Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the As-Cast Zn-3Cu-1Mg-0.3Nd Alloy
3.2. Effects of Cold Rolling on the Microstructure of Zn-3Cu-1Mg-0.3Nd Alloy
3.3. Effect of Cold Rolling on Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy
4. Discussions
4.1. Microstructure Evolution Mechanism Induced by Cold Rolling
4.2. Mechanism of Simultaneous Enhancement of Strength and Duactility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, L.; Huang, H.; Sun, C.; Zhuo, X.; Dong, Q.; Liu, H.; Ju, J.; Xue, F.; Bai, J.; Jiang, J. Effect of Grain Size and Volume Fraction of Eutectic Structure on Mechanical Properties and Corrosion Behavior of As-Cast Zn–Mg Binary Alloys. J. Mater. Res. Technol. 2022, 16, 1673–1685. [Google Scholar] [CrossRef]
- Venezuela, J.; Dargusch, M.S. The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review. Acta Biomater. 2019, 87, 1–40. [Google Scholar] [CrossRef]
- Li, L.; Jiao, H.; Liu, C.; Yang, L.; Suo, Y.; Zhang, R.; Liu, T.; Cui, J. Microstructures, Mechanical Properties and In Vitro Corrosion Behavior of Biodegradable Zn Alloys Microalloyed with Al, Mn, Cu, Ag and Li Elements. J. Mater. Sci. Technol. 2022, 103, 244–260. [Google Scholar] [CrossRef]
- Long, M.; Jiang, F.; Wu, F.; Su, Y. Synergistic Improvement of Strength and Ductility of an Ultra-High Strength Al-Zn-Mg-Cu Alloy through a New Aging Strategy. Mater. Today Commun. 2024, 40, 109655. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Wang, L.-S.; Li, Y.-H.; Agbedor, S.-O.; Bai, J.; Xue, F.; Jiang, J.-H. A High-Strength and Biodegradable Zn–Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1191–1200. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, L.; Song, Z. The High Strength and Ductility Mechanism of Zn-0.45Mn-0.8Li Alloys with Heterogeneous Lamellar Structure. Mater. Sci. Eng. A 2024, 909, 146853. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, F.; Cui, D.; Tan, Y. Achieving Ultrahigh Strength and Ductility in Biodegradable Zn-xCu Alloys via Hot-Rolling and Tailoring Cu Concentration. Mater. Charact. 2024, 218, 114530. [Google Scholar] [CrossRef]
- Waqas, M.; He, D.; He, C.; Tan, Z.; Wu, X.; Ji, G.; Guo, X. A Novel Biodegradable Zn-0.4Li-0.4Cu Alloy with Superior Strength-Ductility Synergy and Corrosive Behavior by Laser Powder Bed Fusion. J. Alloys Compd. 2024, 1002, 175482. [Google Scholar] [CrossRef]
- Tang, Z.; Niu, J.; Huang, H.; Zhang, H.; Pei, J.; Ou, J.; Yuan, G. Potential Biodegradable Zn-Cu Binary Alloys Developed for Cardiovascular Implant Applications. J. Mech. Behav. Biomed. Mater. 2017, 72, 182–191. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Z.; Tay, S.L.; Zhu, T.; Gao, W. Effects of Mg on Microstructure and Corrosion Properties of Zn–Mg Alloy. J. Alloys Compd. 2014, 602, 101–107. [Google Scholar] [CrossRef]
- Kubásek, J.; Vojtěch, D.; Jablonská, E.; Pospíšilová, I.; Lipov, J.; Ruml, T. Structure, Mechanical Characteristics and In Vitro Degradation, Cytotoxicity, Genotoxicity and Mutagenicity of Novel Biodegradable Zn–Mg Alloys. Mater. Sci. Eng. C 2016, 58, 24–35. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, S.; Guillory, R.; Bowen, P.K.; Yin, Z.; Griebel, A.; Schaffer, J.; Earley, E.J.; Goldman, J.; Drelich, J.W. Novel High-Strength, Low-Alloys Zn-Mg (<0.1 Wt% Mg) and Their Arterial Biodegradation. Mater. Sci. Eng. C 2018, 84, 67–79. [Google Scholar] [CrossRef]
