Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,419)

Search Parameters:
Keywords = structural system and material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4774 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
18 pages, 7413 KB  
Article
Preliminary Structural System Design for Planetary Sunshade
by Joel Town, Nishanth Pushparaj and Chantal Cappelletti
Aerospace 2025, 12(9), 785; https://doi.org/10.3390/aerospace12090785 - 29 Aug 2025
Abstract
As global temperatures continue to rise despite international mitigation efforts, geoengineering has emerged as a potential avenue for climate intervention. One of the most promising and ambitious concepts is the Planetary sunshade—a large-scale structure located at Lagrange Point L1, designed to reduce [...] Read more.
As global temperatures continue to rise despite international mitigation efforts, geoengineering has emerged as a potential avenue for climate intervention. One of the most promising and ambitious concepts is the Planetary sunshade—a large-scale structure located at Lagrange Point L1, designed to reduce solar irradiance by physically blocking or redirecting incoming photons. This paper presents a structural design solution for this ambitious system, focusing on deployable mechanisms, frame architecture, and sail configurations that enable rapid mass production and deployment of solar sails components. The design process follows the European Cooperation for Space Standardization (ECSS) methodology through its early-phase stages, utilizing weighted decision matrices for concept selection and material evaluation. Finite element analysis (FEA) was used to validate structural integrity under Atlas V launch and operational conditions. The final design features a 1297 m2 sail composed of four triangular segments, deployed via booms and stowed using a vertical folding pattern around a central spool. The booms incorporate arch-shaped cross-sections to enhance stiffness. This configuration achieves a radius expansion ratio of 25 and a sail efficiency factor of 0.5, ensuring survivability under Atlas V launch loads. Full article
(This article belongs to the Special Issue Space System Design)
13 pages, 955 KB  
Article
Interfacial Adhesion of Mouthrinses to Orthodontic Metal Wires: Surface Film Viscoelasticity Effect
by Stanisław Pogorzelski, Krzysztof Dorywalski, Katarzyna Boniewicz-Szmyt and Paweł Rochowski
Materials 2025, 18(17), 4065; https://doi.org/10.3390/ma18174065 - 29 Aug 2025
Abstract
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from [...] Read more.
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from the original drop on a vertical filament method. Young, advancing, receding CA apart from adhesive film pressure, surface energy, work of adhesion, etc. were chosen as interfacial interaction indicators, allowing for the optimal concentration and placement of the key component(s) accumulation to be predicted for effective antibacterial activity to eliminate plaque formation on the prosthetic materials. Surfactant compounds when adsorb at interfaces confer rheological properties to the surfaces, leading to surface relaxation, which depends on the timescale of the deformation. The surface dilatational complex modulus E, with compression elasticity Ed and viscosity Ei parts, determined in the stress–relaxation Langmuir trough measurements, exhibited the viscoelastic surface film behavior with the relaxation times (0.41–3.13 s), pointing to the vertically segregated film structure as distinct, stratified layers with the most insoluble compound on the system top (as indicated with the 2D polymer film scaling theory exponent y = 12.9–15.5). Kinetic rheology parameters could affect the wettability, adhesion, and spreading characteristics of mouthrinse liquids. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

