Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (624)

Search Parameters:
Keywords = strong freshness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

30 pages, 7008 KiB  
Article
Microfossil (Diatoms, Tintinnids, and Testate Amoebae) Assemblages in the Holocene Sediments of the Laptev Sea Shelf off the Yana River as a Proxy for Paleoenvironments
by Maria S. Obrezkova, Lidiya N. Vasilenko, Ira B. Tsoy, Xuefa Shi, Limin Hu, Yaroslav V. Kuzmin, Aleksandr N. Kolesnik, Alexandr V. Alatortsev, Anna A. Mariash, Evgeniy A. Lopatnikov, Irina A. Yurtseva, Darya S. Khmel and Anatolii S. Astakhov
Quaternary 2025, 8(3), 40; https://doi.org/10.3390/quat8030040 - 30 Jul 2025
Viewed by 232
Abstract
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; [...] Read more.
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; additionally, five species of marine tintinnids (planktonic ciliates) and 15 species of freshwater testate amoebae (testacean) were discovered for the first time in the sea sediments. Three assemblages of microfossils reflecting the phases of environmental changes during the Holocene transgression are distinguished in the studied sediments of core LV83-32. Assemblage 1 was formed under terrestrial conditions (assemblage of diatoms Eunotia-Pinnularia and testacean Difflugia-Cylindrifflugia-Centropyxis), assemblage 2 in the zone of mixing of sea and fresh waters (assemblages of diatoms Cyclotella striata-Aulacoseira, Thalassiosira hyperborea-Chaetoceros and T. hyperborea-Aulacoseira, testacean Cyclopyxis kahli, tintinnids Tintinnopsis fimbriata), and assemblage 3 reflects modern conditions in the inner shelf of the Laptev Sea under the strong influence of river runoff (assemblage of diatoms T. hyperborea-Aulacoseira-M. arctica and tintinnids Tintinnopsis ventricosoides). Changes in the natural environment in the coastal part of the Laptev Sea shelf during the Holocene, established by microfossil assemblages, are confirmed by geochemical data. Full article
Show Figures

Figure 1

18 pages, 2018 KiB  
Article
Screening and Identification of Cadmium-Tolerant, Plant Growth-Promoting Rhizobacteria Strain KM25, and Its Effects on the Growth of Soybean and Endophytic Bacterial Community in Roots
by Jing Zhang, Enjing Yi, Yuping Jiang, Xuemei Li, Lanlan Wang, Yuzhu Dong, Fangxu Xu, Cuimei Yu and Lianju Ma
Plants 2025, 14(15), 2343; https://doi.org/10.3390/plants14152343 - 29 Jul 2025
Viewed by 313
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated [...] Read more.
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated and screened from the root nodules of semi-wild soybeans. The strain was identified as Pseudomonas sp. strain KM25 by 16S rRNA. Strain KM25 has strong Cd tolerance and can produce indole-3-acetic acid (IAA) and siderophores, dissolve organic and inorganic phosphorus, and has 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Under Cd stress, all growth indicators of soybean seedlings were significantly inhibited. After inoculation with strain KM25, the heavy metal stress of soybeans was effectively alleviated. Compared with the non-inoculated group, its shoot height, shoot and root dry weight, fresh weight, and chlorophyll content were significantly increased. Strain KM25 increased the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities of soybean seedlings, reduced the malondialdehyde (MDA) content, increased the Cd content in the roots of soybeans, and decreased the Cd content in the shoot parts. In addition, inoculation treatment can affect the community structure of endophytic bacteria in the roots of soybeans under Cd stress, increasing the relative abundance of Proteobacteria, Bacteroidetes, Sphingomonas, Rhizobium, and Pseudomonas. This study demonstrates that strain KM25 is capable of significantly reducing the adverse effects of Cd on soybean plants while enhancing their growth. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

