Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Structural Indices of the Community
Index | Formula | Observations | Source |
---|---|---|---|
Absolute density | ni = number of individuals of species i; A = total sampled area. | [40] | |
Percentual density | Di = the absolute density of species i; ∑D = the sum of the densities of all species in the studied community. | [40] | |
Frequency | pi = the number of samples in which species i is found; P = the total number of samples analyzed. | [41] | |
Constance | it depends on F | species with F ≥ 50% are constant species; species with F = 25–50% are accessory species; and species with F < 25% are accidental species. | [42] |
Dzuba’s index | A = abundance; F = frequency. | [43] | |
Dominance index | D1 = the numerical density (the total number of individuals of a species divided by the total number of sampling units used) of the most numerous species; D2 = the numerical density of the secondary species; D = total density of all species in the community. | [44] |
2.4. Biodiversity Indices
Index | Formula | Observations | Source |
---|---|---|---|
Simpson dominance | ni = number of individuals of species i; S = number of species. | [45] | |
Simpson diversity | 1 − D | D = Simpson dominance. | [46] |
Shannon–Wiener index | s = total number of species; ni = number of individuals of species i; n = total number of individuals in the sample analyzed. | [47] | |
Pielou index | H′ = Shannon–Wiener function; S = number of species. | [48] | |
Maximum entropy | Hmax = log(S) | S = total number of species in the community. | [49] |
Menhinick index | S = number of species; N = total number of individuals in the population. | [50] | |
Gleason index | S = number of species; N = total number of individuals in the population. | [51] | |
McIntosh index | ni = number of individuals of species i; S = number of species. | [52] | |
Margalef index | S = number of species; N = total number of individuals in the population. | [53] |
2.5. Statistical Analysis
3. Results and Discussions
3.1. Analysis of Structural Indices
3.2. Analysis of the Biodiversity Indices
3.3. Canonical Correspondence Analysis (CCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Z.; Xia, M.; Li, C.; Mu, B.; Zhang, Z. A comparison of flower and grass strips for augmentation of beneficial arthropods in apple orchards. Front. Sustain. Food Syst. 2021, 5, 697864. [Google Scholar] [CrossRef]
- Zhao, H.; Lakshmanan, P.; Wang, X.; Xiong, H.; Yang, L.; Liu, B.; Shi, B.; Chen, X.; Wang, J.; Zhang, F.; et al. Global reactive nitrogen loss in orchard systems: A review. Sci. Total Environ. 2022, 821, 153462. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, F.; Yin, C. Orchard grass safeguards sustainable development of fruit industry in China. J. Clean. Prod. 2023, 382, 135291. [Google Scholar] [CrossRef]
- Mia, M.D. Alternative Orchard Floor Management Practices in the Tree Row. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2021. [Google Scholar]
- Mockford, A.; Urbaneja, A.; Ashbrook, K.; Westbury, D.B. Developing perennial wildflower strips for use in Mediterranean orchard systems. Ecol. Evol. 2023, 13, e10285. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.K.; Sørensen, H.; Sigsgaard, L. Perennial flower strips in apple orchards promote natural enemies in their proximity. Crop Prot. 2022, 156, 105962. [Google Scholar] [CrossRef]
- Favarin, S.; Sommaggio, D.; Fantinato, E.; Masiero, M.; Buffa, G. Ecological intensification: Multifunctional flower strips support beneficial arthropods in an organic apple orchard. Plant Ecol. 2024, 225, 499–509. [Google Scholar] [CrossRef]
- Howard, C.; Burgess, P.J.; Fountain, M.T.; Brittain, C.; Garratt, M.P. Perennial flower strips can be a cost-effective tool for pest suppression in orchards. J. Agric. Econ. 2025, 76, 466–477. [Google Scholar] [CrossRef]
- Mateos-Fierro, Z.; Fountain, M.T.; Garratt, M.P.; Ashbrook, K.; Westbury, D.B. Active management of wildflower strips in commercial sweet cherry orchards enhances natural enemies and pest regulation services. Agric. Ecosyst. Environ. 2021, 317, 107485. [Google Scholar] [CrossRef]
- Lisek, J. Diversity of summer weed communities in response to different plum orchard floor management in-row. Agronomy 2023, 13, 1421. [Google Scholar] [CrossRef]
- Ilie, D.; Cosmulescu, S. Spontaneous plant diversity in urban contexts: A review of its impact and importance. Diversity 2023, 15, 277. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Chen, M.; Zhao, J.; Li, H.; Ignatieva, M.; Zhou, W. The post-effects of landscape practices on spontaneous plants in urban parks. Urban For. Urban Green. 2025, 107, 128744. [Google Scholar] [CrossRef]
- Halliday, F.W.; Rohr, J.R.; Laine, A.L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. 2020, 23, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Buragohain, M.K.; Dar, A.A.; Babu, K.N.; Parthasarathy, N. Tree community structure, carbon stocks and regeneration status of disturbed lowland tropical rain forests of Assam, India. Trees For. People 2023, 11, 100371. [Google Scholar] [CrossRef]
- Harrison, S.; Spasojevic, M.J.; Li, D. Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. USA 2020, 117, 4464–4470. [Google Scholar] [CrossRef] [PubMed]
- Fahey, C.; Koyama, A.; Antunes, P.M.; Dunfield, K.; Flory, S.L. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME J. 2020, 14, 1396–1409. [Google Scholar] [CrossRef] [PubMed]
- Valencia, E.; de Bello, F.; Galland, T.; Adler, P.B.; Lepš, J.; E-Vojtkó, A.; van Klink, R.; Carmona, C.P.; Danihelka, J.; Dengler, J.; et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 24345–24351. [Google Scholar] [CrossRef] [PubMed]
- Roswell, M.; Dushoff, J.; Winfree, R. A conceptual guide to measuring species diversity. Oikos 2021, 130, 321–338. [Google Scholar] [CrossRef]
- Mammola, S.; Carmona, C.P.; Guillerme, T.; Cardoso, P. Concepts and applications in functional diversity. Func. Ecol. 2021, 35, 1869–1885. [Google Scholar] [CrossRef]
- Wu, J.; Lin, W.; Peng, X.; Liu, W. A review of forest resources and forest biodiversity evaluation system in China. Int. J. For. Res. 2013, 1, 396345. [Google Scholar] [CrossRef]
- Rowland, J.A.; Bland, L.M.; Keith, D.A.; Juffe-Bignoli, D.; Burgman, M.A.; Etter, A.; José Rafael, F.P.; Miller, R.M.; Skowno, A.L.; Nicholson, E. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 2020, 13, e12680. [Google Scholar] [CrossRef]
- Kunakh, O.M.; Volkova, A.M.; Tutova, G.F.; Zhukov, O.V. Diversity of diversity indices: Which diversity measure is better? Biosyst. Divers. 2023, 31, 131–146. [Google Scholar] [CrossRef]
- Stamin, F.D.; Cosmulescu, S. Comparative assessment of biodiversity and ecological indicators in three forest ecosystems of southern Romania. Diversity 2025, 17, 277. [Google Scholar] [CrossRef]
- Cartozo, C.C.; Garlaschelli, D.; Ricotta, C.; Barthelemy, M.; Caldarelli, G. Quantifying the taxonomic diversity in real species communities. J. Phys. A Math. Theor. 2008, 41, 224012. [Google Scholar] [CrossRef]
- Heinen, R.; Hannula, S.E.; De Long, J.R.; Huberty, M.; Jongen, R.; Kielak, A.; Steinauer, K.; Zhu, F.; Bezemer, T.M. Plant community composition steers grassland vegetation via soil legacy effects. Ecol. Lett. 2020, 23, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Pfiffner, L.; Cahenzli, F.; Steinemann, B.; Jamar, L.; Bjørn, M.C.; Porcel, M.; Tasin, M.; Telfser, J.; Kelderer, M.; Lisek, J.; et al. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 61–71. [Google Scholar] [CrossRef]
- Akakpo, K.; Bouarfa, S.; Benoît, M.; Leauthaud, C. Challenging agroecology through the characterization of farming practices’ diversity in Mediterranean irrigated areas. Eur. J. Agron. 2021, 128, 126284. [Google Scholar] [CrossRef]
- Szigeti, N.; Berényi Üveges, J.; Berki, I.; Vityi, A. Grassy-floral soil covering as a tool for increasing herbaceous diversity in agroforestry. J. Cent. Eur. Agric. 2022, 23, 898–908. [Google Scholar] [CrossRef]
- Pornaro, C.; Meggio, F.; Tonon, F.; Mazzon, L.; Sartori, L.; Berti, A.; Macolino, S. Selection of inter-row herbaceous covers in a sloping, organic, non-irrigated vineyard. PLoS ONE 2022, 17, e0279759. [Google Scholar] [CrossRef] [PubMed]
- Hurajová, E.; Martínez Barroso, P.; Děkanovský, I.; Lumbantobing, Y.R.; Jiroušek, M.; Mugutdinov, A.; Havel, L.; Winkler, J. Biodiversity and vegetation succession in vineyards, Moravia (Czech Republic). Agriculture 2024, 14, 1036. [Google Scholar] [CrossRef]
- Rocher, L.; Melloul, E.; Blight, O.; Bischoff, A. Effect of spontaneous vegetation on beneficial arthropods in Mediterranean vineyards. Agric. Ecosyst. Environ. 2024, 359, 108740. [Google Scholar] [CrossRef]
