Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = strip planting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 125
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

25 pages, 4261 KiB  
Article
Influence of Mulching and Planting Density on Agronomic and Economic Traits of Melissa officinalis L.
by Stefan V. Gordanić, Dragoja Radanović, Miloš Rajković, Milan Lukić, Ana Dragumilo, Snežana Mrđan, Petar Batinić, Natalija Čutović, Sara Mikić, Željana Prijić and Tatjana Marković
Horticulturae 2025, 11(8), 866; https://doi.org/10.3390/horticulturae11080866 - 22 Jul 2025
Viewed by 394
Abstract
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw [...] Read more.
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw material quality, and economic efficiency in lemon balm production. The experiment was conducted at three locations in Serbia (L1: Bačko Novo Selo, L2: Bavanište, L3: Vilandrica) from 2022 to 2024, using two planting densities on synthetic mulch film (F1: 8.3 plants m−2; F2: 11.4 plants m−2) and a control treatment without mulch (C). The synthetic mulch film used was a synthetic black polypropylene film (Agritela Black, 90 g/m2), uniformly applied in strips across the cultivation area, covering approximately 78% of the soil surface. The results showed consistent increases in morphological parameters and yield across the years. Plant height in F1 and F2 treatments ranged from 65 to 75 cm, while in the control it reached up to 50 cm (2022–2024). Fresh biomass yield varied from 13.4 g per plant (C) to 378.08 g per plant (F2), and dry biomass yield from 60.3 g (C) to 125.4 g (F2). The highest essential oil content was observed in F2 (1.2% in 2022), while the control remained at 0.8%. The F2 treatment achieved complete weed suppression throughout the experiment without the use of herbicides, demonstrating both agronomic and ecological advantages. Economic evaluation revealed that F2 generated the highest cumulative profit (€142,164.5) compared to the control (€65,555.3). Despite higher initial investment, F2 had the most favorable cost–benefit ratio in the long term. This study highlights the crucial influence of mulching and planting density on optimizing lemon balm production across diverse climatic and soil conditions, while also underscoring the importance of sustainable, non-chemical weed management strategies in lemon balm cultivation. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Figure 1

23 pages, 7168 KiB  
Article
Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators
by Chunhua Gao, Weilin Kong, Fengtao Zhao, Feiyan Ju, Ping Liu, Zongxin Li, Kaichang Liu and Haijun Zhao
Agronomy 2025, 15(7), 1748; https://doi.org/10.3390/agronomy15071748 - 20 Jul 2025
Viewed by 322
Abstract
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. [...] Read more.
Plant growth regulators (PGRs) enhance crop stress resistance but their roles in microbial-mediated phosphorus cycling within intercropping systems are unclear. Thus, We conducted a two-year field study using corn (Zea mays L. cv. Denghai 605) and soybean (Glycine max L. cv. Hedou 22) in fluvisols and luvisols soil according to World Reference Base for Soil Resources (WRB) standard. Under a 4-row corn and 6-row soybean strip intercropping system, three treatments were applied: a water control (CK), and two plant growth regulators—T1 (EC: ethephon [300 mg/L] + cycocel [2 g/L]) and T2 (ED: ethephon [300 mg/L] + 2-Diethyl aminoethyl hexanoate [10 mg/L]). Foliar applications were administered at the V7 stage (seventh leaf) of intercropped corn plants to assess how foliar-applied PGRs (T1/T2) modulated the soil phosphorus availability, microbial communities, and functional genes in maize intercropping systems. PGRs increased the soil organic phosphorus and available phosphorus contents, and alkaline phosphatase activity, but not total phosphorus. PGRs declined the α-diversity in fluvisols soil but increased the α-diversity in luvisols soil. The major taxa changed from Actinobacteria (CK) to Proteobacteria (T1) and Saccharibacteria (T2) in fluvisols soil, and from Actinobacteria/Gemmatimonadetes (CK) to Saccharibacteria (T1) and Acidobacteria (T2) in luvisols soil. Functional gene dynamics indicated soil-specific regulation, where fluvisols soil harbored more phoD (organic phosphorus mineralization) and relA (polyphosphate degradation) genes, whereas phnP gene dominated in luvisols soil. T1 stimulated organic phosphorus mineralization and inorganic phosphorus solubilization in fluvisols soil, upregulating regulation genes, and T2 enhanced polyphosphate synthesis and transport gene expression in luvisols soil. Proteobacteria, Nitrospirae, and Chloroflexi were positively correlated with organic phosphorus mineralization and polyphosphate cycling genes, whereas Bacteroidetes and Verrucomicrobia correlated with available potassium (AP), total phosphorus (TP), and alkaline phosphatase (ALP) activity. Thus, PGRs activated soil phosphorus by restructuring soil type-dependent microbial functional networks, connecting PGRs-induced shifts with microbial phosphorus cycling mechanisms. These findings facilitate the targeted use of PGRs to optimize microbial-driven phosphorus efficiency in strategies for sustainable phosphorus management in diverse agricultural soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