14 pages, 3505 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 (registering DOI) - 29 Aug 2025
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
20 pages, 4443 KB  
Article
Effect of Cooling/Lubrication Conditions on Machining Performance: An Experimental Investigation of 1040 Steel Under Dry, MQL, and Nano-MQL Environments
by Emin Salur, Nursena Okcu, Mehmet Erdi Korkmaz, Kübra Kaya, Rüstem Binali and Salih Bilal Çetinkal
Materials 2025, 18(17), 4063; https://doi.org/10.3390/ma18174063 - 29 Aug 2025
Abstract
The aim of this study is to evaluate the effect of various lubrication systems (dry cutting, MQL, and nano-MQL) on the machinability of AISI 1040 medium-carbon steel. By dispersing titanium carbide (TiC) nanoparticles into environmentally friendly sunflower oil, a new type of nano-MQL [...] Read more.
The aim of this study is to evaluate the effect of various lubrication systems (dry cutting, MQL, and nano-MQL) on the machinability of AISI 1040 medium-carbon steel. By dispersing titanium carbide (TiC) nanoparticles into environmentally friendly sunflower oil, a new type of nano-MQL fluid was developed. Machinability parameters such as surface finish, cutting force, energy consumption, chip structure, and tool degradation were examined through scanning electron microscopy (SEM). Based on experimental observations, the use of the nano-MQL technique led to a notable enhancement in machining performance when compared to both dry and traditional MQL machining. In addition, surface roughness was substantially reduced with the nano-MQL, suggesting more effective lubrication and cooling. Reductions in cutting forces and energy consumption were also observed, indicating more efficient material removal and lower mechanical resistance. The SEM examination of the cutting tools proved the low wear rate of the nano-MQL, which exhibited less adhesion and more abrasion wear, and of dry cutting, which showed the most serious wear. Furthermore, chip morphology illustrations indicated that the chips of nano-MQL were relatively uniform and segmented, indicating superior chip breaking quality and cutting stability. The results suggest that employing TiC nanoparticles in MQL offers a clear enhancement of cutting performance in terms of process efficiency, surface quality, and tool wear. These results validate the capability of nano-MQL as an environmentally friendly and high-performance lubrication method for turning medium-carbon steels, supporting more sustainable and efficient manufacturing operations. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
37 pages, 2779 KB  
Review
Constructing Hetero−Microstructures in Additively Manufactured High−Performance High−Entropy Alloys
by Yuanshu Zhao, Zhibin Wu, Yongkun Mu, Yuefei Jia, Yandong Jia and Gang Wang
Entropy 2025, 27(9), 917; https://doi.org/10.3390/e27090917 - 29 Aug 2025
Abstract
High−entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as [...] Read more.
High−entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as an effective strategy to overcome this challenge. With the rapid advancement of additive manufacturing (AM) technologies, their unique ability to fabricate complex, spatially controlled, and non−equilibrium microstructures offers unprecedented opportunities for tailoring heterostructures in HEAs with high precision. This review highlights recent progress in utilizing AM to engineer heterogeneous microstructures in high−performance HEAs. It systematically examines the multiscale heterogeneities induced by the thermal cycling effects inherent to AM techniques such as selective laser melting (SLM) and electron beam melting (EBM). The review further discusses the critical role of these heterostructures in enhancing the synergy between strength and ductility, as well as improving work− hardening behavior. AM enables the design−driven fabrication of tailored microstructures, signaling a shift from traditional “performance−driven” alloy design paradigms toward a new model centered on “microstructural control”. In summary, additive manufacturing provides an ideal platform for constructing heterogeneous HEAs and holds significant promise for advancing high−performance alloy systems. Its integration into alloy design represents both a valuable theoretical framework and a practical pathway for developing next−generation structural materials with multiple performance attributes. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
14 pages, 2959 KB  
Article
Research on Polyurethane-Stabilized Soils and Development of Quantitative Indicators for Integration into BIM-Based Project Planning
by Alina Zvierieva, Olga Borziak, Oleksii Dudin, Sergii Panchenko and Teresa Rucińska
Sustainability 2025, 17(17), 7781; https://doi.org/10.3390/su17177781 - 29 Aug 2025
Abstract
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. [...] Read more.
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. A novel method is proposed to determine the strain characteristics of these composites, embracing the preparation of model specimens in cylindrical containers with subsequent static and dynamic load testing. The results of static tests showed a significant increase in the strain modulus in comparison to that of the soil, resulting in soil stabilization due to a decrease in the initial content of moisture squeezed out of the modified soil. A coefficient of increase in the deformation modulus (KE) is introduced to quantitatively assess the soil stabilization efficiency. An original technique is also proposed for assessing composite durability, and it is based on analyzing the mass loss after cyclic wetting and drying. The proposed soil stabilization approach promotes and improves digital construction technologies such as Building Information Modeling (BIM) by enabling the accurate simulation and prediction of the behavior of loaded soil in foundation systems. The introduced quantifiable metrics can be integrated into Digital Twin- or BIM-based project planning tools, contributing to sustainability, safety, and reliability in modern construction practices. Full article
Show Figures

