Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,237)

Search Parameters:
Keywords = structural similarity measure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1947 KiB  
Article
Quantitative Magnetic Resonance Imaging and Patient-Reported Outcomes in Patients Undergoing Hip Labral Repair or Reconstruction
by Kyle S. J. Jamar, Adam Peszek, Catherine C. Alder, Trevor J. Wait, Caleb J. Wipf, Carson L. Keeter, Stephanie W. Mayer, Charles P. Ho and James W. Genuario
J. Imaging 2025, 11(8), 261; https://doi.org/10.3390/jimaging11080261 - 5 Aug 2025
Abstract
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, [...] Read more.
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, and labral tissue were assessed from MRI by blinded reviewers. International Hip Outcome Tool (iHOT-12) scores were collected preoperatively and up to two years postoperatively. Associations between T2 values and iHOT-12 scores were analyzed using univariate mixed linear models. Twenty-nine patients were included (mean age of 32.5 years, BMI 24 kg/m2, 48.3% female, and 22 repairs). Across all patients, higher T2 values were associated with higher iHOT-12 scores at baseline and early postoperative timepoints (three months for cartilage and six months for labrum; p < 0.05). Lower T2 values were associated with higher 12- and 24-month iHOT-12 scores across all structures (p < 0.001). Similar trends were observed within the repair and reconstruction subgroups, with delayed negative associations correlating with worse tissue quality. T2 mapping showed time-dependent correlations with iHOT-12 scores, indicating that worse cartilage or labral quality predicts poorer long-term outcomes. These findings support the utility of T2 mapping as a preoperative tool for prognosis in hip preservation surgery. Full article
(This article belongs to the Special Issue New Developments in Musculoskeletal Imaging)
Show Figures

Figure 1

62 pages, 2440 KiB  
Article
Macroeconomic and Labor Market Drivers of AI Adoption in Europe: A Machine Learning and Panel Data Approach
by Carlo Drago, Alberto Costantiello, Marco Savorgnan and Angelo Leogrande
Economies 2025, 13(8), 226; https://doi.org/10.3390/economies13080226 - 5 Aug 2025
Abstract
This article investigates the macroeconomic and labor market conditions that shape the adoption of artificial intelligence (AI) technologies among large firms in Europe. Based on panel data econometrics and supervised machine learning techniques, we estimate how public health spending, access to credit, export [...] Read more.
This article investigates the macroeconomic and labor market conditions that shape the adoption of artificial intelligence (AI) technologies among large firms in Europe. Based on panel data econometrics and supervised machine learning techniques, we estimate how public health spending, access to credit, export activity, gross capital formation, inflation, openness to trade, and labor market structure influence the share of firms that adopt at least one AI technology. The research covers all 28 EU members between 2018 and 2023. We employ a set of robustness checks using a combination of fixed-effects, random-effects, and dynamic panel data specifications supported by Clustering and supervised learning techniques. We find that AI adoption is linked to higher GDP per capita, healthcare spending, inflation, and openness to trade but lower levels of credit, exports, and capital formation. Labor markets with higher proportions of salaried work, service occupations, and self-employment are linked to AI diffusion, while unemployment and vulnerable work are detractors. Cluster analysis identifies groups of EU members with similar adoption patterns that are usually underpinned by stronger economic and institutional fundamentals. The results collectively suggest that AI diffusion is shaped not only by technological preparedness and capabilities to invest but by inclusive macroeconomic conditions and equitable labor institutions. Targeted policy measures can accelerate the equitable adoption of AI technologies within the European industrial economy. Full article
(This article belongs to the Special Issue Digital Transformation in Europe: Economic and Policy Implications)
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Influence of Molecular Weight of Anthraquinone Acid Dyes on Color Strength, Migration, and UV Protection of Polyamide 6 Fabrics
by Nawshin Farzana, Abu Naser Md Ahsanul Haque, Shamima Akter Smriti, Abu Sadat Muhammad Sayem, Fahmida Siddiqa, Md Azharul Islam, Md Nasim and S M Kamrul Hasan
Physchem 2025, 5(3), 31; https://doi.org/10.3390/physchem5030031 - 4 Aug 2025
Abstract
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers [...] Read more.
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers comparative insight into how the Mw of structurally similar anthraquinone acid dyes impacts their diffusion, fixation, and functional outcomes (e.g., UV protection) on polyamide 6 fabric, using Acid Blue 260 (Mw~564) and Acid Blue 127:1 (Mw~845) as representative low- and high-Mw dyes. The effects of dye concentration, pH, and temperature on color strength (K/S) were evaluated, migration index and zeta potential were measured, and UV protection factor (UPF) and FTIR analyses were used to assess fabric functionality. Results showed that the lower-Mw dye exhibited higher migration tendency, particularly at increased dye concentrations, while the higher-Mw dye demonstrated greater color strength and superior wash fastness. Additionally, improved UPF ratings were associated with higher-Mw dye due to enhanced light absorption. These findings offer practical insights for optimizing acid dye selection in polyamide coloration to balance color performance and functional attributes. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