15 pages, 1116 KiB  
Article
Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania
by Sina Cosmulescu, Florin Daniel Stamin, Daniel Răduțoiu and Nicolae Constantin Gheorghiu
Diversity 2025, 17(7), 494; https://doi.org/10.3390/d17070494 - 18 Jul 2025
Viewed by 187
Abstract
This paper assesses the complexity and diversity of vegetation in grassy strips with spontaneous plants between tree rows in three fruit orchards (plum, cherry, apple) in Dolj County, Romania, using structural and biodiversity indices. It addresses the lack of data on spontaneous vegetation [...] Read more.
This paper assesses the complexity and diversity of vegetation in grassy strips with spontaneous plants between tree rows in three fruit orchards (plum, cherry, apple) in Dolj County, Romania, using structural and biodiversity indices. It addresses the lack of data on spontaneous vegetation in Romanian orchards, supporting improved plantation management and native biodiversity conservation. The study found that grassy strips supported high wild herbaceous diversity and a complex, heterogeneous ecological structure, with the apple orchard showing the highest biodiversity. Species diversity, evaluated through species richness, evenness, and diversity indices (Shannon, Simpson, Menhinick, Gleason, etc.), showed species richness ranging from 30 species in the cherry orchard to 40 in the apple orchard. Several species, including Capsella bursa-pastoris, Geranium pusillum, Poa pratensis, Veronica hederifolia, Lolium perenne, and Convolvulus arvensis, were present in 100% of samples, making them constant species from a phytosociological perspective. Their presence indicates relatively stable plant communities in each orchard. From a phytocoenological view, an ecological plant community is defined not only by species composition but also by constancy and co-occurrence in sampling units. Dominance remained low in all orchards, indicating no single plant dominated, while evenness showed a uniform distribution of species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations
by Vipin Kumar Oad, Adam Szymkiewicz, Tomasz Berezowski, Anna Gumuła-Kawęcka, Jirka Šimůnek, Beata Jaworska-Szulc and René Therrien
Water 2025, 17(14), 2046; https://doi.org/10.3390/w17142046 - 8 Jul 2025
Viewed by 1108
Abstract
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or [...] Read more.
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or quadratic drainage functions describing the relationship between groundwater head and flux. The results obtained by the modified HYDRUS-1D model were compared to the reference simulations with HydroGeoSphere (HGS), with explicit representation of 2D flow in unsaturated and saturated zones in a vertical cross-section of a strip aquifer, including evapotranspiration and plant water uptake. Four series of simulations were conducted for sand and loamy sand soil profiles with deep (6 m) and shallow (2 m) water tables. The results indicate that both linear and quadratic drainage functions can effectively capture groundwater table fluctuations and soil water dynamics. HYDRUS-1D demonstrates notable accuracy in simulating transient fluctuations but shows higher variability near the surface. The study concludes that both quadratic and linear drainage boundary conditions can effectively represent horizontal aquifer flow in 1D models, enhancing the ability of such models to simulate groundwater table fluctuations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

28 pages, 2543 KiB  
Article
Rational Water and Nitrogen Regulation Can Improve Yield and Water–Nitrogen Productivity of the Maize (Zea mays L.)–Soybean (Glycine max L. Merr.) Strip Intercropping System in the China Hexi Oasis Irrigation Area
by Haoliang Deng, Xiaofan Pan, Guang Li, Qinli Wang and Rang Xiao
Plants 2025, 14(13), 2050; https://doi.org/10.3390/plants14132050 - 4 Jul 2025
Viewed by 361
Abstract
The planting area of the maize–soybean strip intercropping system has been increasing annually in the Hexi Corridor oasis irrigation area of China. However, long-term irrational water resource utilization and the excessive mono-application of fertilizers have led to significantly low water and nitrogen use [...] Read more.
The planting area of the maize–soybean strip intercropping system has been increasing annually in the Hexi Corridor oasis irrigation area of China. However, long-term irrational water resource utilization and the excessive mono-application of fertilizers have led to significantly low water and nitrogen use efficiency in this cropping system. To explore the sustainable production model of high yield and high water–nitrogen productivity in maize–soybean strip intercropping, we established three irrigation levels (low: 60%, medium: 80%, and sufficient: 100% of reference crop evapotranspiration) and three nitrogen application levels (low: maize 230 kg ha−1, soybean 29 kg ha−1; medium: maize 340 kg ha−1, soybean 57 kg ha−1; and high: maize 450 kg ha−1, soybean 85 kg ha−1) for maize and soybean, respectively. Three irrigation levels without nitrogen application served as controls. The effects of different water–nitrogen combinations on multiple indicators of the maize–soybean strip intercropping system, including yield, water–nitrogen productivity, and quality, were analyzed. The results showed that the irrigation amount and nitrogen application rate significantly affected the kernel quality of maize. Specifically, the medium nitrogen and sufficient water (N2W3) combination achieved optimal performance in crude fat, starch, and bulk density. However, excessive irrigation and nitrogen application led to a reduction in the content of lysine and crude protein in maize, as well as crude fat and crude starch in soybean. Appropriate irrigation and nitrogen application significantly increased the yield in the maize–soybean strip intercropping system, in which the N2W3 treatment had the highest yield, with maize and soybean yields reaching 14007.02 and 2025.39 kg ha−1, respectively, which increased by 2.52% to 138.85% and 5.37% to 191.44% compared with the other treatments. Taking into account the growing environment of the oasis agricultural area in the Hexi Corridor and the effects of different water and nitrogen supplies on the yield, water–nitrogen productivity, and kernel quality of maize and soybeans in the strip intercropping system, the highest target yield can be achieved when the irrigation quotas for maize and soybeans are set at 100% ET0 (reference crop evapotranspiration), with nitrogen application rates of 354.78~422.51 kg ha−1 and 60.27~71.81 kg ha−1, respectively. This provides guidance for enhancing yield and quality in maize–soybean strip intercropping in the oasis agricultural area of the Hexi Corridor, achieving the dual objectives of high yield and superior quality. Full article
Show Figures

Figure 1

15 pages, 3444 KiB  
Article
A LiDAR-Driven Approach for Crop Row Detection and Navigation Line Extraction in Soybean–Maize Intercropping Systems
by Mingxiong Ou, Rui Ye, Yunfei Wang, Yaoyao Gu, Ming Wang, Xiang Dong and Weidong Jia
Appl. Sci. 2025, 15(13), 7439; https://doi.org/10.3390/app15137439 - 2 Jul 2025
Viewed by 228
Abstract
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of [...] Read more.
Crop row identification and navigation line extraction are essential components for enabling autonomous operations of agricultural machinery. Aiming at the soybean–maize strip intercropping system, this study proposes a LiDAR-based algorithm for crop row detection and navigation line extraction. The proposed method consists of four primary stages: point cloud preprocessing, crop row region identification, feature point clustering, and navigation line extraction. Specifically, a combination of K-means and Euclidean clustering algorithms is employed to extract feature points representing crop rows. The central lines of the crop rows are then fitted using the least squares method, and a stable navigation path is constructed based on angle bisector principles. Field experiments were conducted under three representative scenarios: broken rows with missing plants, low occlusion, and high occlusion. The results demonstrate that the proposed method exhibits strong adaptability and robustness across various environments, achieving over 80% accuracy in navigation line extraction, with up to 90% in low-occlusion settings. The average navigation angle was controlled within 0.28°, with the minimum reaching 0.17°, and the average processing time remained below 75.62 ms. Moreover, lateral deviation tests confirmed the method’s high precision and consistency in path tracking, validating its feasibility and practicality for application in strip intercropping systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