Figure 1

26 pages, 15689 KB  
Article
Comprehensive Investigation of Coverage Rates of Shot Peening on the Tribological Properties of 6061-T6 Alloy
by Orçun Canbulat and Fatih Bozkurt
Metals 2025, 15(9), 964; https://doi.org/10.3390/met15090964 (registering DOI) - 29 Aug 2025
Abstract
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming [...] Read more.
In the search for lightweight and sustainable engineering approaches, enhancing the surface wear resistance of structural materials, such as 6061-T6 aluminum alloy, has become increasingly important. This study investigates the effect of coverage rates on the tribological properties of shot-peened 6061-T6 alloy, aiming to improve its usage in industries where weight reduction and durability are important, such as aerospace, automotive, railway, and renewable energy systems. A shot peening process was applied at four different coverage rates of 100%, 200%, 500%, and 1500% for comprehensive evaluation. A series of experimental analyses were conducted, including microhardness tests, ball-on-plate wear tests, residual stress measurements, and surface roughness evaluations. Furthermore, microstructural analysis was performed to investigate subsurface deformation, and scanning electron microscopy (SEM) was carried out to identify the wear mechanisms of the worn surfaces in detail. The results demonstrated a clear trend of gradual improvement in wear resistance with increasing shot peen coverage. The sample treated at a 1500% coverage rate exhibited 1.34 times higher hardness and 19 times higher wear resistance compared to the untreated sample. This study highlights that shot peening is an effective and feasible surface engineering method for enhancing the wear performance of 6061-T6 alloy. The findings offer valuable contributions for the development of lightweight and wear-resistant components considering sustainable material design. Full article
29 pages, 2270 KB  
Article
Dynamic Mode I Fracture Toughness and Damage Mechanism of Dry and Saturated Sandstone Subject to Microwave Radiation
by Pin Wang, Yinqi Lin, Duo Chen and Tubing Yin
Appl. Sci. 2025, 15(17), 9500; https://doi.org/10.3390/app15179500 - 29 Aug 2025
Abstract
Microwave-assisted rock fragmentation has been considered as one of the most promising technologies in rock excavation, but due to the fact that excavation is usually carried out in water-rich environments, understanding the dynamic fracture properties of rocks with different water contents after microwave [...] Read more.
Microwave-assisted rock fragmentation has been considered as one of the most promising technologies in rock excavation, but due to the fact that excavation is usually carried out in water-rich environments, understanding the dynamic fracture properties of rocks with different water contents after microwave irradiation is thus desirable. This study employed an enhanced split Hopkinson pressure bar (SHPB) system to perform dynamic fracture tests on pre-cracked semi-circular bending (SCB) specimens. It systematically explores the changes in the mechanical properties of sandstone under both dry and saturated conditions after exposure to 700 W of microwave radiation for 10 min. Infrared thermal imaging was utilized to capture the temperature distribution across the specimens, while digital image correlation (DIC) and high-speed photography were used to simultaneously record the crack propagation process. Based on the principle of energy conservation, the analysis of energy dissipation during fracture was performed, and the micro-damage evolution mechanism of the material was revealed through scanning electron microscopy (SEM). The results demonstrated that saturated sandstone exhibited a more rapid heating response and significantly lower dynamic fracture toughness and fracture energy compared to dry samples after microwave irradiation. These findings indicate that water saturation amplifies the weakening effect induced by microwaves, making the rock more susceptible to low-stress fractures. The underlying damage mechanisms of microwave radiation on water-bearing sandstone were interpreted with the theory of pore water pressure and structural thermal stresses. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
24 pages, 13784 KB  
Article
Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy
by Huan Liu, Zhenghan Yang, Zhangwei Yang, Yuna Wu and Jia Ju
Crystals 2025, 15(9), 769; https://doi.org/10.3390/cryst15090769 - 29 Aug 2025
Abstract
Biodegradable zinc alloys for orthopedic implants must balance mechanical strength and plasticity, yet current as-cast alloys struggle to meet this dual requirement. In this study, a Zn-3Cu-1Mg-0.3Nd alloy was designed, and the influence of room-temperature rolling at four reduction levels (50%, 60%, 70%, [...] Read more.
Biodegradable zinc alloys for orthopedic implants must balance mechanical strength and plasticity, yet current as-cast alloys struggle to meet this dual requirement. In this study, a Zn-3Cu-1Mg-0.3Nd alloy was designed, and the influence of room-temperature rolling at four reduction levels (50%, 60%, 70%, and 80%) on its microstructure and mechanical properties was systematically investigated. Results indicate that as the reduction increases, the CuZn5 phase elongated along the rolling direction, and the η-Zn+Mg2Zn11 eutectic structure was progressively fragmented. The average grain size of the η-Zn matrix decreased significantly from 18.9 μm (50% reduction) to 1.71 μm (80% reduction). A distinct bimodal heterogeneous microstructure (coarse/fine grains) was formed at 60% and 70% reductions, while a predominantly fine-grained structure (91.3% fine grains) was achieved at 80% reduction. Furthermore, cracks initiated in the NdZn11 phase due to stress concentration during rolling. As the rolling reduction increases, the alloy’s ultimate tensile strengths (UTS) initially rose and then declined (peaking at 417 ± 5 MPa at 60% reduction), while its elongation (EL) consistently improved. At 80% reduction, the alloy exhibited optimal mechanical properties, achieving a tensile strength of 406 ± 4 MPa and an EL of 16.4 ± 0.3%, both significantly higher than those of the as-cast alloy (126 MPa, 4.4%). The enhancement in strength is attributed to a multi-scale synergistic mechanism involving grain refinement and back stress strengthening induced by heterogeneous microstructures. The continuous improvement in plasticity results from grain refinement, texture weakening, and the activation of non-basal <c+a> slip systems. Notably, cracks within the NdZn11 phase were confined by its high-binding-strength interface, preventing detrimental propagation into the matrix. This study elucidates the strengthening and toughening mechanisms in zinc alloys through cold rolling and the addition of the Nd element, particularly in terms of microstructural control and crack passivation, offering theoretical guidance for the design of biodegradable zinc alloy materials. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Preparation of Infrared Anti-Reflection Surfaces Based on Microcone Structures of Silicon Carbide
by Ruirui Li, Xiaozheng Ji, Sijia Chang, Haoyu Tian, Zihong Zhao and Chengqun Chu
Materials 2025, 18(17), 4054; https://doi.org/10.3390/ma18174054 - 29 Aug 2025
Abstract
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. [...] Read more.
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. To overcome these limitations, direct nanostructuring of SiC substrates has emerged as a promising alternative solution. This work introduces an innovative graded-index microcone array design fabricated on SiC substrates, achieving superior broadband anti-reflection performance. Our two-step fabrication methodology comprises plasma-induced formation of tunable nanofiber etch masks through controlled argon bombardment parameters, followed by precision reactive ion etching (RIE) for microcone array formation. By systematically varying plasma exposure duration, we demonstrate precise control over nanofiber mask morphology, which in turn enables the fabrication of height-optimized SiC microcone arrays. The resulting structures exhibit exceptional optical performance, achieving an ultra-low average reflectivity of 2.25% across the spectral range of 2.5–8 μm. This breakthrough fabrication technique not only extends the available toolbox for SiC micro/nanofabrication but also provides a robust platform for next-generation optical applications. Unlike conventional thin-film approaches, our nanostructuring method preserves the intrinsic mechanical and environmental durability of the SiC substrate while delivering a favorable optical performance. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