- Li, R.; Ding, Y.; Zhang, H.; Wang, X.; Gao, Y. 300 MPa Grade High-Strength Ductile Biodegradable Zn-2Cu-xMg (x = 0.08, 0.15, 0.5, 1) Alloys: The Role of Mg in Bimodal Grain Formation. J. Mater. Sci. Technol. 2025, 221, 168–186. [Google Scholar] [CrossRef]
- Hua, L.; Du, Y.; Qian, D.; Sun, M.; Wang, F. Influence of Prior Cold Rolling on Bainite Transformation of High Carbon Bearing Steel. Metall. Mater. Trans. A 2025, 56, 640–654. [Google Scholar] [CrossRef]
- Lin, H.; Li, Z.; Fu, M.; Yi, H.; Zhang, H.; Li, R. Ultrasonic Rolling-Enhanced Additive Manufacturing of IN718 Superalloy: Microstructural Refinement and Mechanical Property Improvement through Variable Power Modulation. Addit. Manuf. 2025, 109, 104891. [Google Scholar] [CrossRef]
- Du, S.; Shen, Y.; Zheng, Y.; Cheng, Y.; Xu, X.; Chen, D.; Xia, D. Systematic In Vitro and In Vivo Study on Biodegradable Binary Zn-0.2 At% Rare Earth Alloys (Zn-RE: Sc, Y, La–Nd, Sm–Lu). Bioact. Mater. 2023, 24, 507–523. [Google Scholar] [CrossRef]
- Natarajan, D.; Ye, Z.; Wang, L.; Ge, L.; Pathak, J.L. Rare Earth Smart Nanomaterials for Bone Tissue Engineering and Implantology: Advances, Challenges, and Prospects. Bioeng. Transl. Med. 2022, 7, e10262. [Google Scholar] [CrossRef]
- Huang, X.; Miao, D.; Zhou, R.; Shen, X.; Tong, X.; Lin, J.; Wang, S. Enhancing Mechanical Strength, Tribological Properties, Cytocompatibility, Osteogenic Differentiation, and Antibacterial Capacity of Biodegradable Zn-5RE (RE = Nd, Y, and Ho) Alloys for Potential Bone-Implant Application. J. Mater. Res. Technol. 2024, 30, 2865–2878. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, M.; Deng, F.; Yang, Y.; Peng, S.; Qi, F.; He, C.; Shen, L.; Liang, H. Forming Quality, Mechanical Properties, and Anti-Inflammatory Activity of Additive Manufactured Zn-Nd Alloy. J. Zhejiang Univ. Sci. A 2020, 21, 876–891. [Google Scholar] [CrossRef]
- Pachla, W.; Przybysz, S.; Jarzębska, A.; Bieda, M.; Sztwiertnia, K.; Kulczyk, M.; Skiba, J. Structural and Mechanical Aspects of Hypoeutectic Zn–Mg Binary Alloys for Biodegradable Vascular Stent Applications. Bioact. Mater. 2021, 6, 26–44. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, H.; Hu, G.; Zhuo, X.; Yan, K.; Ju, J.; Wang, W.; Teng, H.; Jiang, J.; Bai, J. Developing Zn–1.5Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 1833–1843. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Yin, J.; Wu, Y.; Yan, K.; Ju, J.; Teng, H.; Jiang, J.; Bai, J. Grain Refinement Mechanism and Mechanical Properties of Wrought Zn-0.1Mg-0.02Mn Alloys by Rolling at Different Reductions. J. Mater. Res. Technol. 2023, 25, 6263–6274. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Wu, Y.; Yan, K.; Ju, J.; Teng, H.; Song, D.; Jiang, J.; Bai, J. Comparative Study of the Microstructure Evolution and Mechanical Properties of Zn-0.1Mg-0.02Ca Alloy under Cold Rolling and ECAP. Mater. Sci. Eng. A 2024, 908, 146765. [Google Scholar] [CrossRef]
