Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diversity Dynamics
3.2. Comparisons to Selected Paleoenvironmental Changes
4. Discussion
4.1. Summarized Findings and Their Interpretations
4.2. Long-Term Versus Short-Term Factors
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Haq, B.U.; Ogg, J.G. Retraversing the Highs and Lows of Cenozoic Sea Levels. GSA Today 2024, 34, 4–11. [Google Scholar] [CrossRef]
- Miller, K.G.; Schmelz, W.J.; Browning, J.V.; Rosenthal, Y.; Hess, V.A.; Kopp, R.E.; Wright, J.D. Global Mean and Relative Sea-Level Changes Over the Past 66 Myr: Implications for Early Eocene Ice Sheets. Earth Sci. Syst. Soc. 2024, 3, 10091. [Google Scholar] [CrossRef]
- Ruban, D.A. Unawareness and Theorizing in Modern Geology: Two Examples Based on Citation Analysis. Earth 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Garzanti, E.; Qi, J.; Kang, H.; Nong, H.; Wu, L.; Ding, J.; Wang, X.; Wang, C. A century of knowledge growth in sedimentology. Gondwana Res. 2025, 145, 49–56. [Google Scholar] [CrossRef]
- Carlson, S.J. The Evolution of Brachiopoda. Annu. Rev. Earth Planet. Sci. 2016, 44, 409–438. [Google Scholar] [CrossRef]
- Curry, G.B.; Brunton, C.H.C. Stratigraphic distribution of brachiopods. In Treatise on Invertebrate Paleontology; Part H. Brachiopoda. Revised; Selden, P.A., Ed.; Geological Society of America, University of Kansas: Boulder, KS, USA, 2007; Volume 6, pp. 2901–3081. [Google Scholar]
- Chen, Z.-Q.; Kaiho, K.; George, A.D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 224, 270–290. [Google Scholar] [CrossRef]
- Copper, P. Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas. Acta Palaeontol. Pol. 1998, 43, 137–154. [Google Scholar]
- García Joral, F.; Gómez, J.J.; Goy, A. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and Central Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 302, 367–380. [Google Scholar] [CrossRef]
- Mukherjee, D. Brachiopod migration and palaeosea temperatures: A case study from the Jurassic of Western India. Indian J. Geosci. 2016, 70–71, 269–276. [Google Scholar]
- Patzkowsky, M.E. Gradient analysis of Middle Ordovician brachiopod biofacies: Biostratigraphic, biogeographic, and macroevolutionary implications. Palaios 1995, 10, 154–179. [Google Scholar] [CrossRef]
- Powell, M.G.; Moore, B.R.; Smith, T.J. Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal biodiversity gradient through the Phanerozoic Eon. Paleobiology 2015, 41, 330–341. [Google Scholar] [CrossRef]
- Rong, J.-Y.; Harper, D.A.T. Brachiopod survival and recovery from the latest Ordovician mass extinctions in South China. Geol. J. 1999, 34, 321–348. [Google Scholar] [CrossRef]
- Ruban, D.A. Do the available data permit clarifcation of the possible dependence of Palaeozoic brachiopod generic diversity dynamics on global sea-level changes? A viewpoint. Geologos 2014, 20, 215–221. [Google Scholar] [CrossRef]
- Shi, K.; Huang, B. Is there synchronicity between brachiopod diversity changes and palaeobiogeographical shifts across the Late Ordovician mass extinction? Palaeontology 2024, 67, e12730. [Google Scholar] [CrossRef]
- Vörös, A.; Szives, O. Role of Oceanic Anoxic Events in regulating the Jurassic–Early Cretaceous taxonomic diversity of Mediterranean brachiopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 663, 112788. [Google Scholar] [CrossRef]
- Guo, Z.; Benton, M.J.; Stubbs, T.L.; Chen, Z.-Q. Morphological innovation did not drive diversification in Mesozoic–Cenozoic brachiopods. Nat. Ecol. Evol. 2024, 8, 1948–1958. [Google Scholar] [CrossRef]
- Afanasjeva, G.A. Diversity and Distribution of the Carboniferous Brachiopods of the Order Chonetida. Paleontol. J. 2022, 56, 487–495. [Google Scholar] [CrossRef]
- Corrêa, L.F.A.; Ramos, M.I.F. Relationships between brachiopod fauna (Lochkovian–Frasnian) from northwest Gondwana (Amazonas Basin) and environmental changes during the Devonian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 629, 111803. [Google Scholar] [CrossRef]
- Congreve, C.R.; Patzkowsky, M.E.; Wagner, P.J. An early burst in brachiopod evolution corresponding with significant climatic shifts during the Great Ordovician Biodiversification Event. Proc. R. Soc. B Biol. Sci. 2021, 288, 20211450. [Google Scholar]
- Sterren, A.F.; Cisterna, G.A. Bivalves and brachiopods in the Carboniferous—Early Permian of Argentine Precordillera: Diversification and faunal turnover in Southwestern Gondwana. Geol. Acta 2010, 8, 501–517. [Google Scholar]
- Ye, F.; Bitner, M.A. Exploring the association between temperature and multiple ecomorphological traits of biocalcifiers (Brachiopoda). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 667, 112883. [Google Scholar] [CrossRef]
- Foster, W.J.; Martindale, R.C.; Lehrmann, D.J.; Yu, M.; Ji, L. Persistent Environmental Stress Delayed the Recovery of Marine Communities in the Aftermath of the Latest Permian Mass Extinction. Paleoceanogr. Paleoclimatol. 2018, 33, 338–353. [Google Scholar] [CrossRef]
- Bitner, M.A.; Dulai, A.; Galácz, A. Middle Eocene brachiopods from the Szoc Limestone Formation (Bakony Mountains, Hungary), with a description of a new genus. Neues Jahrb. Geol. Palaontol. Abh. 2011, 259, 113–128. [Google Scholar] [CrossRef]
- Dulai, A.; Bitner, M.A.; Müller, P.Á.L. A monospecific assemblage of a new rhynchonellide brachiopod from the Paleocene of Austria. Foss. Strat. 2008, 54, 193–201. [Google Scholar]
- Dulai, A.; Von Der Hocht, F. Upper Oligocene brachiopods from NW Germany, with description of a new Platidiinae genus, Germanoplatidia n. gen. Riv. Ital. Paleontol. Stratigr. 2020, 126, 223–248. [Google Scholar]
- The Paleobiology Database. Available online: https://paleobiodb.org/ (accessed on 14 June 2025).
- Guenser, P.; Lefebvre, B.; El Hariri, K.; Jalil, N.-E. Historical bias in palaeontological collections: Stylophora (Echinodermata) as a case study. Swiss J. Palaeontol. 2025, 144, 6. [Google Scholar] [CrossRef]
- Raja, N.B.; Dunne, E.M.; Matiwane, A.; Khan, T.M.; Nätscher, P.S.; Ghilardi, A.M.; Chattopadhyay, D. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 2022, 6, 145–154. [Google Scholar] [CrossRef]
- Sepkoski, J.J., Jr. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 2002, 363, 1–560. [Google Scholar]
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. (Eds.) Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- International Commission on Stratigraphy. Available online: https://stratigraphy.org/ (accessed on 16 June 2025).
- Aubry, M.-P.; Piller, W.E.; Van Couvering, J.A.; Berggren, W.A.; Flynn, J.J.; Head, M.J.; Hilgen, F.; Jun, T.; Kent, D.V.; Miller, K.G. Unifying Cenozoic chronostratigraphy and geochronology: Applying the rules. Newsl. Stratigr. 2024, 57, 25–36. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Haq, B.U.; Al-Qahtani, A.M. Phanerozoic cycles of sea-level change on the Arabian platform. GeoArabia 2005, 10, 127–160. [Google Scholar] [CrossRef]
- Miller, K.G.; Kominz, M.A.; Browning, J.V.; Wright, J.D.; Mountain, G.S.; Katz, M.E.; Sugarman, P.J.; Cramer, B.S.; Christie-Blick, N.; Pekar, S.F. The Phanerozoic record of global sea-level change. Science 2005, 310, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Res. 2008, 20, 211–226. [Google Scholar] [CrossRef]
- Scotese, C.R.; Song, H.; Mills, B.J.W.; van der Meer, D.G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1388. [Google Scholar] [CrossRef]
- Hönisch, B.; Royer, D.L.; Breecker, D.O.; Polissar, P.J.; Bowen, G.J.; Henehan, M.J.; Cui, Y.; Steinthorsdottir, M.; McElwain, J.C.; Kohn, M.J.; et al. Toward a Cenozoic history of atmospheric CO2. Science 2023, 382, eadi5177. [Google Scholar]
- Zachos, J.; Pagani, H.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
- Young, A.; Flament, N.; Williams, S.E.; Merdith, A.; Cao, X.; Müller, R.D. Long-term Phanerozoic sea level change from solid Earth processes. Earth Planet. Sci. Lett. 2022, 584, 117451. [Google Scholar] [CrossRef]
- Grossman, E.L.; Joachimski, M.M. Ocean temperatures through the Phanerozoic reassessed. Sci. Rep. 2022, 12, 8938. [Google Scholar] [CrossRef]
- Prosorovskaya, E.L. Facies control of Jurassic brachiopods: Examples from Central Asia. In Proceedings of the Brachiopods—3d International Brachiopod Congress, Sudbery, ON, Canada, 2–5 September 1995; Copper, P., Jin, J., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1996; pp. 215–220. [Google Scholar]
- Bambach, R.K.; Knoll, A.H.; Wang, S.C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 2004, 30, 522–542. [Google Scholar] [CrossRef]
- Edie, S.M.; Collins, K.S.; Jablonski, D. The end-Cretaceous mass extinction restructured functional diversity but failed to configure the modern marine biota. Sci. Adv. 2025, 11, eadv1171. [Google Scholar] [CrossRef]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef]
- Johansen, M.B. Background extinction and mass extinction of the brachiopods from the chalk of northwest Europe. Palaios 1989, 4, 243–250. [Google Scholar] [CrossRef]
- Surlyk, F.; Johansen, M.B. End-Cretaceous brachiopod extinctions in the Chalk of Denmark. Science 1984, 223, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Tovar, F.J.; Lowery, C.M.; Gulick, S.P.S.; Bralower, T.J.; Jones, H.L. Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event. Geology 2020, 48, 1048–1052. [Google Scholar] [CrossRef]
- Deprez, A.; Speijer, R.P.; Jehle, S.; Bornemann, A. Pronounced biotic and environmental change across the latest Danian warming event (LDE) at Shatsky Rise, Pacific Ocean (ODP Site 1210). Mar. Micropaleontol. 2017, 137, 31–45. [Google Scholar] [CrossRef]