7 pages, 888 KiB  
Proceeding Paper
Analyzing at Scale the Effects of Optimal Global Sequence Alignment on Sequence Similarity Using a GPU-Optimized Implementation of the Needleman-Wunsch Algorithm and the SBERT Module
by Emilia Pardo, Valko Milev, Ventsislav Kolev and Maria Marinova
Eng. Proc. 2025, 100(1), 66; https://doi.org/10.3390/engproc2025100066 - 4 Aug 2025
Abstract
Global sequence alignment remains a fundamental technique in bioinformatics, yet its large-scale application is often limited by computational demands. In this work, we explore the impact of optimal global sequence alignment on sequence similarity by combining a GPU-accelerated version of the Needleman–Wunsch algorithm [...] Read more.
Global sequence alignment remains a fundamental technique in bioinformatics, yet its large-scale application is often limited by computational demands. In this work, we explore the impact of optimal global sequence alignment on sequence similarity by combining a GPU-accelerated version of the Needleman–Wunsch algorithm with Sentence-BERT (SBERT), a transformer-based embedding model. This setup allows us to perform exhaustive alignments across large datasets while also capturing semantic similarities that traditional scoring schemes may miss. By comparing alignment scores with SBERT-derived similarity metrics, we examine where classical alignment aligns with—or diverges from—contextual similarity. Our results show that while there is general agreement between the two approaches, notable exceptions highlight cases where semantic meaning extends beyond structural alignment. The combination of efficient global alignment and deep semantic modeling offers new insights into the relationship between sequence form and function, opening the door for more nuanced similarity measures in both biological and textual sequence analysis. Full article
Show Figures