- Guo, Q.; Hou, H.; Pan, Y.; Pei, X.; Song, Z.; Liaw, P.K.; Zhao, Y. Hardening-Softening of Al0.3CoCrFeNi High-Entropy Alloy under Nanoindentation. Mater. Des. 2023, 231, 112050. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, K.; Zhang, H.; Tian, X.; Jiang, Q.; Murugadoss, V.; Hou, H. Dislocation Motion in Plastic Deformation of Nano Polycrystalline Metal Materials: A Phase Field Crystal Method Study. Adv. Compos. Hybrid Mater. 2022, 5, 2546–2556. [Google Scholar] [CrossRef]
- Han, C.; Chen, Y.; Ye, L.; Yang, Z.; Wu, Y.; Ju, J.; Jiang, J.; Liu, H. Evolution of Petaloid Gd-Containing Phase during Multi-Pass ECAP and Its Impact on the Microstructure and Mechanical Properties of Zn-3Cu-1Mg-0.3Gd Alloys. Mater. Sci. Eng. A 2025, 924, 147866. [Google Scholar] [CrossRef]
- Gong, M.; Li, W.; Li, R.; Li, J.; Wang, J.; Ning, S.; Yin, X.; Zeng, D.; Chen, L.; Han, W.; et al. Effective Separation Neodymium from Yttrium on Zn Film Electrode Exploiting Potential Difference. Sep. Purif. Technol. 2025, 376, 134075. [Google Scholar] [CrossRef]
- Nienaber, M.; Bohlen, J.; Yi, S.; Kurz, G.; Kainer, K.U.; Letzig, D. Influence of Ca Addition on the Dynamic and Static Recrystallization Behavior of Direct Extruded Flat Profiles of Mg-Y-Zn Alloy. J. Magnes. Alloys 2023, 11, 3736–3748. [Google Scholar] [CrossRef]
- Wang, T.; Hu, J.; Misra, R.D.K. Microstructure Evolution and Strain Behavior of a Medium Mn TRIP/TWIP Steel for Excellent Combination of Strength and Ductility. Mater. Sci. Eng. A 2019, 753, 99–108. [Google Scholar] [CrossRef]
- Hazan-Paikin, E.; Ben Tzion-Mottye, L.; Bassis, M.; Ron, T.; Aghion, E. Effect of Nd on Functional Properties of Biodegradable Zn Implants in In Vitro Environment. Metals 2024, 14, 655. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Liu, X. Effect of Rare Earth Elements Ce and Yb on the In Vitro Properties of Biodegradable Zn Alloys. J. Mater. Res. Technol. 2024, 30, 8228–8239. [Google Scholar] [CrossRef]
- Tong, X.; Dong, Y.; Han, Y.; Zhou, R.; Zhu, L.; Zhang, D.; Dai, Y.; Shen, X.; Li, Y.; Wen, C.; et al. A Biodegradable Zn-5Gd Alloy with Biomechanical Compatibility, Cytocompatibility, Antibacterial Ability, and In Vitro and In Vivo Osteogenesis for Orthopedic Applications. Acta Biomater. 2024, 177, 538–559. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Nie, X.; Zhou, R. Biodegradable Zn-Mg-Ce Alloys with Good Mechanical Properties, Degradability, and Cytocompatibility Matching for Potential Load-Bearing Bone-Implant Applications. Mater. Today Commun. 2024, 40, 109519. [Google Scholar] [CrossRef]
- Tong, X.; Miao, D.; Zhou, R.; Shen, X.; Luo, P.; Ma, J.; Li, Y.; Lin, J.; Wen, C.; Sun, X. Mechanical Properties, Corrosion Behavior, and In Vitro and In Vivo Biocompatibility of Hot-Extruded Zn-5RE (RE = Y, Ho, and Er) Alloys for Biodegradable Bone-Fixation Applications. Acta Biomater. 2024, 185, 55–72. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, S.; Wang, Z.; Sun, Y. Effect of Solution and Aging Treatment on the Microstructure and Properties of LAZ931 Mg-Li Alloy by Friction Stir Processing. Metals 2025, 15, 314. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, L.; Hao, K.; Han, Y.; Zhao, L.; Ren, W. Grain Refinement, Twin Formation and Mechanical Properties of Magnesium Welds with Addition of CNTs and TiC Particles. J. Magnes. Alloys 2025, 13, 2711–2723. [Google Scholar] [CrossRef]
