufficient for definitive conclusions. Methodologies available in the literature for extrapolating the findings observed at the wall level to building-level analyses are reviewed. The current predictive equations primarily address the effects of OOP pre-load and Flange effects on IP response. Furthermore, only a few macro-element models are proposed for cost-effective, large-scale building simulations. To bridge these gaps, future research must expand experimental investigations, develop more comprehensive design and assessment equations, and refine numerical modeling techniques for building-level applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 8810 KiB  
Article
Natural Fiber TRM for Integrated Upgrading/Retrofitting
by Arnas Majumder, Monica Valdes, Andrea Frattolillo, Enzo Martinelli and Flavio Stochino
Buildings 2025, 15(16), 2852; https://doi.org/10.3390/buildings15162852 - 12 Aug 2025
Viewed by 126
Abstract
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and [...] Read more.
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and structures is not new, but in the last fifty years, only man-made fibers have predominantly occupied the market for structural retrofitting or upgrading. This research investigated the potential of utilizing natural fibers, particularly jute fiber products, to enhance masonry’s thermal and structural characteristics. The study meticulously investigated the utilization of materials such as jute net (with a mesh size of 2.5 cm × 1.25 cm), jute fiber diatons, and jute fiber composite mortar (with 1% jute fiber with respect to the dry mortar mass) in the context of masonry upgrading. The research evaluated the structural and thermal performance of these upgraded walls. Notably, the implementation of natural fiber textile-reinforced mortar (NFTRM) resulted in an astounding increase of over 500% in the load-bearing capacity of the walls, while simultaneously enhancing insulation by more than 36%. Furthermore, the study involved a meticulous analysis of crack patterns during in-plane cyclic testing utilizing the advanced Digital Image Correlation (DIC) tool. The upgraded/retrofitted wall exhibited a maximum crack width of approximately 7.84 mm, primarily along the diagonal region. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

24 pages, 4930 KiB  
Article
Traces of Cadmium Modulate the Morphology of Silver Crystals Produced from the Controlled Cooling of a Primary Lead Melt
by Steven King, Alberto Striolo, Paul F. Wilson, Geoff West, Mark A. Williams and Michael Piller
Minerals 2025, 15(8), 853; https://doi.org/10.3390/min15080853 - 12 Aug 2025
Viewed by 175
Abstract
This work probes the possibility of controlling the morphology of silver crystals through inoculation of trace-level metallic species, building on an industrial-scale cooling process. The obtained crystals are analyzed via X-ray tomography (XRT), dynamic picture analysis, and scanning electron microscopy (SEM). The results [...] Read more.
This work probes the possibility of controlling the morphology of silver crystals through inoculation of trace-level metallic species, building on an industrial-scale cooling process. The obtained crystals are analyzed via X-ray tomography (XRT), dynamic picture analysis, and scanning electron microscopy (SEM). The results reveal assemblages composed of octahedral crystals and triangular platelets. X-ray tomography yields pore size distributions that correlate with Ag% composition. Out of several trace metals tested, cadmium was found to yield a greater number of octahedral morphologies with pronounced twinning, contributing to a fibrous structure. This behavior is consistent with the energetic preference of cadmium atoms to integrate on Ag (111) planes and the limitation of twinning to the (111) planes in FCC metals. Faceting of the interiors of the triangular facets of octahedral crystals is noted in all SEM images of acid-washed samples. These physical features are interpreted as a product of crystal growth and not selective acid etching. The generation of octahedral silver crystals from a molten melt and the presence of faceting are research firsts, such crystal morphologies being previously generated only from aqueous chemical reduction systems. Adding traces of cadmium to primary lead melts is promising for producing silver nanocrystals with desired morphologies. Full article
Show Figures