Figure 1

20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

16 pages, 13514 KiB  
Article
Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
by Runze Song, Haoyu Liu, Yueyang Hu, Man Zhang and Wenyi Sheng
Appl. Sci. 2025, 15(15), 8612; https://doi.org/10.3390/app15158612 (registering DOI) - 4 Aug 2025
Abstract
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the [...] Read more.
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the synchronous acquisition of three types of crop data: visible light images, thermal infrared images, and laser point clouds. The paper innovatively proposed the Difference Structural Similarity Index Measure (DSSIM) index, combined with statistical indicators (average point number difference, average coordinate error), distribution characteristic indicators (Charm distance), and Hausdorff distance to characterize the stability of the system. After 72 consecutive hours of synchronization testing on the timing boards, it was verified that the root mean square error of the synchronization time for each timing board reached the ns level. The synchronous trigger acquisition time for crop parameters under time synchronization was controlled at the microsecond level. Using pepper as the crop sample, 133 consecutive acquisitions were conducted. The acquisition success rate for the three phenotypic data types of pepper samples was 100%, with a DSSIM of approximately 0.96. The average point number difference and average coordinate error were both about 3%, while the Charm distance and Hausdorff distance were only 1.14 mm and 5 mm. This system can provide hardware support for multi-parameter acquisition and data registration in the fast mobile crop phenotype platform, laying a reliable data foundation for crop growth monitoring, intelligent yield analysis, and prediction. Full article
(This article belongs to the Special Issue Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 5366 KiB  
Article
Multifaceted Analysis of Pr2Fe16.75Ni0.25 Intermetallic Compound: Crystallographic Insights, Critical Phenomena, and Thermomagnetic Behavior near Room Temperature
by Jihed Horcheni, Hamdi Jaballah, Sirine Gharbi, Essebti Dhahri and Lotfi Bessais
Magnetochemistry 2025, 11(8), 65; https://doi.org/10.3390/magnetochemistry11080065 - 31 Jul 2025
Viewed by 67
Abstract
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe [...] Read more.
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe16.9Ni0.25 also demonstrates a direct magnetocaloric effect near room temperature, accompanied by a moderate magnetic entropy change (ΔSMmax = 5.5 J kg−1 K−1 at μ0ΔH=5 T) and a broad working temperature range. Furthermore, the Relative Cooling Power (RCP) is approximately 89% of the widely recognized gadolinium (Gd) for μ0ΔH=2 T. This compound exhibits a commendable magnetocaloric response, on par with or even surpassing that of numerous other intermetallic alloys. Critical behavior was analyzed using thermo-magnetic measurements, employing methods such as the modified Arrott plot, critical isotherm analysis, and Kouvel-Fisher techniques. The obtained critical exponents (β, γ, and δ) exhibit similarities to those of the 3D-Ising model, characterized explicitly by intermediate range interactions. Full article
Show Figures

Figure 1

29 pages, 6079 KiB  
Article
A Highly Robust Terrain-Aided Navigation Framework Based on an Improved Marine Predators Algorithm and Depth-First Search
by Tian Lan, Ding Li, Qixin Lou, Chao Liu, Huiping Li, Yi Zhang and Xudong Yu
Drones 2025, 9(8), 543; https://doi.org/10.3390/drones9080543 - 31 Jul 2025
Viewed by 234
Abstract
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. [...] Read more.
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. To overcome these challenges, we propose a novel terrain-aided navigation framework integrating an Improved Marine Predators Algorithm with Depth-First Search optimization (DFS-IMPA-TAN). This framework maintains positioning precision in partially self-similar terrains through two synergistic mechanisms: (1) IMPA-driven optimization based on the hunger-inspired adaptive exploitation to determine optimal trajectory transformations, cascaded with Kalman filtering for navigation state correction; (2) a Robust Tree (RT) hypothesis manager that maintains potential trajectory candidates in graph-structured memory, employing Depth-First Search for ambiguity resolution in feature matching. Experimental validation through simulations and in-vehicle testing demonstrates the framework’s distinctive advantages: (1) consistent terrain association in partially self-similar topographies; (2) inherent error resilience against ambiguous feature measurements; and (3) long-term navigation stability. In all experimental groups, the root mean squared error of the framework remained around 60 m. Under adverse conditions, its navigation accuracy improved by over 30% compared to other traditional batch processing TAN methods. Comparative analysis confirms superior performance over conventional methods under challenging conditions, establishing DFS-IMPA-TAN as a robust navigation solution for AUVs in complex underwater environments. Full article
Show Figures

Figure 1

19 pages, 2222 KiB  
Article
Low Metabolic Variation in Environmentally Diverse Natural Populations of Temperate Lime Trees (Tilia cordata)
by Carl Barker, Paul Ashton and Matthew P. Davey
Metabolites 2025, 15(8), 509; https://doi.org/10.3390/metabo15080509 - 31 Jul 2025
Viewed by 140
Abstract
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations [...] Read more.
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations of many tree species, there is a high likelihood of local adaption or the acclimation of functional traits in these populations across the UK. Objectives: Given the slow growth and often isolated populations of Tilia cordata (lime tree), we hypothesised that there is a high likelihood of local adaptation or the acclimation of metabolic traits in these populations across the UK. Our aim was to test if the functional metabolomic traits of Tilia cordata (lime tree), collected in situ from natural populations, varied within and between populations and to compare this to neutral allele variation in the population. Methods: We used a metabolic fingerprinting approach to obtain a snapshot of the metabolic status of leaves collected from T. cordata from six populations across the UK. Environmental metadata, longer-term functional traits (specific leaf area) and neutral allelic variation in the population were also measured to assess the plastic capacity and local adaptation of the species. Results: The metabolic fingerprints derived from leaf material collected and fixed in situ from individuals in six populations of T. cordata across its UK range were similar, despite contrasting environmental conditions during sampling. Neutral allele frequencies showed almost no significant group structure, indicating low differentiation between populations. The specific leaf area did vary between sites. Conclusions: The low metabolic variation between UK populations of T. cordata despite contrasting environmental conditions during sampling indicates high levels of phenotypic plasticity. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