- Doherty, R.D.; Hoffman, E.; Hovanec, C.; Lens, A. Abnormal Grain Coarsening and Its Possible Relationship with Particle Limited Normal Grain Coarsening. Mater. Sci. Forum 2004, 467–470, 843–852. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, P. Void Nucleation at Dislocation Boundaries Aided by the Synergy of Multiple Dislocation Pile-Ups. Int. J. Plast. 2023, 171, 103779. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Song, J.; Yue, S. Understanding Activation and Growth of Twin Variants in Polycrystalline Magnesium under Tension and Compression: An Atomistic Study. J. Magnes. Alloys 2024, 12, 4923–4936. [Google Scholar] [CrossRef]
- Khasanova, A.R.; Sirazeeva, A.R.; Aksenov, D.A.; Bolshakov, B.O.; Asfandiyarov, R.N.; Kulyasova, O.B. Effect of Rolling on the Structure and Mechanical Properties of the Zn-0.8Li Alloy. Russ. Phys. J. 2024, 67, 1531–1537. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, W.; Zhao, Q.; Zhang, S.; Li, M.; Zhu, Z. Acquisition of Recrystallization Information Using Optical Metallography in a Metastable Beta Titanium Alloy. J. Alloys Compd. 2017, 727, 346–352. [Google Scholar] [CrossRef]
- Lv, N.; Zhao, L.; Yan, H.; Liu, B.; Mao, Y.; Shan, Z.; Chen, R. Texture Tailoring and Microstructure Refinement Induced by {11−21} and {10−12} Twinning in an Extruded Mg-Gd Alloy. J. Alloys Compd. 2023, 966, 171590. [Google Scholar] [CrossRef]
- Jin, S.-C.; Lee, J.U.; Go, J.; Yu, H.; Park, S.H. Effects of Sn Addition on the Microstructure and Mechanical Properties of Extruded Mg–Bi Binary Alloy. J. Magnes. Alloys 2022, 10, 850–861. [Google Scholar] [CrossRef]
- Chen, H.; Shao, C.; Wang, L.; Chen, H.; Zou, Y. A Quasi-in-Situ EBSD Study on Mechanical Response and Twin Variant Selection of a Hot-Rolled AZ31 Magnesium Alloy. J. Magnes. Alloys 2025, 13, 1549–1560. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, Y.; Ma, S.; Li, K.; Wu, Z.; Wang, D. Enhanced Mechanical Properties of TZM Alloy via Doping Y2O3 along with Creating Heterogeneous Grain Structures. Mater. Sci. Eng. A 2024, 911, 146938. [Google Scholar] [CrossRef]
- Chen, X.; He, Y.; Moumni, Z. Twin Boundary Motion in NiMnGa Single Crystals under Biaxial Compression. Mater. Lett. 2013, 90, 72–75. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, X.; Du, K.; Zhao, G.; Zhang, Z. Improvement of Superelasticity by Controlling NiAl Precipitates in Polycrystalline Fe-Ni-Co-Al-Based Alloy. Mater. Charact. 2025, 227, 115288. [Google Scholar] [CrossRef]
- Nezakat, M.; Akhiani, H.; Sabet, S.M.; Szpunar, J. Electron Backscatter and X-Ray Diffraction Studies on the Deformation and Annealing Textures of Austenitic Stainless Steel 310S. Mater. Charact. 2017, 123, 115–127. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, X.; Pang, J.; Zou, M.; Tao, Y.; Tao, X.; Zou, C.; Yang, Y.; Liu, J.; Liu, J.; et al. Pore-Induced Defects during Thermo-Mechanical Fatigue of a Fourth-Generation Single Crystal Superalloy. Mater. Res. Lett. 2023, 11, 678–687. [Google Scholar] [CrossRef]
- Zhang, B.; Li, A.; Kang, K.; Zhang, J.; Xu, M.; Huang, D.; Liu, S.; Jiang, Y.; Li, G. The Origin of Unique Nanoindentation Response of Nanocrystalline CoCrFeMnNi High Entropy Alloy under Deformation: Role of Dislocation Evolution. Phys. B Condens. Matter 2025, 710, 417238. [Google Scholar] [CrossRef]
- Honglin, M.; Haichao, Z.; Honggang, T.; Guozheng, M.; Ming, L.; Haidou, W.; Fengkuan, X.; Zhihai, C. Effects of hBN Content and Particle Size on Microstructure, Mechanical and Tribological Properties of NiCr-Cr3C2-hBN Coatings. Surf. Coat. Technol. 2024, 478, 130330. [Google Scholar] [CrossRef]
- Wang, W.; Mu, W.; Han, M.; Zhang, Y.; Wang, N.; Zhang, W.; Li, Z.; Weng, Z.; Liaw, P.K. An Integration Study of Corrosion and Mechanical Behaviors of Ti-/Zr-/Hf-Doped Cobalt-Based High-Entropy Alloys. Mater. Des. 2025, 256, 114230. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Meng, B.; Wan, M. Effect of Equal-Channel Angular Pressing on Microstructural Evolution, Mechanical Property and Biodegradability of an Ultrafine-Grained Zinc Alloy. Mater. Sci. Eng. A 2021, 824, 141857. [Google Scholar] [CrossRef]
- Čapek, J.; Kubásek, J.; Pinc, J.; Drahokoupil, J.; Čavojský, M.; Vojtěch, D. Extrusion of the Biodegradable ZnMg0.8Ca0.2 Alloy—The Influence of Extrusion Parameters on Microstructure and Mechanical Characteristics. J. Mech. Behav. Biomed. Mater. 2020, 108, 103796. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liu, Y.; Chen, X.; Sui, Y.; Sun, W.; Xiao, L.; Zhou, H. Heterogeneous Plastic Deformation and HDI Strengthening of the Heterostructured Dual-Phase Steels Investigated by in-Situ SEM-DIC. Mater. Sci. Eng. A 2024, 893, 146149. [Google Scholar] [CrossRef]
- Yan, C.; Xin, Y.; Chen, X.-B.; Xu, D.; Chu, P.K.; Liu, C.; Guan, B.; Huang, X.; Liu, Q. Evading Strength-Corrosion Tradeoff in Mg Alloys via Dense Ultrafine Twins. Nat. Commun. 2021, 12, 4616. [Google Scholar] [CrossRef]
- Zhuo, X.; Wu, Y.; Ju, J.; Liu, H.; Jiang, J.; Hu, Z.; Bai, J.; Xue, F. Recent Progress of Novel Biodegradable Zinc Alloys: From the Perspective of Strengthening and Toughening. J. Mater. Res. Technol. 2022, 17, 244–269. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; Li, X.; Wang, Y.; Guan, Y. Mechanical Performance of Laser-Textured Metallic Surface. J. Mater. Res. Technol. 2024, 33, 6084–6089. [Google Scholar] [CrossRef]
- Balog, M.; Krížik, P.; Školáková, A.; Švec, P.; Kubásek, J.; Pinc, J.; de Castro, M.M.; Figueiredo, R. Hall-Petch Strengthening in Ultrafine-Grained Zn with Stabilized Boundaries. J. Mater. Res. Technol. 2024, 33, 7458–7468. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, H.; Zhu, Q.; Qi, X.; Wang, J.; Wang, J.; Jin, P.; Zeng, X. Influence of Twinning-Induced Recrystallization on Texture Evolution in a High Strain Rate Compressed Mg-Zn Alloy. Mater. Charact. 2020, 162, 110192. [Google Scholar] [CrossRef]
- Chen, Y.T.; Xu, J.L.; Huang, J.; Luo, J.M.; Lian, L.; Zheng, Y.F. Microstructure, Mechanical Properties, and Corrosion Resistance of Biomedical Ti-Zn Alloys Prepared by Spark Plasma Sintering. Intermetallics 2025, 185, 108926. [Google Scholar] [CrossRef]
- Fan, J.; Yang, H.; Xie, W.; Chen, G.; Zhou, Y.; Zheng, K.; Xu, J.; Tan, J.; Chen, X.; Pan, F. Clarifying Interfacial Microstructures of Ti Particle Reinforced Mg-Zn-Mn Composites to Achieve Good Strength-Ductility Synergy. J. Magnes. Alloys 2025, in press. [CrossRef]
- Zhang, Y.; Wang, H.; Yang, J.; Zhu, Y.; Li, J.; Li, Z.; Su, B.; Liu, B.; Shen, C. Enhancing the Strain-Hardening Rate and Uniform Tensile Ductility of Lightweight Refractory High-Entropy Alloys by Tailoring Multi-Scale Heterostructure Strategy. Int. J. Plast. 2025, 185, 104237. [Google Scholar] [CrossRef]
Alloy | Point | Atomic Ratio (at.%) | Phase | |||
---|---|---|---|---|---|---|
Zn | Cu | Mg | Nd | |||
Zn-3Cu-1Mg-0.3Nd | A | 95.75 | 4.03 | 0.22 | 0.00 | η-Zn |
B | 84.80 | 15.20 | 0.00 | 0.00 | CuZn5 | |
C | 83.42 | 2.42 | 14.16 | 0.00 | η-Zn+Mg2Zn11 | |
D | 89.11 | 3.33 | 0.31 | 7.24 | NdZn11 |
Rolling Reduction | YS (MPa) | UTS (MPa) | EL (%) | PSE (GPa·%) |
---|---|---|---|---|
50% | 323 ± 6 | 379 ± 3 | 6.6 ± 0.4 | 2.50 ± 0.16 |
60% | 340 ± 4 | 417 ± 5 | 8.5 ± 0.5 | 3.54 ± 0.21 |
70% | 335 ± 3 | 411 ± 5 | 12.1 ± 0.3 | 4.97 ± 0.25 |
80% | 319 ± 4 | 406 ± 4 | 16.4 ± 0.3 | 6.66 ± 0.30 |
Alloy (wt.%) | Processing | Reduction (%) | UTS (MPa) | EL (%) | PSE (GPa·%) | Reference |
---|---|---|---|---|---|---|
Zn-3Cu-1Mg-0.3Nd | CR | 80 | 406 | 16.4 | 6.66 | This work |
Zn-1.5Mg | CR | 80 | 366 | 18.4 | 6.73 | [21] |
Zn-0.1Mg-0.02Mn | CR | 80 | 397.7 | 15.9 | 6.32 | [22] |
Zn-0.1Mg-0.02Ca | CR | 80 | 310 | 42.2 | 13.08 | [23] |
Zn-3Nd | As-cast | 148.9 | 37.2 | 5.54 | [30] | |
Zn-1Ce | As-cast | 169.4 | 27.62 | 4.68 | [31] | |
Zn-5Gd | Hot extrusion | 326.5 | 57.6 | 18.81 | [32] | |
Zn-0.8Mg | Hot extrusion | 301 | 15 | 4.52 | [11] | |
Zn-1Mg | Hot extrusion | 310 | 2.0 | 0.62 | [20] | |
Zn-2Cu-0.5Mg | CR | 70 | 378 | 12.5 | 4.73 | [13] |
Slip System | Slip Type | 50% | 60% | 70% | 80% |
---|---|---|---|---|---|
(0001) <11−20> | Basal <a> | 0.2253 | 0.1857 | 0.3388 | 0.3024 |
(10−10) <11−20> | Prismatic <a> | 0.4217 | 0.4347 | 0.3709 | 0.3333 |
(1−101) <11−20> | Pyramidal <a> | 0.3924 | 0.3919 | 0.4341 | 0.3967 |
(10−11) <−1−123> | Primary <c+a> | 0.4320 | 0.4271 | 0.4432 | 0.4014 |
(11−22) <−1−123> | Secondary <c+a> | 0.4359 | 0.4241 | 0.3513 | 0.3728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yang, Z.; Yang, Z.; Wu, Y.; Ju, J. Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy. Crystals 2025, 15, 769. https://doi.org/10.3390/cryst15090769
Liu H, Yang Z, Yang Z, Wu Y, Ju J. Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy. Crystals. 2025; 15(9):769. https://doi.org/10.3390/cryst15090769
Chicago/Turabian StyleLiu, Huan, Zhenghan Yang, Zhangwei Yang, Yuna Wu, and Jia Ju. 2025. "Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy" Crystals 15, no. 9: 769. https://doi.org/10.3390/cryst15090769
APA StyleLiu, H., Yang, Z., Yang, Z., Wu, Y., & Ju, J. (2025). Effect of Cold Rolling on Microstructure Evolution and Mechanical Properties of Zn-3Cu-1Mg-0.3Nd Alloy. Crystals, 15(9), 769. https://doi.org/10.3390/cryst15090769