Figure 1

18 pages, 7574 KiB  
Article
Compact Four-Port Axial Symmetry UWB MIMO Antenna Array with Bandwidth Enhancement Using Reactive Stub Loading
by José Alfredo Tirado-Méndez, Hildeberto Jardón-Aguilar, Roberto Linares-Miranda, Ruben Flores-Leal, Alberto Vasquez-Toledo, Ricardo Gomez-Villanueva and Angel Perez-Miguel
Symmetry 2025, 17(8), 1285; https://doi.org/10.3390/sym17081285 - 10 Aug 2025
Viewed by 235
Abstract
This work presents the use of a novel impedance coupling technique and electrical length increase by using stub loading placed from the radiator to the ground plane. This method is applied to the design of a small four-element ultrawideband (UWB) MIMO antenna arranged [...] Read more.
This work presents the use of a novel impedance coupling technique and electrical length increase by using stub loading placed from the radiator to the ground plane. This method is applied to the design of a small four-element ultrawideband (UWB) MIMO antenna arranged in axial symmetry to achieve a compact array size while obtaining a bandwidth starting from a very low cutoff frequency compared to a conventional radiator operating at the same frequency. The four-element MIMO antenna, with an operational bandwidth of 1.9 GHz to 30 GHz, is based on a wideband monopole with a semicircular geometry, fed by a coplanar structure and an L-shaped half-ground plane section. To increase the electrical length of the structure and achieve a compact antenna design, reactive stub loading is introduced, placing it on the backside of the substrate, located orthogonally between the radiator and the L-shaped ground plane, obtaining a small-sized configuration. The axial symmetry is employed to increase the antennas’ isolation by taking advantage of the orthogonal positioning and making the radiated fields have a low correlation. The antenna array footprint measures 48 mm × 48 mm, corresponding to 0.3λ0 × 0.3λ0 at the lower cutoff frequency. The array exhibits a low envelope correlation coefficient (ECC) of around 0.033 at 2 GHz, and less than 0.001 at the rest of the bandwidth; a diversity gain (DG) of approximately 10; a stable total active reflection coefficient (TARC) below −10 dB; interport isolation between 20 and 40 dB; and an average gain of 2.8 dBi. Full article
Show Figures

Figure 1

20 pages, 7270 KiB  
Article
Theoretical Estimation of Wheat Straw Sound Absorption Coefficient Using Computed Tomography Images
by Shuichi Sakamoto, Kohta Hoshiyama, Yoshiaki Kojima, Kenta Saito and Zulhafiz Syazmi Bin Roslan
Appl. Sci. 2025, 15(16), 8803; https://doi.org/10.3390/app15168803 - 9 Aug 2025
Viewed by 243
Abstract
Wheat straw, which is a by-product of wheat production and has a tubular structure, is typically used for animal feed and compost. This study estimated the sound absorption coefficient of wheat straw based on cross-sectional computed tomography (CT) images. After image processing, the [...] Read more.
Wheat straw, which is a by-product of wheat production and has a tubular structure, is typically used for animal feed and compost. This study estimated the sound absorption coefficient of wheat straw based on cross-sectional computed tomography (CT) images. After image processing, the surface area of the wheat straw skeletal outline and the volume of the void area were determined. The propagation constant and characteristic impedance of the void area were obtained by approximating the clearance between two parallel planes representing the void area walls. Each CT image was represented as a transfer matrix to calculate the sound pressure and particle velocity, and the transfer matrix method was used to derive the normal incidence sound absorption coefficients. The measured tortuosity was considered when calculating the normal incidence sound absorption coefficient. The CT images were corrected to reflect the lack of sound absorption by the porous part of the thick-walled portion by considering it as a solid structure. The theoretical sound absorption coefficients calculated from the corrected images were in good agreement with the measured sound absorption coefficients. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