40 pages, 3531 KB  
Review
Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
by Rashid Dallaev
Polymers 2025, 17(17), 2346; https://doi.org/10.3390/polym17172346 - 29 Aug 2025
Abstract
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive [...] Read more.
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Graphical abstract

35 pages, 8508 KB  
Review
Recent Advances in Dielectric and Ferroelectric Behavior of Ceramic Nanocomposites: Structure Property Relationships and Processing Strategies
by Nouf Ahmed Althumairi, Mokhtar Hjiri, Abdullah M. Aldukhayel, Anouar Jbeli and Kais Iben Nassar
Nanomaterials 2025, 15(17), 1329; https://doi.org/10.3390/nano15171329 - 29 Aug 2025
Abstract
In the race toward next-generation electronics and energy systems, ceramic nanocomposites have taken center stage due to their remarkable dielectric and ferroelectric functionalities. By pushing the boundaries of nanoscale engineering, recent studies have shown how microstructural control and interfacial design can unlock unprecedented [...] Read more.
In the race toward next-generation electronics and energy systems, ceramic nanocomposites have taken center stage due to their remarkable dielectric and ferroelectric functionalities. By pushing the boundaries of nanoscale engineering, recent studies have shown how microstructural control and interfacial design can unlock unprecedented levels of polarization, permittivity, and frequency stability. This review presents a critical and up-to-date synthesis of the last decade’s progress in ceramic-based nanocomposites, with a special focus on the structure property processing nexus. Diverse processing techniques ranging from conventional sintering to advanced spark plasma sintering and scalable wet-chemical methods are analyzed for their influence on phase purity, grain boundary behavior, and interfacial polarization. The review also explores breakthroughs in lead-free and eco-friendly systems, flexible ferroelectric nanocomposites, and high-k dielectrics suitable for miniaturized devices. By identifying both the scientific opportunities and persistent challenges in this rapidly evolving field, this work aims to guide future innovations in material design, device integration, and sustainable performance. Full article
(This article belongs to the Special Issue Dielectric and Ferroelectric Properties of Ceramic Nanocomposites)
Show Figures

Figure 1

50 pages, 5366 KB  
Review
Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review
by Lahiru Wijewickrama, Janitha Jeewantha, G. Indika P. Perera, Omar Alajarmeh and Jayantha Epaarachchi
Polymers 2025, 17(17), 2345; https://doi.org/10.3390/polym17172345 - 29 Aug 2025
Abstract
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus [...] Read more.
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus on manufacturing methods, durability challenges, and future innovations. Thermoset polymer composites, particularly those with epoxy and vinyl ester matrices, continue to dominate marine applications due to their mechanical robustness and processing maturity. In contrast, thermoplastic composites such as Polyether Ether Ketone (PEEK) and Polyether Ketone Ketone (PEKK) offer advantages in recyclability and hydrothermal performance but are hindered by higher processing costs. The review evaluates the performance of various fiber types, including glass, carbon, basalt, and aramid, highlighting the trade-offs between cost, mechanical properties, and environmental resistance. Manufacturing processes such as vacuum-assisted resin transfer molding (VARTM) and automated fiber placement (AFP) enable efficient production but face limitations in scalability and in-field repair. Key durability concerns include seawater-induced degradation, moisture absorption, interfacial debonding, galvanic corrosion in FRP–metal hybrids, and biofouling. The paper also explores emerging strategies such as self-healing polymers, nano-enhanced coatings, and hybrid fiber architectures that aim to improve long-term reliability. Finally, it outlines future research directions, including the development of smart composites with embedded structural health monitoring (SHM), bio-based resin systems, and standardized certification protocols to support broader industry adoption. This review aims to guide ongoing research and development efforts toward more sustainable, high-performance marine composite systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

25 pages, 8084 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop