The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland
Abstract
:1. Introduction
2. Materials and Methods
- Conventional tillage (CT),
- Reduced tillage (RT),
- Strip-tillage (ST),
- No-tillage with direct drilling into stubble (NT).
3. Results and Discussion
3.1. Faba Bean Seed Yield and Yield Components
3.2. Protein Content and Production in Faba Bean Seeds
3.3. Crop Residues
3.4. Correlation Coefficients of the Faba Bean Features
3.5. Nodules of Faba Bean Roots
3.6. Soil Physical Properties
3.7. Soil Chemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brussaard, L.; De Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agr. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Zambrana, E.; Fernández-Getino, A.P.; Tenorio, J.L. Dry pea (Pisum sativum L.) yielding and weed infestation response, under different tillage conditions. Crop Prot. 2014, 65, 122–128. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agr. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Successful experiences and lessons from Conservation Agriculture Worldwide. Agronomy 2022, 12, 769. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. F. Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain legume production and use in European Agricultural Systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef]
- Reckling, M.; Döring, T.F.; Bergkvist, G.; Stoddard, F.L.; Watson, C.A.; Seddig, S.; Chmielewski, F.M.; Bachinger, J. Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agron. Sustain. Dev. 2018, 38, 63. [Google Scholar] [CrossRef]
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Bàrberi, P.; Rossing, W.A.H. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- Notz, I.; Topp, C.F.E.; Schuler, J.; Alves, S.; Gallardo, L.A.; Dauber, J.; Haase, T.; Hargreaves, P.R.; Hennessy, M.; Iantcheva, A.; et al. Transition to legume-supported farming in Europe through redesigning cropping systems. Agron. Sustain. Dev. 2023, 43, 12. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Duc, G.; Bao, S.; Baum, M.; Redden, B.; Sadiki, M.; Suso, M.J.; Vishniakova, M.; Zong, X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop. Res. 2010, 115, 270–278. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsina, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef]
- Etemadi, F.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R.; Liu, X. Agronomy, nutritional value, and medicinal application of faba bean (Vicia faba L.). Hortic. Plant J. 2019, 5, 170–182. [Google Scholar] [CrossRef]
- Multari, S.; Stewart, D.; Russell, W.R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Hendawey, M.H.; Younes, A.M.A. Biochemical evaluation of some faba bean cultivars under rainfed conditions at El-Sheikh Zuwayid. Ann. Agric. Sci. 2013, 58, 183–193. [Google Scholar] [CrossRef]
- Landry, E.J.; Fuchs, S.J.; Hu, J. Carbohydrate composition of mature and immature faba bean seeds. J. Food Compos. Anal. 2016, 50, 55–60. [Google Scholar] [CrossRef]
- Hardarson, G.; Atkins, C. Optimising biological N2 fixation by legumes in farming systems. Plant Soil 2003, 252, 41–54. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Köpke, U.; Nemecek, T. Ecological services of faba bean. Field Crop. Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Giambalvo, D.; Ruisi, P.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Amato, G. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 2012, 360, 215–227. [Google Scholar] [CrossRef]
- Ruisi, P.; Amato, G.; Badagliacca, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Ital. J. Agron. 2017, 12, 865. [Google Scholar] [CrossRef]
- Romaneckas, K.; Kimbirauskienė, R.; Adamavičienė, A.; Buragiene, S.; Sinkevičienė, A.; Sarauskis, E.; Jasinskas, A.; Minajeva, A. Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. Agric. Food Sci. 2019, 28, 101–111. [Google Scholar] [CrossRef]
- Reckling, M.; Hecker, J.-M.; Bergkvist, G.; Watson, C.A.; Zander, P.; Schläfke, N.; Stoddard, F.L.; Eory, V.; Topp, C.F.E.; Maire, J.; et al. A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. Eur. J. Agron. 2016, 76, 186–197. [Google Scholar] [CrossRef]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Olle, M.; Travlos, I.; Thanopoulos, R.; Bilalis, D.; Bebeli, P.; Savvas, D. Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agric. Scand. Sec. B Plant Soil Sci. 2018, 38, 619–630. [Google Scholar] [CrossRef]
- Patil, I.D.; Patil, Y.S.; Pangarkar, B.L. Removal of lindane from wastewater using liquid-liquid extraction proces. Pol. J. Chem. Technol. 2013, 15, 81–84. [Google Scholar] [CrossRef]
- Hu, J.; Kwon, S.J.; Park, J.J.; Landry, E.; Mattinson, D.S.; Gang, D.R. LC-MS determination of L-DOPA concentration in the leaf and flower tissues of six faba bean (Vicia faba L.) lines with common and rare flower colors. Func. Foods Health Dis. 2015, 5, 243–250. [Google Scholar] [CrossRef]
- Bojarszczuk, J.; Księżak, J. Actual state and future prospects of legume cultivation in Poland. Rocz. Nauk. Ser. 2018, 20, 15–20. [Google Scholar] [CrossRef]
- Migdadi, H.M.; El-Harty, E.H.; Salamh, A.; Khan, M.A. Yield and proline content of faba bean genotypes under water stress treatments. J. Anim. Plant Sci. 2016, 26, 1772–1779. [Google Scholar] [CrossRef]
- Abid, G.; M’hamdi, M.; Mingeot, D.; Aouida, M.; Aroua, I.; Muhovsk, Y.; Sassi, K.; Souissi, F.; Mannai, K.; Jebara, M. Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 2023, 63, 536–552. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Czerwińska-Kayzer, D.; Florek, J. Profitability of selected legumes. Fragm. Agron. 2012, 29, 36–44. (In Polish) [Google Scholar]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Kladivko, E. Tillage systems and soil ecology. Soil Till. Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Changes in soil properties and soil solution nutrients due to conservation versus conventional tillage in Vertisols. Arch. Agron. Soil Sci. 2014, 60, 1429–1444. [Google Scholar] [CrossRef]
- Arvidsson, J.; Westlin, A.; Sörensson, F. Working depth in non-inversion tillage—Effects on soil physical properties and crop yield in Swedish field experiments. Soil Till. Res. 2013, 126, 259–266. [Google Scholar] [CrossRef]
- Murugan, R.; Koch, H.J.; Joergensen, R.G. Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biol. Fertil. Soils 2014, 50, 487–498. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Implications of no-tillage system in faba bean production: Energy analysis and potential agronomic benefits. Open Agric. J. 2018, 12, 270–285. [Google Scholar] [CrossRef]
- Kimbirauskiene, R.; Sinkevičienė, A.; Jonaitis, R.; Romaneckas, K. Impact of tillage intensity on the development of Faba bean cultivation. Sustainability 2023, 15, 8956. [Google Scholar] [CrossRef]
- Kimbirauskiene, R.; Sinkevičienė, A.; Švereikaitė, A.; Romaneckas, K. The complex effect of different tillage systems on the Faba bean agroecosystem. Plants 2024, 13, 513. [Google Scholar] [CrossRef]
- Wafae, S.; Daoui, K.; Bendidi, A.; Moussadek, R.; Bouichou, E.H.; Ibriz, M. Faba bean (Vicia faba L.) physiological, biochemical and agronomic traits responses to tillage systems under rainfed Mediterranean conditions. Vegetos 2024, 38, 329–340. [Google Scholar] [CrossRef]
- Arvidsson, J.; Etana, A.; Rydberg, T. Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. Eur. J. Agron. 2014, 52, 307–315. [Google Scholar] [CrossRef]
- Faligowska, A.; Szukała, J. The effect of various long-term tillage systems on yield and yield component of yellow and narrow-leaved lupin. Turk. J. Field Crops 2015, 20, 188–193. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swędrzyńska, D.; Sawinska, Z.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea (Pisum sativum L.). Acta Sci. Pol. Agric. 2016, 15, 37–50. [Google Scholar]
- Carr, P.M.; Martin, G.B.; Horsley, R.D. Impact of tillage on field peas following spring wheat. Can. J. Plant Sci. 2009, 89, 281–288. [Google Scholar] [CrossRef]
- Rühlemann, L.; Schmidtke, K.; Bellingrath-Kimura, S.D. Short-term effect of differentiated tillage on dry matter production and grain yield of autumn and spring sown grain legumes grown monocropped and intercropped with cereal grains in organic farming. Plant Prod. Sci. 2015, 18, 76–92. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci. Total Environ. 2018, 639, 350–359. [Google Scholar] [CrossRef]
- Małecka, I.; Blecharczyk, A.; Sawinska, Z.; Swędrzyńska, D.; Piechota, T. Winter wheat yield and soil properties response to long-term non-inversion tillage. J. Agr. Sci. Tech.-Iran. 2015, 17, 1571–1584. [Google Scholar]
- Anil, K.; Varsha, K.; Jha, A.K. Pearson correlation and regression analysis of Sahibganj agricultural soil of Eastern Barharwa (SASEB). Glob. J. Res. Agric. Life Sci. 2024, 4, 10–19. [Google Scholar] [CrossRef]
- Fernández, R.O.; Fernández, P.G.; Cervera, J.G.; Torres, F.P. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Till. Res. 2007, 94, 47–54. [Google Scholar] [CrossRef]
- Munoz-Romero, V.; López-Bellido, L.; López-Bellido, R.J. Faba bean root growth in a Vertisol: Tillage effects. Field Crop. Res. 2011, 120, 338–344. [Google Scholar] [CrossRef]
- Toker, C. Estimates of broad sense heritability for seed yield and yield criteria in faba bean. Hereditas 2004, 140, 222–225. [Google Scholar] [CrossRef]
- Alarcón, R.; Hernández Plaza, E.; Navarrete, L.; Sánchez, M.J.; Escudero, A.; Hernanz, H.J.; Sánchez-Giron, V.; Sánchez, A.M. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Till. Res. 2018, 179, 54–62. [Google Scholar] [CrossRef]
- López-Bellido, F.J.; López-Bellido, L.; López-Bellido, R.J. Competition, growth and yield of faba bean (Vicia faba L.). Eur. J. Agron. 2005, 23, 359–378. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do tillage systems influence nitrogen fixation in legumes? A review. Soil Till. Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- López-Bellido, R.J.; López-Bellido, L.; Benítez-Vega, J.; Muñoz-Romero, V.; López-Bellido, F.J.; Redondo, R. Chickpea and faba bean nitrogen fixation in a Mediterranean rainfed Vertisol: Effect of the tillage system. Eur. J. Agron. 2011, 34, 222–230. [Google Scholar] [CrossRef]
- Omondi, O.J.; Mungai, N.W.; Ouma, J.P.; Baijukya, F.P. Effect of tillage on biological nitrogen fixation and yield of soybean (Glycine max L. Merril) varieties. Aust. J. Crop Sci. 2014, 8, 1140–1146. [Google Scholar]
- Cookson, W.R.; Beare, M.H.; Wilson, P.E. Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl. Soil Ecol. 1998, 7, 179–188. [Google Scholar] [CrossRef]
- Wysokiński, A.; Faligowska, A.; Kalembasa, D. The amount of biologically reduced nitrogen by yellow lupine (Lupinus luteus L.)—Preliminary results. Fragm. Agron. 2014, 31, 121–128. (In Polish) [Google Scholar]
- Baggs, E.M.; Watson, C.A.; Rees, R.M. The fate of nitrogen from incorporated cover crop and green manure residues. Nutr. Cycl. Agroecosystems 2020, 56, 153–163. [Google Scholar] [CrossRef]
- Volpi, I.; Antichi, D.; Ambus, P.L.; Bonari, E.; o Di Nasso, N.N.; Bosco, S. Minimum tillage mitigated soil N2O emissions and maximized crop yield in faba bean in a Mediterranean environment. Soil Till. Res. 2018, 178, 11–21. [Google Scholar] [CrossRef]
- Martínez, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Etana, A.; Stettler, M.; Forkman, J.; Keller, T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Till. Res. 2016, 163, 141–151. [Google Scholar] [CrossRef]
Year/Month | March | April | May | Jun | July | August | March–August |
---|---|---|---|---|---|---|---|
2016 | 4.0 | 8.8 | 15.3 | 18.2 | 19.1 | 17.9 | 13.9 |
2017 | 6.7 | 7.7 | 14.0 | 17.7 | 18.4 | 18.4 | 13.8 |
2018 | 0.7 | 12.9 | 17.1 | 19.1 | 20.7 | 21.4 | 15.3 |
2019 | 6.5 | 10.4 | 12.2 | 22.4 | 19.3 | 20.7 | 15.3 |
Average (1961–2015) | 3.0 | 8.1 | 13.3 | 16.6 | 18.3 | 17.6 | 12.8 |
Year/Month | March | April | May | June | July | August | March–August |
---|---|---|---|---|---|---|---|
2016 | 31.2 | 29.7 | 76.1 | 94.8 | 114.5 | 57.9 | 404.2 |
2017 | 40.5 | 25.7 | 49.2 | 106.0 | 160.8 | 150.6 | 532.8 |
2018 | 20.6 | 65.3 | 19.2 | 31.5 | 134.9 | 20.0 | 291.5 |
2019 | 48.2 | 11.9 | 77.8 | 8.4 | 63.3 | 28.2 | 237.8 |
Average (1961–2015) | 39.4 | 36.9 | 57.3 | 64.7 | 81.5 | 66.8 | 346.6 |
Treatment (Factor T) | Year of Study (Factor Y) | Average (T) | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
CT | 5.76 de | 7.19 b | 1.63 j–m | 1.60 j–n | 4.04 C |
RT | 5.88 de | 7.33 b | 2.00 ghi | 1.71 ijk | 4.23 B |
ST | 5.97 d | 7.64 a | 2.03 g | 1.64 jkl | 4.32 A |
NT | 4.93 f | 6.73 c | 1.88 g–j | 2.02 gh | 3.89 D |
Average (Y) | 5.63 B | 7.22 A | 1.89 C | 1.74 C | - |
Treatment (Factor T) | Year of Study (Factor Y) | Average (T) | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
CT | 1473 fg | 1809 bc | 418 jkl | 389 l | 1022 C |
RT | 1494 f | 1849 b | 511 i | 417 kl | 1068 B |
ST | 1588 e | 1936 a | 531 i | 400 l | 1114 A |
NT | 1328 h | 1721 d | 495 ij | 487 i–k | 1008 C |
Average (Y) | 1471 B | 1829 A | 489 C | 423 D | - |
Treatment (Factor T) | Year of Study (Factor Y) | Average (T) | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
Dry matter yield of faba bean residues (t ha−1) | |||||
CT | 7.66 c–e | 8.00 bc | 2.58 i | 2.88 hi | 5.28 BC |
RT | 7.74 c–e | 8.27 b | 2.80 hi | 3.05 h | 5.46 AB |
ST | 7.91 b–d | 8.72 a | 2.92 hi | 3.01 h | 5.64 A |
NT | 6.21 g | 6.81 f | 2.95 hi | 3.13 h | 4.78 C |
Average (Y) | 7.38 B | 7.95 A | 2.81 C | 3.02 C | - |
Nitrogen content of faba bean residues (kg N ha−1) | |||||
CT | 109.4 ab | 109.1 ab | 43.3 g | 42.1 g | 76.0 BC |
RT | 107.2 ab | 108.8 ab | 47.1 e–g | 44.3 fg | 76.8 AB |
ST | 107.2 ab | 111.7 a | 48.7 ef | 43.7 g | 77.8 A |
NT | 83.4 d | 93.6 c | 49.8 e | 45.2 e–g | 68.0 D |
Average (Y) | 101.8 B | 105.8 A | 47.2 C | 43.8 D | - |
Year | Properties | Density | Seed Yield | TSW | Pods | Seeds in Pod | Residues | N in Residues | Protein Yield |
---|---|---|---|---|---|---|---|---|---|
* CT | Density (no. m−2) | 1.00 | 0.29 | −0.13 | 0.23 | −0.18 | 0.15 | 0.08 | 0.25 |
Seeds yield (t ha−1) | 0.29 | 1.00 | 0.87 * | 0.99 * | 0.84 * | 0.98 * | 0.97 * | 0.99 * | |
TSW (g) | −0.13 | 0.87 * | 1.00 | 0.89 * | 0.92 * | 0.95 * | 0.96 * | 0.89 * | |
Pods (no. plant−1) | 0.23 | 0.99 * | 0.89 * | 1.00 | 0.83 * | 0.98 * | 0.98 * | 0.98 * | |
Seeds (no. pod−1) | −0.18 | 0.84 * | 0.92 * | 0.83 * | 1.00 | 0.90 * | 0.92 * | 0.85 * | |
Residues (t ha−1) | 0.15 | 0.98 * | 0.95 * | 0.98 * | 0.90 * | 1.00 | 0.99 * | 0.98 * | |
N in residues (kg ha−1) | 0.08 | 0.97 * | 0.96 * | 0.98 * | 0.92 * | 0.99 * | 1.00 | 0.97 * | |
Protein yield (kg ha−1) | 0.25 | 0.99 * | 0.89 * | 0.98 * | 0.85 * | 0.98 * | 0.97 * | 1.00 | |
RT | Density (no. m−2) | 1.00 | 0.35 | 0.04 | 0.28 | −0.16 | 0.30 | 0.25 | 0.29 |
Seeds yield (t ha−1) | 0.35 | 1.00 | 0.83 * | 0.99 * | 0.78 * | 0.98 * | 0.98 * | 0.99 * | |
TSW (g) | 0.04 | 0.83 * | 1.00 | 0.81 * | 0.79 * | 0.90 * | 0.92 * | 0.82 * | |
Pods (no. plant−1) | 0.28 | 0.99 * | 0.81 * | 1.00 | 0.77 * | 0.97 * | 0.96 * | 0.98 * | |
Seeds (no. pod−1) | −0.16 | 0.78 * | 0.79 * | 0.77 * | 1.00 | 0.79 * | 0.83 * | 0.81 * | |
Residues (t ha−1) | 0.30 | 0.98 * | 0.90 * | 0.97 * | 0.79 * | 1.00 | 0.99 * | 0.97 * | |
N in residues (kg ha−1) | 0.25 | 0.98 * | 0.92 * | 0.96 * | 0.83 * | 0.99 * | 1.00 | 0.97 * | |
Protein yield (kg ha−1) | 0.29 | 0.99 * | 0.82 * | 0.98 * | 0.81 * | 0.97 * | 0.97 * | 1.00 | |
ST | Density (no. m−2) | 1.00 | 0.66 * | 0.21 | 0.63 * | 0.13 | 0.59 * | 0.53 * | 0.63 * |
Seeds yield (t ha−1) | 0.66 * | 1.00 | 0.82 * | 0.99 * | 0.80 * | 0.99 * | 0.98 * | 0.99 * | |
TSW (g) | 0.21 | 0.82 * | 1.00 | 0.80 * | 0.85 * | 0.89 * | 0.91 * | 0.85 * | |
Pods (no. plant−1) | 0.63 * | 0.99 * | 0.80 * | 1.00 | 0.80 * | 0.97 * | 0.97 * | 0.99 * | |
Seeds (no. pod−1) | 0.13 | 0.80 * | 0.85 * | 0.80 * | 1.00 | 0.82 * | 0.86 * | 0.82 * | |
Residues (t ha−1) | 0.59 * | 0.99 * | 0.89 * | 0.97 * | 0.82 * | 1.00 | 0.99 * | 0.99 * | |
N in residues (kg ha−1) | 0.53 * | 0.98 * | 0.91 * | 0.97 * | 0.86 * | 0.99 * | 1.00 | 0.99 * | |
Protein yield (kg ha−1) | 0.63 * | 0.99 * | 0.85 * | 0.99 * | 0.82 * | 0.99 * | 0.99 * | 1.00 | |
NT | Density (no. m−2) | 1.00 | −0.16 | −0.59 * | −0.27 | −0.63 * | −0.33 | −0.34 | −0.21 |
Seed yield (t ha−1) | −0.16 | 1.00 | 0.80 * | 0.99 * | 0.83 * | 0.97 * | 0.97 * | 0.99 * | |
TSW (g) | −0.59 * | 0.80 * | 1.00 | 0.86 * | 0.88 * | 0.89 * | 0.86 * | 0.83 * | |
Pods (no. plant−1) | −0.27 | 0.99 * | 0.86 * | 1.00 | 0.87 * | 0.98 * | 0.98 * | 0.99 * | |
Seeds (no. pod−1) | −0.63 * | 0.83 * | 0.88 * | 0.87 * | 1.00 | 0.90 * | 0.92 * | 0.86 * | |
Residues (t ha−1) | −0.33 | 0.97 * | 0.89 * | 0.98 * | 0.90 * | 1.00 | 0.99 * | 0.98 * | |
N in residues (kg ha−1) | −0.34 | 0.97 * | 0.86 * | 0.98 * | 0.92 * | 0.99 * | 1.00 | 0.98 * | |
Protein yield (kg ha−1) | −0.21 | 0.99 * | 0.83 * | 0.99 * | 0.86 * | 0.98 * | 0.98 * | 1.00 |
Treatment (Factor T) | Years (Factor Y) | Average (T) | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
CT | 0.16 c | 0.35 b | 0.09 c | 0.09 c | 0.17 C |
RT | 0.29 b | 0.41 ab | 0.19 ab | 0.17 b | 0.26 B |
ST | 0.34 ab | 0.37 ab | 0.20 ab | 0.18 ab | 0.27 B |
NT | 0.35 a | 0.44 a | 0.23 a | 0.21 a | 0.31 A |
Average | 0.29 B | 0.39 A | 0.18 C | 0.16 C | - |
Treatment | Volumetric Water Content % | Bulk Density Mg m−3 | Capillary Water Capacity % | |||
---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
CT | 14.1 c | 16.7 c | 1.44 c | 1.66 a | 35.6 a | 30.1 b |
RT | 15.6 b | 17.9 b | 1.55 ab | 1.56 b | 32.9 b | 33.1 a |
ST—in raw | 14.7 c | 16.5 c | 1.46 c | 1.54 b | 36.6 a | 33.2 a |
ST—inter-raw | 15.9 ab | 18.8 a | 1.57 ab | 1.58 ab | 30.6 c | 31.9 ab |
NT | 16.4 a | 18.4 ab | 1.60 a | 1.54 b | 31.6 bc | 32.7 a |
Parameter | Treatment | Soil Layer (cm) | |
---|---|---|---|
0–10 | 10–20 | ||
C organic (g kg−1) | CT | 7.62 c | 7.87 a |
RT | 9.02 b | 7.70 ab | |
NT | 10.64 a | 7.40 b | |
N total (g kg−1) | CT | 0.93 c | 0.91 a |
RT | 1.02 b | 0.88 a | |
NT | 1.10 a | 0.86 a | |
C/N | CT | 8.2 c | 8.6 a |
RT | 8.9 b | 8.7 a | |
NT | 9.7 a | 8.6 a | |
P (mg kg−1) | CT | 208 a | 203 a |
RT | 198 a | 206 a | |
NT | 199 a | 213 a | |
K (mg kg−1) | CT | 141 c | 145 a |
RT | 182 a | 133 a | |
NT | 196 a | 134 a | |
Mg (mg kg−1) | CT | 27.8 c | 29.3 a |
RT | 41.8 b | 27.7 a | |
NT | 53.7 a | 20.5 a |
Treatment (Factor T) | Year of Study (Factor Y) | Average (T) | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
Density (plants m−2) | |||||
CT | 44.0 g–j | 54.5 a–d | 46.5 f–h | 50.4 a–e | 48.9 A |
RT | 42.8 h–j | 55.2 ab | 44.2 g–j | 50.1 b–g | 48.1 A |
ST | 42.7 h–j | 56.4 a | 41.3 h–j | 45.4 f–i | 46.5 A |
NT | 38.2 j | 51.7 a–d | 47.1 e–h | 54.6 a–c | 47.9 A |
Average (Y) | 41.9 C | 54.5 A | 44.8 C | 50.1 B | - |
Pods plant−1 (no.) | |||||
CT | 6.5 e–g | 7.5 bc | 3.1 jk | 3.0 k | 5.0 BC |
RT | 6.6 ef | 7.7 ab | 3.6 ij | 3.1 jk | 5.2 AB |
ST | 6.8 de | 8.2 a | 3.9 i | 3.2 jk | 5.5 A |
NT | 6.1 f–h | 7.1 cd | 3.2 jk | 3.3 i–k | 4.9 BC |
Average (Y) | 6.5 B | 7.6 A | 3.5 C | 3.1 D | - |
Seeds pod−1 (no.) | |||||
CT | 3.6 a | 3.4 a | 2.9 a | 2.6 a | 3.1 C |
RT | 3.7 a | 3.5 a | 3.2 a | 2.6 a | 3.2 B |
ST | 3.6 a | 3.4 a | 3.1 a | 2.7 a | 3.2 B |
NT | 3.8 a | 3.6 a | 3.1 a | 2.7 a | 3.3 A |
Average (Y) | 3.7 A | 3.5 B | 3.0 C | 2.7 D | - |
Thousand seed weight (g) | |||||
CT | 562.1 b–d | 508.7 e | 395.7 o | 406.2 l–n | 468.2 D |
RT | 572.0 a | 504.9 e–h | 405.1 l–n | 418.9 i–k | 475.2 A–C |
ST | 569.3 ab | 505.1 e–g | 407.4 lm | 422.0 ij | 475.9 AB |
NT | 562.4 bc | 507.1 ef | 409.3 l | 426.5 i | 476.3 A |
Average (Y) | 566.5 A | 506.4 B | 404.4 D | 418.4 C | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małecka-Jankowiak, I.; Blecharczyk, A.; Sawinska, Z.; Piechota, T.; Idziak, R. The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland. Sustainability 2025, 17, 4293. https://doi.org/10.3390/su17104293
Małecka-Jankowiak I, Blecharczyk A, Sawinska Z, Piechota T, Idziak R. The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland. Sustainability. 2025; 17(10):4293. https://doi.org/10.3390/su17104293
Chicago/Turabian StyleMałecka-Jankowiak, Irena, Andrzej Blecharczyk, Zuzanna Sawinska, Tomasz Piechota, and Robert Idziak. 2025. "The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland" Sustainability 17, no. 10: 4293. https://doi.org/10.3390/su17104293
APA StyleMałecka-Jankowiak, I., Blecharczyk, A., Sawinska, Z., Piechota, T., & Idziak, R. (2025). The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland. Sustainability, 17(10), 4293. https://doi.org/10.3390/su17104293