23 pages, 11925 KiB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 494
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

38 pages, 10101 KiB  
Article
Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection
by Tingyu Xu, Haowei Cui, Yunsheng Song, Chao Zhang, Turki Alghamdi and Majed Aborokbah
Plants 2025, 14(12), 1794; https://doi.org/10.3390/plants14121794 - 11 Jun 2025
Viewed by 706
Abstract
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global [...] Read more.
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

19 pages, 1662 KiB  
Article
Environmental Changes as a Factor in the Dynamics of Aquatic Vegetation Distribution in Belarusian Soft-Water Lakes
by Nina Sukhovilo, Daria Vlasova, Aliaksei Novik and Boris Vlasov
Limnol. Rev. 2025, 25(2), 26; https://doi.org/10.3390/limnolrev25020026 - 5 Jun 2025
Viewed by 469
Abstract
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like [...] Read more.
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like Lobelia dortmanna L., Isöetes lacustris L., and Littorella uniflora L. The purpose of this study was to analyze changes in aquatic vegetation distribution in seven soft-water Belarusian lakes and identify the causes of these changes. The initial data for this research were the results of field observations, the archive materials of the research laboratory of lake research conducted by the Belarusian State University for the period from 1971 to 2016, including morphometric and hydrochemical parameters, the characteristics of catchments and water exchange, and the results of studying the species composition and distribution of aquatic vegetation. The authors’ field studies were carried out in 2022–2024. We used expeditionary, hydrochemical, cartographic, and comparative research methods. The most significant changes in overgrowth were observed in Lakes Svityaz and Beloe (Luninets District). These lakes have high recreational loads. Significant negative trends were also noted in Lakes Bolshoe Ostrovito and Bredno. Over 35 years, the depth of distribution of submerged macrophytes in Lake Svityaz has decreased from 7 to 2 m, and the abundance and projective cover of semi-submerged macrophytes have increased. In Lake Beloe, I. lacustris, which forms a tier of submerged plants, has almost completely disappeared, and a previously absent strip of air-aquatic plants has formed. The total area of overgrowth in the lake has decreased from 35% of the water area to 3.2%. In Lake Bolshoe Ostrovito, Fontinalis sp., previously common at depths of up to 5 m, has practically disappeared. In Lake Bredno, the water moss Drepanocladus has spread to a depth of 4 m. In Lake Glubokoe, a new area of I. lacustris growth was discovered around an island at depths of up to 4 m. In Lake Cherbomyslo, the decrease in the species’ depth and area of distribution is associated with a weakening of the inflow of bog waters due to their backwater. The main causes of these changes are largely due to anthropogenic factors (water pollution by biogenic compounds) and, to a lesser extent, hydrological changes (decrease in the moisture content of lake catchments). Full article
Show Figures

Figure 1

23 pages, 4420 KiB  
Article
Plant-Driven Effects of Wildflower Strips on Natural Enemy Biodiversity and Pest Suppression in an Agricultural Landscape in Hangzhou, China
by Wenhao Hu, Kang Ni, Yu Zhu, Shuyi Liu, Xuhua Shao, Zhenrong Yu, Luyu Wang, Rui Zhang, Meichun Duan and Wenhui Xu
Agronomy 2025, 15(6), 1286; https://doi.org/10.3390/agronomy15061286 - 23 May 2025
Viewed by 546
Abstract
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment [...] Read more.
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment compared WFS (10-species mixtures) with natural grass strips (CK) across biodiversity, functional traits, and pest dynamics. WFS significantly increased parasitic wasp α-diversity (species richness: +195.5%, activity density: +362.0%) and suppressed pest (Armadillidium vulgare) populations by 68%, primarily through female-biased sex ratios and functional trait shifts. Key species like Lindenius mesopleuralis and Ectemnius continuus emerged as indicators of WFS habitats. Spider communities showed no β-diversity differentiation but exhibited functional guild shifts (e.g., web-building specialists). Plant community composition, particularly floral resource availability and phenological continuity, drove natural enemy assembly and pest regulation, outperforming the CK group in rare species conservation. Our findings highlight WFS as a precision tool for enhancing pest control through targeted plant selection and trait-mediated interactions. This study advances the understanding of habitat-driven pest regulation, providing a framework for optimizing ecological intensification in agroecosystems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