19 pages, 3117 KiB  
Article
Feasibility and Accuracy of a Dual-Function AR-Guided System for PSI Positioning and Osteotomy Execution in Pelvic Tumour Surgery: A Cadaveric Study
by Tanya Fernández-Fernández, Javier Orozco-Martínez, Carla de Gregorio-Bermejo, Elena Aguilera-Jiménez, Amaia Iribar-Zabala, Lydia Mediavilla-Santos, Javier Pascau, Mónica García-Sevilla, Rubén Pérez-Mañanes and José Antonio Calvo-Haro
Bioengineering 2025, 12(8), 810; https://doi.org/10.3390/bioengineering12080810 - 28 Jul 2025
Viewed by 299
Abstract
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) [...] Read more.
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) system for intraoperative guidance in PSI positioning and osteotomy execution using a head-mounted display (HMD). The system provides dual-function support by assisting both PSI placement and osteotomy execution. Methods: Ten fresh-frozen cadaveric hemipelves underwent AR-assisted internal hemipelvectomy, using customized 3D-printed PSIs and a new in-house AR software integrated into an HMD. Angular and translational deviations between planned and executed osteotomies were measured using postoperative CT analysis. Absolute angular errors were computed from plane normals; translational deviation was assessed as maximum error at the osteotomy corner point in both sagittal (pitch) and coronal (roll) planes. A Wilcoxon signed-rank test and Bland–Altman plots were used to assess intra-workflow cumulative error. Results: The mean absolute angular deviation was 5.11 ± 1.43°, with 86.66% of osteotomies within acceptable thresholds. Maximum pitch and roll deviations were 4.53 ± 1.32 mm and 2.79 ± 0.72 mm, respectively, with 93.33% and 100% of osteotomies meeting translational accuracy criteria. Wilcoxon analysis showed significantly lower angular error when comparing final executed planes to intermediate AR-displayed planes (p < 0.05), supporting improved PSI positioning accuracy with AR guidance. Surgeons rated the system highly (mean satisfaction ≥ 4.0) for usability and clinical utility. Conclusions: This cadaveric study confirms the feasibility and precision of an HMD-based AR system for PSI-guided pelvic osteotomies. The system demonstrated strong accuracy and high surgeon acceptance, highlighting its potential for clinical adoption in complex oncologic procedures. Full article
Show Figures

Figure 1

24 pages, 1264 KiB  
Article
Internal Mechanism and Empirical Analysis of Digital Economy’s Impact on Agricultural New Quality Productive Forces: Evidence from China
by Yongsheng Xu, Ying Zhang, Siqing Wang, Mingzheng Zhao, Guifang Li, Yu Kang and Cuiping Zhao
Sustainability 2025, 17(15), 6844; https://doi.org/10.3390/su17156844 - 28 Jul 2025
Viewed by 432
Abstract
Agricultural new quality productive forces (ANQPFs) signify the progressive trajectory of modern agriculture. However, their development encounters significant challenges in many nations. The digital economy, characterized by its strong innovative capacity, offers continuous impetus for advancing agricultural new quality productive forces (ANQPFs). Based [...] Read more.
Agricultural new quality productive forces (ANQPFs) signify the progressive trajectory of modern agriculture. However, their development encounters significant challenges in many nations. The digital economy, characterized by its strong innovative capacity, offers continuous impetus for advancing agricultural new quality productive forces (ANQPFs). Based on panel data from 30 Chinese provinces (2014–2023), this study employs a two-way fixed-effects model, mediation and threshold effect analyses, and a spatial Durbin model to comprehensively assess the influence of the digital economy (DE) on agricultural new quality productive forces (ANQPFs). The findings reveal that (1) the digital economy (DE) significantly enhances the advancement of agricultural new quality productive forces (ANQPFs); (2) while its positive effect is pronounced in eastern, central, and western China, the impact is weaker in the northeastern region; (3) rural financial development (RFD) acts as a mediator in the relationship between digital economy (DE) growth and agricultural new quality productive forces (ANQPFs); (4) the digital economy (DE)’s contribution to agricultural new quality productive forces (ANQPFs) demonstrates non-linear trends; and (5) spatially, while the digital economy (DE) boosts the local agricultural new quality productive forces (ANQPFs), it exerts a negative spillover effect on neighboring areas. This research offers fresh empirical insights into the determinants of agricultural new quality productive forces (ANQPFs) and suggests policy measures to support agricultural modernization. Full article
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 297
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

13 pages, 3303 KiB  
Article
Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns
by Dmitry A. Ruban
Diversity 2025, 17(8), 505; https://doi.org/10.3390/d17080505 - 23 Jul 2025
Viewed by 154
Abstract
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and [...] Read more.
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and the reactions of their diversity to the Earth’s dramatic changes are poorly understood. The present work aims to fill this gap via a comparison of several diversity and paleoenvironmental curves. The generic diversity was established by stages with two essentially different paleontological datasets, and several fresh paleoenvironmental reconstructions were adopted. It was observed that neither Paleogene eustatic fluctuations nor changes in the atmospheric carbon dioxide content correspond well to the generic diversity dynamics of brachiopods. The changes in the total number of genera and the global temperatures demonstrate similarity at the Danian–Ypresian interval, but not later. The fluctuations in the brachiopod diversity are near the same level during the Eocene–Oligocene, despite strong paleoenvironmental changes, implying the intrinsic resistivity of these organisms to external influences. Additionally, the Cretaceous/Paleogene mass extinction, the Paleocene–Eocene thermal maximum, and the Early Eocene optimum could enhance the diversity dynamics together with the long-term temperature changes. In contrast, the influences of the Late Danian warming event and the Oi-1 glaciation were not observed. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

22 pages, 17694 KiB  
Article
Studies on Host–Parasite Relationship Between Soybean Plants and Aphelenchoides besseyi
by Neveen Atta Elhamouly, Nehal Atta, Shiming Liu and Deliang Peng
Life 2025, 15(7), 1154; https://doi.org/10.3390/life15071154 - 21 Jul 2025
Viewed by 369
Abstract
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the [...] Read more.
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the open field. The present investigation successfully shed light on some significant new points, including the following: (1) A. besseyi was confirmed inside all soybean tissues—including roots, stems, leaves, and seeds—indicating its endoparasitic nature and its strong ability to reach the upper foliar system where it causes green stem and foliar retention syndrome (GSFR) symptoms; (2) inoculated plants exhibited reduced vegetative growth parameters, as non-inoculated control soybean plants showed higher values of plant height (PH), fresh root weight (FRW), and fresh shoot weight (FSW) compared to inoculated plants; (3) Yudou 29 was identified as highly resistant to A. besseyi, as results from the resistance screening assay among different Chinese soybean cultivars confirmed its strong resistance under natural field infestation conditions; and (4) soybean seeds may act as inoculum sources of A. besseyi, highlighting the need to develop more effective control measures to prevent or limit nematode dissemination through seed transmission. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

26 pages, 4943 KiB  
Article
Ultrasonic Pulse Velocity for Real-Time Filament Quality Monitoring in 3D Concrete Printing Construction
by Luis de la Flor Juncal, Allan Scott, Don Clucas and Giuseppe Loporcaro
Buildings 2025, 15(14), 2566; https://doi.org/10.3390/buildings15142566 - 21 Jul 2025
Viewed by 296
Abstract
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance of quality control in 3DCP is broadly acknowledged, research lacks systematic methods. This research investigates the feasibility of using ultrasonic pulse velocity (UPV) as a practical, in situ, real-time monitoring tool for 3DCP. Two different groups of binders were investigated: limestone calcined clay (LC3) and zeolite-based mixes in binary and ternary blends. Filaments of 200 mm were extruded every 5 min, and UPV, pocket hand vane, flow table, and viscometer tests were performed to measure pulse velocity, shear strength, relative deformation, yield stress, and plastic viscosity, respectively, in the fresh state. Once the filaments presented printing defects (e.g., filament tearing, filament width reduction), the tests were concluded, and the open time was recorded. Isothermal calorimetry tests were conducted to obtain the initial heat release and reactivity of the supplementary cementitious materials (SCMs). Results showed a strong correlation (R2 = 0.93) between UPV and initial heat release, indicating that early hydration (ettringite formation) influenced UPV and determined printability across different mixes. No correlation was observed between the other tests and hydration kinetics. UPV demonstrated potential as a real-time monitoring tool, provided the mix-specific pulse velocity is established beforehand. Further research is needed to evaluate UPV performance during active printing when there is an active flow through the printer. Full article
Show Figures