17 pages, 14467 KiB  
Article
Geometric Optimization and Structural Analysis of Cable-Braced Gridshells on Freeform Surfaces
by Xinye Li and Qilin Zhang
Buildings 2025, 15(16), 2816; https://doi.org/10.3390/buildings15162816 - 8 Aug 2025
Viewed by 197
Abstract
In freeform surface grid structures, quadrilateral meshes offer high visual transparency and simple joint connections, but their structural stability is relatively limited. To enhance stability, designers often introduce additional structural elements along the diagonals of the quadrilateral mesh, forming double-layer quadrilateral grid systems [...] Read more.
In freeform surface grid structures, quadrilateral meshes offer high visual transparency and simple joint connections, but their structural stability is relatively limited. To enhance stability, designers often introduce additional structural elements along the diagonals of the quadrilateral mesh, forming double-layer quadrilateral grid systems such as cable-braced gridshells. However, current design methodologies do not support the simultaneous optimization of both layers. As a result, the two layers are often designed independently in practical applications, leading to complex joint detailing that compromises construction efficiency, architectural aesthetics, and overall structural performance. To address these challenges, this study presents a weighted multi-objective geometry optimization framework based on a Guided-Projection algorithm. The proposed method integrates half-edge data structure and multiple geometric and structural constraints, enabling the simultaneous optimization of quadrilateral mesh planarity (i.e., panels lying on flat planes) and the orthogonality (i.e., angles approaching 90°) of diagonal cable layouts. Through multiple case studies, the method demonstrates significant improvements in panel planarity and cable orthogonality. The results also highlight the algorithm’s rapid convergence and high computational efficiency. Finite element analysis further validates the structural benefits of the optimized configurations, including reduced peak axial forces in cables, more uniform cable force distribution, and enhanced overall stiffness and buckling resistance. In conclusion, the method improves structural stability, constructability, and design efficiency, offering a practical tool for optimizing freeform cable-braced gridshells. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 5417 KiB  
Article
Design and Analysis of an Autonomous Active Ankle–Foot Prosthesis with 2-DoF
by Sayat Akhmejanov, Nursultan Zhetenbayev, Aidos Sultan, Algazy Zhauyt, Yerkebulan Nurgizat, Kassymbek Ozhikenov, Abu-Alim Ayazbay and Arman Uzbekbayev
Sensors 2025, 25(16), 4881; https://doi.org/10.3390/s25164881 - 8 Aug 2025
Viewed by 430
Abstract
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s [...] Read more.
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s gait. Unlike most commercial prostheses, which typically feature only one active degree of freedom, the proposed device combines a lightweight mechanical design, a screw drive with a stepper motor, and a microcontroller-based control system. The prototype was developed using CAD modeling in SolidWorks 2024, followed by dynamic modeling and finite element analysis (FEA). The simulation results confirmed the achievement of physiological angular ranges of ±20–22 deg. in both planes, with stable kinematic behavior and minimal vertical displacements. According to the FEA data, the maximum von Mises stress (1.49 × 108 N/m2) and deformation values remained within elastic limits under typical loading conditions, though cyclic fatigue and impact energy absorption were not experimentally validated and are planned for future work. The safety factor was estimated at ~3.3, indicating structural robustness. While sensor feedback and motor dynamics were idealized in the simulation, future work will address real-time uncertainties such as sensor noise and ground contact variability. The developed design enables precise, energy-efficient, and adaptive motion control, with an estimated average power consumption in the range of 7–9 W and an operational runtime exceeding 3 h per charge using a standard 18,650 cell pack. These results highlight the system’s potential for real-world locomotion on uneven surfaces. This research contributes to the advancement of affordable and functionally autonomous prostheses for individuals with transtibial amputation. Full article
(This article belongs to the Special Issue Recent Advances in Sensor Technology and Robotics Integration)
Show Figures

Figure 1

13 pages, 280 KiB  
Review
Integrating Peripheral Nerve Blocks in Multiple Trauma Care: Current Evidence and Clinical Challenges
by Liliana Mirea, Ana-Maria Dumitriu, Cristian Cobilinschi, Răzvan Ene and Raluca Ungureanu
J. Clin. Med. 2025, 14(15), 5598; https://doi.org/10.3390/jcm14155598 - 7 Aug 2025
Viewed by 288
Abstract
Pain management in multiple trauma patients presents a complex clinical challenge due to competing priorities such as hemodynamic instability, polypharmacy, coagulopathy, and the urgency of life-saving interventions. In this context, peripheral nerve blocks (PNBs) are increasingly recognized as a valuable asset for their [...] Read more.
Pain management in multiple trauma patients presents a complex clinical challenge due to competing priorities such as hemodynamic instability, polypharmacy, coagulopathy, and the urgency of life-saving interventions. In this context, peripheral nerve blocks (PNBs) are increasingly recognized as a valuable asset for their role in managing pain in patients with multiple traumatic injuries. By reducing reliance on systemic opioids, PNBs support effective pain control and facilitate early mobilization, aligning with enhanced recovery principles. This narrative review summarizes current evidence on the use of PNBs in the context of polytrauma, focusing on their analgesic efficacy, integration within multimodal analgesia protocols, and contribution to improved functional outcomes. Despite these advantages, clinical application is limited by specific concerns, including the potential to mask compartment syndrome, the risk of nerve injury or local anesthetic systemic toxicity (LAST), and logistical barriers in acute trauma settings. Emerging directions in the field include the refinement of ultrasound-guided PNB techniques, the expanded use of continuous catheter systems, and the incorporation of fascial plane blocks for anatomically complex or multisite trauma. Parallel efforts are focusing on the development of decision-making algorithms, improved risk stratification tools, and integration into multimodal analgesic pathways. There is also growing emphasis on standardized clinical protocols, simulation-based training, and patient education to enhance safety and consistency in practice. As evidence continues to evolve, the long-term impact of PNBs on functional recovery, quality of life, and healthcare utilization must be further explored. With thoughtful implementation, structured training, and institutional support, PNBs may evolve into a cornerstone of modern trauma analgesia. Full article
(This article belongs to the Special Issue Anesthesia and Intensive Care in Orthopedic and Trauma Surgery)
10 pages, 2466 KiB  
Article
Uncovering Stability Origins in Layered Ferromagnetic Electrocatalysts Through Homolog Comparison
by Om Prakash Gujela, Sivasakthi Kuppusamy, Yu-Xiang Chen, Chang-Chi Kao, Jian-Jhang Lee, Bhartendu Papnai, Ya-Ping Hsieh, Raman Sankar and Mario Hofmann
Nanomaterials 2025, 15(15), 1210; https://doi.org/10.3390/nano15151210 - 7 Aug 2025
Viewed by 320
Abstract
Magnetic 2D materials offer a compelling platform for next-generation electrocatalysis by enabling spin-dependent reaction pathways. Among them, layered ferromagnets such as Fe3GeTe2 (FGT) have garnered attention for combining intrinsic ferromagnetism with high predicted oxygen evolution activity. However, the stability of [...] Read more.
Magnetic 2D materials offer a compelling platform for next-generation electrocatalysis by enabling spin-dependent reaction pathways. Among them, layered ferromagnets such as Fe3GeTe2 (FGT) have garnered attention for combining intrinsic ferromagnetism with high predicted oxygen evolution activity. However, the stability of non-oxide ferromagnets in electrochemical environments remains an unresolved challenge, limiting their envisioned applications. In this study, we introduce a structural homolog approach to investigate the origin of FGT’s catalytic behavior and the mechanisms underlying its degradation. By comparing FGT with its isostructural analog Fe3GaTe2 (FGaT), we demonstrate that the electrochemical activity of FGT arises primarily from Fe orbitals and is largely insensitive to changes in sublayer composition. Although both materials exhibit similar basal-plane hydrogen evolution performance, FGaT demonstrates significantly lower long-term stability. Density functional theory calculations reveal that this instability arises from weaker Te bonding introduced by Ga substitution. These findings establish structural homologs as a powerful strategy for decoupling catalytic activity from electrochemical deterioration and for guiding the rational design of stable magnetic electrocatalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

Back to TopTop