20 pages, 6805 KiB  
Article
Analysis of Irrigation, Crop Growth and Physiological Information in Substrate Cultivation Using an Intelligent Weighing System
by Jiu Xu, Lili Zhangzhong, Peng Lu, Yihan Wang, Qian Zhao, Youli Li and Lichun Wang
Agriculture 2025, 15(10), 1113; https://doi.org/10.3390/agriculture15101113 - 21 May 2025
Viewed by 598
Abstract
The online dynamic collection of irrigation and plant physiological information is crucial for the precise irrigation management of nutrient solutions and efficient crop cultivation in vegetable soilless substrate cultivation facilities. In this study, an intelligent weighing system was installed in a tomato substrate [...] Read more.
The online dynamic collection of irrigation and plant physiological information is crucial for the precise irrigation management of nutrient solutions and efficient crop cultivation in vegetable soilless substrate cultivation facilities. In this study, an intelligent weighing system was installed in a tomato substrate cultivation greenhouse. The monitored values from the intelligent weighing system’s pressure-type module were used to calculate irrigation start–stop times, frequency, volume, drainage volume, drainage rate, evapotranspiration, evapotranspiration rate, and stomatal conductance. In contrast, the monitored values of the suspension-type weighing module were used to calculate the amount of weight change in the plants, which supported the dynamic and quantitative characterization of substrate cultivation irrigation and crop growth based on an intelligent weighing system. The results showed that the monitoring curves of pressure and flow sensors based on the pressure-type module could accurately identify the irrigation start time and number of irrigations and calculate the irrigation volume, drainage volume, and drainage rate. The calculated irrigation amount was closely aligned with that determined by an integrated-water–fertilizer automatic control system (R2 = 0.923; mean absolute error (MAE) = 0.105 mL; root-mean-square error (RMSE) = 0.132 mL). Furthermore, transpiration rate and leaf stomatal conductance were obtained through inversion, and the R2, MAE, and RMSE of the extinction coefficient correction model were 0.820, 0.014 mol·m−2·s−1, and 0.017 mol·m−2·s−1, respectively. Compared to traditional estimation methods, the MAE and RMSE decreased by 12.5% and 15.0%, respectively. The measured values of fruit picking and leaf stripping linearly fitted with the calculated values of the suspended weighing module, and R2, MAE, and RMSE were 0.958, 0.145 g, and 0.143 g, respectively. This indicated that data collection based on the suspension-type weighing module could allow for a dynamic analysis of plant weight changes and fruit yield. In summary, the intelligent weighing system could accurately analyze irrigation information and crop growth physiological indicators under the practical application conditions of facility vegetable substrate cultivation, providing technical support for the precise management of nutrient solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 652 KiB  
Article
The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland
by Irena Małecka-Jankowiak, Andrzej Blecharczyk, Zuzanna Sawinska, Tomasz Piechota and Robert Idziak
Sustainability 2025, 17(10), 4293; https://doi.org/10.3390/su17104293 - 9 May 2025
Viewed by 699
Abstract
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of [...] Read more.
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of conservation agriculture are crop diversification, minimizing tillage, and maintaining soil cover with plant residues. An important role in crop diversification is assigned to legumes. The research was conducted in 2016–2019 based on a long-term experiment established in 1999 (Brody/Poznań). The experiment with faba bean included four variants of tillage: 1—conventional tillage (CT), 2—reduced tillage (RT), 3—strip-tillage (ST), and 4—no-tillage (NT). The research took place in two extremely different weather conditions. Two very favorable years and two with catastrophic drought. Weather conditions had a greater effect on faba bean yields than the tillage systems. The highest faba bean seed yield was obtained in 2017. The seed yield ranged from 6.73 t ha−1 in NT to 7.64 t ha−1 after ST. A high seed yield (4.94–5.97 t ha−1) was also in 2016. In years characterized by low rainfall (2018 and 2019), the average seed yield was 1.89 and 1.74 t ha−1, respectively. Considering the sustainability of the assessed tillage systems in faba bean, both in terms of environment and production, RT and ST should be indicated as the most sustainable. They limit the intensity of tillage and can be classified as conservation tillage, as opposed to conventional tillage. NT provides the best soil protection and conservation, but in favorable weather conditions, it limits the yield level of faba beans. The yields obtained in RT and ST technologies were high, both in favorable and extremely unfavorable years. Given the increasing climatic instability and unpredictable weather, yield stability in various conditions is as important as ensuring conservation tillage. Full article
Show Figures