9 pages, 703 KiB  
Article
Development of the Visual Analysis of Form and Contour
by Clay Mash, Lauren M. Henry and Marc H. Bornstein
Children 2025, 12(8), 1005; https://doi.org/10.3390/children12081005 - 30 Jul 2025
Viewed by 168
Abstract
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. [...] Read more.
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. The present work used IC stimuli to study the development of visual form detection and extraction in infants and adults. Methods: Infant and adult participants viewed square stimulus forms with either real or illusory contours, while their looking behavior was measured with an eye tracker. Fixations of the stimuli were coded by region, distinguishing between the contours of the forms and within the forms themselves. Fixations were summed by region, and fixations on forms were interpreted to index the detection of coherent, whole forms. Fixations on contours (real and illusory) were interpreted to index the extraction of form edges. Results: Total form fixations differed by age. For real contours, fixations by infants exceeded those by adults; when contours were illusory, adult fixations were greater than those of infants. Contour fixations were similar between ages. Infants and adults both looked more at contours when illusory than when real. Conclusions: Together, the results provide new conclusions about change and continuity in the visual analysis of form and contour. The results suggest that the visual detection and binding of simple form structure appears to develop between infancy and adulthood. However, the exploration of contours that support the extraction of form contours from backgrounds appears to change little between infancy and adulthood. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

15 pages, 4667 KiB  
Article
Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus
by Kaitlyn A. Sapoznik, Stephen A. Burns, Todd D. Peabody, Lucie Sawides, Brittany R. Walker and Thomas J. Gast
Diagnostics 2025, 15(15), 1904; https://doi.org/10.3390/diagnostics15151904 - 29 Jul 2025
Viewed by 240
Abstract
Background: Choroidal nevi are common, benign tumors. These tumors rarely cause adverse retinal sequalae, but when they do, they can lead to disruption of the outer retina and vision loss. In this paper, we used high-resolution retinal imaging modalities, optical coherence tomography [...] Read more.
Background: Choroidal nevi are common, benign tumors. These tumors rarely cause adverse retinal sequalae, but when they do, they can lead to disruption of the outer retina and vision loss. In this paper, we used high-resolution retinal imaging modalities, optical coherence tomography (OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO), to longitudinally monitor retinal sequelae of a submacular choroidal nevus. Methods: A 31-year-old female with a high-risk choroidal nevus resulting in subretinal fluid (SRF) and a 30-year-old control subject were longitudinally imaged with AOSLO and OCT in this study over 18 and 22 months. Regions of interest (ROI) including the macular region (where SRF was present) and the site of laser photocoagulation were imaged repeatedly over time. The depth of SRF in a discrete ROI was quantified with OCT and AOSLO images were assessed for visualization of photoreceptors and retinal pigmented epithelium (RPE). Cell-like structures that infiltrated the site of laser photocoagulation were measured and their count was assessed over time. In the control subject, images were assessed for RPE visualization and the presence and stability of cell-like structures. Results: We demonstrate that AOSLO can be used to assess cellular-level changes at small ROIs in the retina over time. We show the response of the retina to SRF and laser photocoagulation. We demonstrate that the RPE can be visualized when SRF is present, which does not appear to depend on the height of retinal elevation. We also demonstrate that cell-like structures, presumably immune cells, are present within and adjacent to areas of SRF on both OCT and AOSLO, and that similar cell-like structures infiltrate areas of retinal laser photocoagulation. Conclusions: Our study demonstrates that dynamic, cellular-level retinal responses to SRF and laser photocoagulation can be monitored over time with AOSLO in living humans. Many retinal conditions exhibit similar retinal findings and laser photocoagulation is also indicated in numerous retinal conditions. AOSLO imaging may provide future opportunities to better understand the clinical implications of such responses in vivo. Full article
(This article belongs to the Special Issue High-Resolution Retinal Imaging: Hot Topics and Recent Developments)
Show Figures

