sustainability-logo

Journal Browser

Journal Browser

Building Information Modeling and Technology Applications in Construction

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Green Building".

Deadline for manuscript submissions: 21 August 2026 | Viewed by 764

Special Issue Editors


E-Mail Website
Guest Editor
Polytechnic School, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Interests: sustainable construction; smart building; comfortable building; building information modeling (BIM); life cycle sustainability assessment; environmental impacts; energy efficiency
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Polytechnic School, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Interests: sustainable construction; risk management; smart buildings; comfortable buildings; building information modeling (BIM); life cycle sustainability assessment; environmental impacts; energy efficiency
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The construction industry is experiencing a transformative shift driven by the integration of advanced technologies and methodologies such as Building Information Modeling (BIM) to enhance building performance, particularly, in terms of efficiency, sustainability, and collaboration across all lifecycle phases of construction projects. This Special Issue aims to become a prominent platform for sharing novel findings, ideas, opinions, and critical revisions of consolidated concepts that explore the innovative applications and latest advancements of BIM and related technologies in the construction industry. This Special Issue seeks to bridge the gap and foster knowledge exchange and collaboration among researchers, practitioners, and stakeholders by presenting cutting-edge research and practical implementations. In this Special Issue, we encourage submissions covering a wide range of topics related to BIM and technology applications in construction, including but not limited to the following:

  • Integration of BIM with other advanced technologies such as the Internet of Things (IoT), augmented reality (AR), virtual reality (VR), artificial intelligence (AI), and blockchain;
  • BIM for sustainability and green building practices;
  • Cost and time optimization using BIM;
  • BIM in design and collaborative practices;
  • Digital twins and smart construction;
  • Regulatory and standardization aspects in promoting BIM adoption;
  • Successful BIM implementations and adoption in construction projects;
  • Challenges and future directions.

We look forward to receiving your contributions.  

Prof. Dr. Mohammad Najjar
Prof. Dr. Assed Naked Haddad
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • building information modeling (BIM)
  • advancement technologies
  • IoT in construction
  • AR/VR in construction
  • AI in construction
  • blockchain in construction
  • sustainability in construction
  • cost and time optimization in construction
  • digital twins
  • smart construction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 3002 KB  
Article
Integrating Off-Site Modular Construction and BIM for Sustainable Multifamily Buildings: A Case Study in Rio de Janeiro
by Matheus Q. Vargas, Ana Briga-Sá, Dieter Boer, Mohammad K. Najjar and Assed N. Haddad
Sustainability 2025, 17(17), 7791; https://doi.org/10.3390/su17177791 - 29 Aug 2025
Viewed by 175
Abstract
The construction industry faces persistent challenges, including low productivity, high waste generation, and resistance to technological innovation. Off-site modular construction, supported by Building Information Modeling (BIM), emerges as a promising strategy to address these issues and advance sustainability goals. This study aims to [...] Read more.
The construction industry faces persistent challenges, including low productivity, high waste generation, and resistance to technological innovation. Off-site modular construction, supported by Building Information Modeling (BIM), emerges as a promising strategy to address these issues and advance sustainability goals. This study aims to evaluate the practical impacts of industrialized off-site construction in the Brazilian context, focusing on cost, execution time, structural weight, and architectural–logistical constraints. The novelty lies in applying the methodology to a high standard, mixed-use multifamily building, an atypical scenario for modular construction in Brazil, and employing a MultiCriteria Decision Analysis (MCDA) to integrate results. A detailed case study is developed comparing conventional and off-site construction approaches using BIM-assisted analyses for weight reduction, cost estimates, and schedule optimization. The results show an 89% reduction in structural weight, a 6% decrease in overall costs, and a 40% reduction in project duration when adopting fully off-site solutions. The integration of results was performed through the Weighted Scoring Method (WSM), a form of MCDA chosen for its transparency and adaptability to case studies. While this study defined weights and scores, the framework allows the future incorporation of stakeholder input. Challenges identified include the need for early design integration, transport limitations, and site-specific constraints. By quantifying benefits and limitations, this study contributes to expanding the understanding of off-site modular adaptability of construction projects beyond low-cost housing, demonstrating its potential for diverse projects and advancing its implementation in emerging markets. Beyond technical and economic outcomes, the study also frames off-site modular construction within the three pillars of sustainability. Environmentally, it reduces structural weight, resource consumption, and on-site waste; economically, it improves cost efficiency and project delivery times; and socially, it offers potential benefits such as safer working conditions, reduced urban disruption, and faster provision of community-oriented buildings. These dimensions highlight its broader contribution to sustainable development in Brazil. Full article
Show Figures

Figure 1

14 pages, 2959 KB  
Article
Research on Polyurethane-Stabilized Soils and Development of Quantitative Indicators for Integration into BIM-Based Project Planning
by Alina Zvierieva, Olga Borziak, Oleksii Dudin, Sergii Panchenko and Teresa Rucińska
Sustainability 2025, 17(17), 7781; https://doi.org/10.3390/su17177781 - 29 Aug 2025
Viewed by 172
Abstract
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. [...] Read more.
This research presents the results of studies on the physical and mechanical properties of the soil–polymer composites developed by the Scientific and Production Company “Special Polymer Technologies” SPT® by injecting polyurethane material into clay soils to strengthen the foundations of erected structures. A novel method is proposed to determine the strain characteristics of these composites, embracing the preparation of model specimens in cylindrical containers with subsequent static and dynamic load testing. The results of static tests showed a significant increase in the strain modulus in comparison to that of the soil, resulting in soil stabilization due to a decrease in the initial content of moisture squeezed out of the modified soil. A coefficient of increase in the deformation modulus (KE) is introduced to quantitatively assess the soil stabilization efficiency. An original technique is also proposed for assessing composite durability, and it is based on analyzing the mass loss after cyclic wetting and drying. The proposed soil stabilization approach promotes and improves digital construction technologies such as Building Information Modeling (BIM) by enabling the accurate simulation and prediction of the behavior of loaded soil in foundation systems. The introduced quantifiable metrics can be integrated into Digital Twin- or BIM-based project planning tools, contributing to sustainability, safety, and reliability in modern construction practices. Full article
Show Figures

Figure 1

Back to TopTop