Figure 1

15 pages, 3098 KiB  
Article
Effectiveness of Natural Products—Artemisia dubia and Manure Digestate—On Winter Wheat Cultivation
by Ausra Baksinskaite, Modupe Olufemi Doyeni, Jurate Ramanauskienė, Dalia Feizienė and Vita Tilvikiene
Plants 2025, 14(10), 1411; https://doi.org/10.3390/plants14101411 - 8 May 2025
Viewed by 523
Abstract
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant [...] Read more.
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant growth, and suppress diseases. However, their overall effectiveness remains limited, hence the need for further research to enhance their agricultural performance. This study aims to explore the potential application of two natural sources (manure digestate and crop Artemisia dubia) for crop fertilization and protection. During the growing season, winter wheat was fertilized twice (21–25 BBCH and 30–35 BBCH) with synthetic, organic (pig manure digestate), and combined synthetic–organic fertilizers. Artemisia dubia biomass was incorporated before sowing and planted in strips. The soil chemical composition, crop overwintering, weediness, and diseases were assessed after two years of the respective treatments. The results showed that the organic carbon content increased by 1–5% after fertilizing winter wheat with pig manure digestate and combining fertilizers (organic and synthetic). Additionally, fertilizer or pesticide use had a significant effect on the soil pH process. Combining synthetic and organic fertilizers increased the amount of mobile phosphorus in the soil by 38%. In conclusion, combining synthetic fertilizers with organic fertilizers is the most effective approach to maintain healthy soil conditions and prevent damage to sprouts in the soil. Overall, our findings offer more opportunities for organic and sustainable agricultural processes by integrating pig manure digestate and Artemisia dubia biomass as a natural approach to minimizing synthetic fertilizer and pesticide use. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 3185 KiB  
Article
Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors
by Jiazheng Sun, Shiling Li, Xijun Shao, Mingxuan Fang, Heng Zhang, Zhiheng Zhu and Xia Sun
Sensors 2025, 25(8), 2602; https://doi.org/10.3390/s25082602 - 20 Apr 2025
Viewed by 418
Abstract
Procymidone (PCM) is an effective, low-toxicity fungicide commonly used to control plant diseases in grains, vegetables, and fruits. Its usage has significantly increased in recent years, resulting in higher residues in vegetables. This study developed a sensitive and rapid immunoassay method utilizing a [...] Read more.
Procymidone (PCM) is an effective, low-toxicity fungicide commonly used to control plant diseases in grains, vegetables, and fruits. Its usage has significantly increased in recent years, resulting in higher residues in vegetables. This study developed a sensitive and rapid immunoassay method utilizing a gold- and fluorescence-labeled monoclonal antibody (mAb) for detecting PCM residues in vegetable samples. Under optimal conditions, the fluorescent microsphere-labeled monoclonal antibody immunochromatographic strips achieved a limit of detection (LOD) of 1.67 ng/mL, with a visual LOD of 50 ng/mL. Intra-batch accuracy ranged from 94.98% to 103.82%, with a coefficient of variation (CV) of 1.97% to 8.26%. Inter-batch accuracy ranged from 96.16% to 102.51%, with a CV of 4.62% to 8.91%. The visual detection range of the gold nanoparticle-labeled monoclonal antibody immunochromatographic strips was 50 to 200 ng/g. The method demonstrated excellent performance in actual vegetable samples, confirming its applicability across various matrices. This dual-method approach enables rapid screening of negative samples with gold test strips, followed by accurate quantitative analysis of positive samples using fluorescent test strips, thereby enhancing efficiency and addressing diverse detection needs. Consequently, this method holds significant market potential for practical applications. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

Back to TopTop