Figure 1

12 pages, 426 KiB  
Article
Macroeconomic Determinants of Subjective Well-Being in Portugal: Pathways to Social Sustainability
by Natália Teixeira, Leandro Pereira and Rui Vinhas da Silva
Sustainability 2025, 17(15), 6888; https://doi.org/10.3390/su17156888 - 29 Jul 2025
Viewed by 224
Abstract
The measurement of national well-being has become central to both academic and policy debates, particularly within the framework of sustainable development. In this context, this study investigates the relationship between macroeconomic conditions and subjective well-being in Portugal. Using annual data from 2004 to [...] Read more.
The measurement of national well-being has become central to both academic and policy debates, particularly within the framework of sustainable development. In this context, this study investigates the relationship between macroeconomic conditions and subjective well-being in Portugal. Using annual data from 2004 to 2022, we explore the effects of GDP per capita, unemployment, and inflation on the Global Well-Being Index (GWBI). Employing ordinary least squares (OLS) regression, the results indicate a significant positive relationship between GDP per capita and subjective well-being, while inflation is negatively associated. Contrary to expectations, the unemployment rate showed a positive and significant association with the GWBI. This counterintuitive result may reflect institutional buffering effects, such as social safety nets, strong family structures, or lagged responses in perceptions of well-being. Similar patterns were observed in other southern European countries with strong informal social support systems. These findings contribute to a deeper understanding of how economic indicators relate to perceived well-being, particularly in the context of a southern European country. The study offers relevant insights for public policy, including the alignment of macroeconomic management with the Sustainable Development Goals (SDGs), especially SDG 3 (Good Health and Well-being) and SDG 8 (Decent Work and Economic Growth). Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

20 pages, 3334 KiB  
Article
Brush Stroke-Based Writing Trajectory Control Model for Robotic Chinese Calligraphy
by Dongmei Guo, Wenjun Fang and Wenwen Yang
Electronics 2025, 14(15), 3000; https://doi.org/10.3390/electronics14153000 - 28 Jul 2025
Viewed by 270
Abstract
Engineering innovations play a critical role in achieving the United Nations’ Sustainable Development Goals, especially in human–robotic interaction and precise engineering. For the robot, writing Chinese calligraphy with hairy brush pen is a form of precision operation. Existing writing trajectory control models mainly [...] Read more.
Engineering innovations play a critical role in achieving the United Nations’ Sustainable Development Goals, especially in human–robotic interaction and precise engineering. For the robot, writing Chinese calligraphy with hairy brush pen is a form of precision operation. Existing writing trajectory control models mainly focus on writing trajectory models, and the fine-grained trajectory control model based on brush strokes is not studied. The problem of how to establish writing trajectory control based on brush stroke model needs to be solved. On the basis of the proposed composite-curve-dilation brush stroke model (CCD-BSM), this study investigates the control methods of intelligent calligraphy robots and proposed fine-grained writing trajectory control models that conform to the rules of brush calligraphy to reflect the local writing characteristics. By decomposing and refining each writing process, control models in the process of brush movement are analyzed and modeled. According to the writing rules, fine-grained writing trajectory control models of strokes are established based on the CCD-BSM. The parametric representations of the control models are built for the three stages of initiation, execution, and completion of strokes writing. Experimental results demonstrate that the proposed fine-grained control models can exhibit excellent performances in basic strokes and Chinese characters with better writing capabilities. Compared with existing models, the writing results demonstrate the advantages of our proposed model in terms of high average similarity with two quantitative indicators Cosine similarity (CSIM) and Structural similarity index measure (SSIM), which are 99.54% and 97.57%, respectively. Full article
Show Figures