Figure 1

15 pages, 918 KiB  
Article
Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat
by Željko Dolijanović, Svetlana Roljević Nikolić, Srdjan Šeremešić, Danijel Jug, Milena Biljić, Stanka Pešić and Dušan Kovačević
Agronomy 2025, 15(7), 1742; https://doi.org/10.3390/agronomy15071742 - 19 Jul 2025
Viewed by 303
Abstract
Choosing appropriate tillage methods and nitrogen application are important steps in the management of wheat production for obtaining high-yield and high-quality products, as well as managing the level of weed infestation. The aim of this research was to examine the impacts of three [...] Read more.
Choosing appropriate tillage methods and nitrogen application are important steps in the management of wheat production for obtaining high-yield and high-quality products, as well as managing the level of weed infestation. The aim of this research was to examine the impacts of three different tillage practices (conventional tillage—CT, mulch tillage—MT, and no tillage—NT), and two top dressing fertilization nitrogen levels (rational—60 kg ha−1 and high—120 kg ha−1) on the grain yield and quality of winter wheat, as well as on weed infestation. The present study was carried out in field experiments on chernozem luvic type soil at the Faculty of Agriculture Belgrade-Zemun Experimental field trial “Radmilovac”, in the growing seasons of 2020/2021–2022/2023. The C/N ratio in the soil was also assessed on all plots. The results showed that the number of weeds and their fresh and air-dry weights were higher on the MT and NT plots, compared to the CT plots. Therefore, the CT system has better effects on the yield (5.91 and 5.36 t ha−1) and the protein content (13.3 and 13.1%). Furthermore, the grain weight per spike and the 1000-grain weight were higher in the wheat from the CT system (41.83 and 42.75 g) than from the MT (40.34 and 41.49 g) and NT (40.26 and 41.08 g) systems. Also, the crops from the CT system had higher values of grain density and grain uniformity compared to the crop from the MT and NT systems. Fertilization with a high nitrogen level (120 kg ha−1) causes higher grain yield and more weediness compared with the rational level (60 kg ha−1). Top dressing fertilization in each tillage system resulted in an increase in the number of weeds, but, at the same time, it also resulted in stronger competitive ability of the wheat crop against weeds. The most favorable C/N ratio occurred on the NT plots, and the least beneficial one on the CT ones. A correlation analysis showed strong negative correlations of number (r = −0.82) and fresh weed mass (r = −0.72) with yield. It is concluded that the conventional tillage practice with a low nitrogen dose manifests its superior performance in minimizing weed infestation and maximizing crop productivity. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

32 pages, 3188 KiB  
Article
Forty Years After Chernobyl: Radiocaesium in Wild Edible Mushrooms from North-Eastern Poland and Its Relevance for Dietary Exposure and Food Safety
by Iwona Mirończuk-Chodakowska, Jacek Kapała, Karolina Kujawowicz, Monika Sejbuk and Anna Maria Witkowska
Toxics 2025, 13(7), 601; https://doi.org/10.3390/toxics13070601 - 17 Jul 2025
Viewed by 331
Abstract
Wild-growing edible mushrooms are known to bioaccumulate radionuclides from their environment, particularly the natural isotope potassium-40 (40K) and anthropogenic cesium-137 (137Cs). However, region-specific data for commercially relevant species in north-eastern Poland remain limited, despite the cultural and economic importance [...] Read more.
Wild-growing edible mushrooms are known to bioaccumulate radionuclides from their environment, particularly the natural isotope potassium-40 (40K) and anthropogenic cesium-137 (137Cs). However, region-specific data for commercially relevant species in north-eastern Poland remain limited, despite the cultural and economic importance of mushroom foraging and export. This study aimed to assess the radiological safety of wild mushrooms intended for human consumption, with particular attention to regulatory compliance and potential exposure levels. In this study, 230 mushroom samples representing 19 wild edible species were analyzed using gamma spectrometry, alongside composite soil samples collected from corresponding foraging sites. The activity concentration of 137Cs in mushrooms ranged from 0.94 to 159.0 Bq/kg fresh mass (f.m.), and that of 40K from 64.4 to 150.2 Bq/kg f.m. None of the samples exceeded the regulatory limit of 1250 Bq/kg f.m. for 137Cs. The highest estimated annual effective dose was 2.32 µSv from 137Cs and 0.93 µSv from 40K, with no exceedance of regulatory limits observed in any sample. A strong positive correlation was observed between 137Cs activity in soil and mushroom dry mass (Spearman’s Rho = 0.81, p = 0.042), supporting predictable transfer patterns. Additionally, the implications of mushroom drying were assessed considering Council Regulation (Euratom) 2016/52, which mandates radionuclide levels in dried products be evaluated based on their reconstituted form. After such adjustment, even the most contaminated dried samples were found to comply with food safety limits. These findings confirm the radiological safety of wild mushrooms from north-eastern Poland and contribute novel data for a region with limited prior monitoring, in the context of current food safety regulations. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