- Miniati, F.; Monechi, S.; Cappelli, C. The Late Danian Event at Site 1209: A rapid diversification of calcareous nannofossils. Rend. Online Soc. Geol. Ital. 2014, 31, 149–150. [Google Scholar] [CrossRef]
- McInerney, F.A.; Wing, S.L. The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef]
- Piedrahita, V.A.; Heslop, D.; Roberts, A.P.; Rohling, E.J.; Galeotti, S.; Florindo, F.; Li, J. Assessing the Duration of the Paleocene-Eocene Thermal Maximum. Geophys. Res. Lett. 2025, 52, e2024GL113117. [Google Scholar] [CrossRef]
- Alegret, L.; Ortiz, S. Global extinction event in benthic foraminifera across the Paleocene/Eocene boundary at the Dababiya Stratotype section. Micropaleontology 2006, 52, 433–447. [Google Scholar] [CrossRef]
- Arcila, D.; Tyler, J.C. Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum. Proc. R. Soc. B: Biol. Sci. 2017, 284, 20171771. [Google Scholar] [CrossRef]
- Keller, G.; Mateo, P.; Punekar, J.; Khozyem, H.; Gertsch, B.; Spangenberg, J.; Bitchong, A.M.; Adatte, T. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Res. 2018, 56, 69–89. [Google Scholar] [CrossRef]
- Ortiz, N. Differential patterns of benthic foraminiferal extinctions near the Paleocene/Eocene boundary in the North Atlantic and the western Tethys. Mar. Micropaleontol. 1995, 26, 341–359. [Google Scholar] [CrossRef]
- Winguth, A.M.E.; Thomas, E.; Winguth, C. Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum: Implications for the benthic extinction. Geology 2012, 40, 263–266. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D.; Wilson, P.A.; Pälike, H.; Lear, C.H.; Pagani, M. Thresholds for Cenozoic bipolar glaciation. Nature 2008, 455, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Houben, A.J.P.; van Mourik, C.A.; Montanari, A.; Coccioni, R.; Brinkhuis, H. The Eocene-Oligocene transition: Changes in sea level, temperature or both? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 335–336, 75–83. [Google Scholar] [CrossRef]
- Tang, H.; Cui, H.; Li, S.-F.; Spicer, R.A.; Li, S.-H.; Su, T.; Zhou, Z.-K.; Witkowski, C.R.; Lauretano, V.; Wei, G.-J. Orbital-paced silicate weathering intensity and climate evolution across the Eocene-Oligocene transition in the southeastern margin of the Tibetan Plateau. Glob. Planet. Change 2024, 234, 104388. [Google Scholar] [CrossRef]
- Cotton, L.J.; Pearson, P.N. Extinction of larger benthic foraminifera at the Eocene/Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 311, 281–296. [Google Scholar] [CrossRef]
- Hansen, T.A. Extinction of Late Eocene to Oligocene molluscs: Relationship to shelf area, temperature changes, and impact events. Palaios 1987, 2, 69–75. [Google Scholar] [CrossRef]
- Ivany, L.C.; Patterson, W.P.; Lohmann, K.C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 2000, 407, 887–890. [Google Scholar] [CrossRef]
- Keller, G. Stepwise mass extinctions and impact events: Late Eocene to early Oligocene. Mar. Micropaleontol. 1986, 10, 267–293. [Google Scholar] [CrossRef]
- Prothero, D.R. The late Eocene-Oligocene extinctions. Annu. Rev. Earth Planet. Sci. 1994, 22, 145–165. [Google Scholar] [CrossRef]
- Filippi, G.; Luciani, V. Planktic foraminiferal response to the Early Eocene Climatic Optimum (EECO) from southern mid-to-high latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 659, 112660. [Google Scholar] [CrossRef]
- Van Breedam, J.; Huybrechts, P.; Crucifix, M. Modelling evidence for late Eocene Antarctic glaciations. Earth Planet. Sci. Lett. 2022, 586, 117532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns. Diversity 2025, 17, 505. https://doi.org/10.3390/d17080505
Ruban DA. Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns. Diversity. 2025; 17(8):505. https://doi.org/10.3390/d17080505
Chicago/Turabian StyleRuban, Dmitry A. 2025. "Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns" Diversity 17, no. 8: 505. https://doi.org/10.3390/d17080505
APA StyleRuban, D. A. (2025). Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns. Diversity, 17(8), 505. https://doi.org/10.3390/d17080505