Figure 1

22 pages, 1822 KiB  
Article
Increased Concentration of Anti-Egg Albumin Antibodies in Cerebrospinal Fluid and Serum of Patients with Alzheimer’s Disease—Discussion on Human Serpins’ Similarity and Probable Involvement in the Disease Mechanism
by Dionysia Amanatidou, Magdalini Tsolaki, Vasileios Fouskas, Ioannis Gavriilidis, Maria Myriouni, Anna Anastasiou, Efthimia Papageorgiou, Diona Porfyriadou, Zoi Parcharidi, Eleftheria Papasavva, Maria Fili and Phaedra Eleftheriou
Biomolecules 2025, 15(8), 1085; https://doi.org/10.3390/biom15081085 - 27 Jul 2025
Viewed by 476
Abstract
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in [...] Read more.
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in AD, may facilitate immunologic response to food-derived antigens. In the present study, antibodies against egg albumin, bovine-casein, and N-Glycolyl-Neuraminic acid (Neu5Gc) were measured in the cerebrospinal fluid (CSF) and serum of the patients using an enzyme-linked immunosorbent assay (ELISA). Zero anti-Neu5Gc and low concentrations of anti-casein antibodies were detected. Increased anti-native egg albumin antibodies were present in the serum of patients of all stages with 65% positivity (p < 0.001) in mild disease and a higher percentage in females (81.9%, p < 0.001). Lower serum positivity to anti-denatured egg albumin antibodies was observed, showing a gradual increase with severity and higher prevalence also in females. In the CSF, anti-native and anti-denatured egg albumin antibodies were mainly observed in severely ill patients with accumulative positivity to either antigen, reaching 61.8% in severe vs. 15% in mild disease (p < 0.001). Increased values were mainly observed in males. Anti-egg albumin antibodies may be implicated in the disease mechanism through sequence/structural similarity with human proteins, mainly serpins, and it would be worth consideration in further investigations and therapeutic strategies. Full article
Show Figures

Figure 1

24 pages, 2508 KiB  
Article
Class-Discrepancy Dynamic Weighting for Cross-Domain Few-Shot Hyperspectral Image Classification
by Chen Ding, Jiahao Yue, Sirui Zheng, Yizhuo Dong, Wenqiang Hua, Xueling Chen, Yu Xie, Song Yan, Wei Wei and Lei Zhang
Remote Sens. 2025, 17(15), 2605; https://doi.org/10.3390/rs17152605 - 27 Jul 2025
Viewed by 333
Abstract
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for [...] Read more.
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for intra-class sample size variations and inherent inter-class differences. To address this problem, existing studies have introduced a class weighting mechanism within the prototype network framework, determining class weights by calculating inter-sample similarity through distance metrics. However, this method suffers from a dual limitation: susceptibility to noise interference and insufficient capacity to capture global class variations, which may lead to distorted weight allocation and consequently result in alignment bias. To solve these issues, we propose a novel class-discrepancy dynamic weighting-based cross-domain FSL (CDDW-CFSL) framework. It integrates three key components: (1) the class-weighted domain adaptation (CWDA) method dynamically measures cross-domain distribution shifts using global class mean discrepancies. It employs discrepancy-sensitive weighting to strengthen the alignment of critical categories, enabling accurate domain adaptation while maintaining feature topology; (2) the class mean refinement (CMR) method incorporates class covariance distance to compute distribution discrepancies between support set samples and class prototypes, enabling the precise capture of cross-domain feature internal structures; (3) a novel multi-dimensional feature extractor that captures both local spatial details and continuous spectral characteristics simultaneously, facilitating deep cross-dimensional feature fusion. The results in three publicly available HSIC datasets show the effectiveness of the CDDW-CFSL. Full article
Show Figures

Figure 1

Back to TopTop