26 pages, 4164 KiB  
Review
Methodologies to Design Optimum 3D Printable Mortar Mix: A Review
by Isabelle Gerges, Faten Abi Farraj, Nicolas Youssef, Emmanuel Antczak and Fadi Hage Chehade
Buildings 2025, 15(14), 2497; https://doi.org/10.3390/buildings15142497 - 16 Jul 2025
Viewed by 225
Abstract
Nowadays, 3D printing has revolutionized the construction and building industry, enabling researchers to push the boundaries of creating structural components with this innovative technique. A key factor for the success of this approach lies in selecting the optimal mix design, which must possess [...] Read more.
Nowadays, 3D printing has revolutionized the construction and building industry, enabling researchers to push the boundaries of creating structural components with this innovative technique. A key factor for the success of this approach lies in selecting the optimal mix design, which must possess suitable properties for printing while ensuring strong performance once hardened. However, achieving this optimal mix is complex due to limited knowledge regarding the necessary fresh-state properties, the characteristics and proportions of the constituents, the influence of printing parameters on these properties, and the various challenges encountered during and post printing. This paper aims to address these aspects by offering a comprehensive review of the steps researchers have taken to develop an optimized 3D printable mix. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1054 KiB  
Article
Dry-Cured Bísaro Ham: Differences in Physicochemical Characteristics, Fatty Acid Profile and Volatile Compounds Between Muscles
by Lia Vasconcelos, Luís G. Dias, Ana Leite, José M. Lorenzo, Alfredo Teixeira, Sandra S. Q. Rodrigues and Javier Mateo
Foods 2025, 14(14), 2474; https://doi.org/10.3390/foods14142474 - 15 Jul 2025
Viewed by 1133
Abstract
The aim of this study was to evaluate differences in the physicochemical characteristics, fatty acid profiles and volatile compounds of different muscle types (semimembranosus (SM), biceps femoris (BF) and semitendinosus (ST)) used to produce dry-cured Bísaro ham. Sixteen dry-cured hams were used. [...] Read more.
The aim of this study was to evaluate differences in the physicochemical characteristics, fatty acid profiles and volatile compounds of different muscle types (semimembranosus (SM), biceps femoris (BF) and semitendinosus (ST)) used to produce dry-cured Bísaro ham. Sixteen dry-cured hams were used. The physicochemical parameters were significantly affected by the muscle type, with the differences being mainly related to the different drying degrees and the intramuscular fat and collagen contents of the fresh muscles. Additionally, the type of muscle had a significant influence on the polyunsaturated fatty acids, such that the muscle with the highest fat content (ST) had the lowest PUFA content and vice versa. There were strong significant differences in the total content of volatile compounds derived from the Strecker reaction, which was higher in the ST muscle, and in the proportions of these compounds with different functional groups. The amount of sulfur compounds was also affected by the muscle type and was higher in the SM muscle. Due to the great impact of Strecker-derived and sulfur compounds on the flavor of the cured hams, these differences would affect the flavor perception of the different muscles. The variability between muscles in composition, fatty acids and volatile compounds allowed for discrimination of the samples by muscle type using multivariate analysis. Full article
(This article belongs to the Special Issue Conventional and Emerging Technologies for Meat Processing)
Show Figures

Figure 1

21 pages, 4101 KiB  
Article
A Physics-Informed Neural Network Solution for Rheological Modeling of Cement Slurries
by Huaixiao Yan, Jiannan Ding and Chengcheng Tao
Fluids 2025, 10(7), 184; https://doi.org/10.3390/fluids10070184 - 13 Jul 2025
Viewed by 361
Abstract
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the [...] Read more.
Understanding the rheological properties of fresh cement slurries is essential to maintain optimal pumpability, achieve dependable zonal isolation, and preserve long-term well integrity in oil and gas cementing operations and the 3D printing cement and concrete industry. However, accurately and efficiently modeling the rheological behavior of cement slurries remains challenging due to the complex fluid properties of fresh cement slurries, which exhibit non-Newtonian and thixotropic behavior. Traditional numerical solvers typically require mesh generation and intensive computation, making them less practical for data-scarce, high-dimensional problems. In this study, a physics-informed neural network (PINN)-based framework is developed to solve the governing equations of steady-state cement slurry flow in a tilted channel. The slurry is modeled as a non-Newtonian fluid with viscosity dependent on both the shear rate and particle volume fraction. The PINN-based approach incorporates physical laws into the loss function, offering mesh-free solutions with strong generalization ability. The results show that PINNs accurately capture the trend of velocity and volume fraction profiles under varying material and flow parameters. Compared to conventional solvers, the PINN solution offers a more efficient and flexible alternative for modeling complex rheological behavior in data-limited scenarios. These findings demonstrate the potential of PINNs as a robust tool for cement slurry rheological modeling, particularly in scenarios where traditional solvers are impractical. Future work will focus on enhancing model precision through hybrid learning strategies that incorporate labeled data, potentially enabling real-time predictive modeling for field applications. Full article
(This article belongs to the Special Issue Advances in Computational Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

Back to TopTop