- Spronk, A.L.; Guerin, G.R.; Martín-Forés, I.; Lowe, A.J.; Hogendoorn, K. Evaluating remnant vegetation management practices adjacent to apple orchards to support native bee pollinators. Ecol. Manag. Restor. 2023, 24, 96–106. [Google Scholar] [CrossRef]
- Răduțoiu, D.; Cosmulescu, S.N.; Gheorghiu, N.; Stoenescu, A.M. Considerations regarding the vascular flora of some fruit orchards in Dolj county, Romania. Ann. Univ. Craiova Biol. Hortic. Food Prod. Process Technol. Environ. Eng. 2023, 28, 107–114. [Google Scholar] [CrossRef]
- Bălțatu, C.; Marin, E.; Gheorghe, G.V.; Dragoş, M.; Mateescu, M.; Dumitru, D.; Cismaru, M.E. Technologies of green covering inter-row of vineyard and fruit trees. In Proceedings of the ISB-INMA-TEH’ 2023, Bucharest, Romania, 5–6 October 2023; pp. 638–643. [Google Scholar]
- Cosmulescu, S.N.; Gheorghiu, N.; Stoenescu, A.M. Intensive technologies in orchards: Soil effects and sustainable management strategies. South-West J. Hortic. Biol. Environ. 2024, 15, 123–134. [Google Scholar]
- Meng, J.; Li, L.; Liu, H.; Li, Y.; Li, C.; Wu, G.; Yu, X.; Guo, L.; Cheng, D.; Muminov, M.A.; et al. Biodiversity management of organic orchard enhances both ecological and economic profitability. PeerJ 2016, 4, e2137. [Google Scholar] [CrossRef] [PubMed]
- Ciocârlan, V. Flora Ilustrată a României: Pteridophyta et Spermatophyta; Editura Ceres: București, Romania, 2009. [Google Scholar]
- Sârbu, I.; Ștefan, N.; Oprea, A. Plante Vasculare din România Determinator Ilustrat de Teren; Editura Victor B Victor: București, Romania, 2013. [Google Scholar]
- Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 6 July 2025).
- Battes, K. Ecologie Generală: Ghid de Lucrări Practice; Editura Presa Universitară Clujeană: Cluj-Napoca, Romania, 2012. [Google Scholar]
- Tănase, M.C.; Filimon, A.; Dumitrache, C.; Abaza, V. The macrozoobenthic species of the infralittoral and circalittoral zone from the Romanian Black Sea Coast—A qualitative and quantitative assessment. Ann. Acad. Rom. Sci. Ser. Biol. Sci. 2022, 11, 62–73. [Google Scholar] [CrossRef]
- Isaia, G.; Dragomir, I.M.; Duduman, M.L. Diversity of beetles captured in pitfall traps in the Șinca old-growth forest, Brașov county, Romania: Forest reserve versus managed forest. Forests 2022, 14, 60. [Google Scholar] [CrossRef]
- Marin, O.; Dumitrache, C.; Filimon, A.; Abaza, V.; Spînu, A. Current ecological study of hard substrate habitats from coastal waters of the Romanian Black Sea area. ACROSS 2022, 5, 44–56. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Wolf, L.L. Dominance and the niche in ecological systems. Science 1970, 167, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Muller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Lloyd, M.; Ghelardi, R.J. A table for calculating the ‘equitability’ component of species diversity. J. Anim. Ecol. 1964, 33, 217–225. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Y.; Xiao, W.; Wang, D.; Wang, Z.; Jin, X.; Cheng, T.; Zhang, J.; Yi, P. The relationship between landscape pattern and plant species diversity in east Dongting lake wetland based on different eco-environment. Environ. Pollut. 2024, 355, 124187. [Google Scholar] [CrossRef] [PubMed]
- Menhinick, E.F. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 1964, 45, 859–861. [Google Scholar] [CrossRef]
- Gleason, H.A. On the relation between species and area. Ecology 1922, 3, 158–162. [Google Scholar] [CrossRef]
- McIntosh, R.P. An index of diversity and the relation of certain concepts to diversity. Ecology 1967, 48, 392–404. [Google Scholar] [CrossRef]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Satar, S.; Kavallieratos, N.G.; Tüfekli, M.; Satar, G.; Athanassiou, C.G.; Papanikolaou, N.E.; Karacaoğlu, M.; Özdemir, I.; Starý, P. Capsella bursa-pastoris is a key overwintering plant for aphids in the mediterranean region. Insects 2021, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Łukaszyk, A.; Kwiecień, I.; Szopa, A. Traditional uses, bioactive compounds, and new findings on pharmacological, nutritional, cosmetic and biotechnology utility of Capsella bursa-pastoris. Nutrients 2024, 16, 4390. [Google Scholar] [CrossRef] [PubMed]
- Rayia, A.; Abu Ziada, M.E.; Al-Halboosi, S.R. Autecology and economic importance of weed flora of the Nile Delta: Capsella bursa–pastoris L. J. Plant Prod. 2020, 11, 49–56. [Google Scholar] [CrossRef]
- Ahmed, H.T.; Francis, A.; Clements, D.R.; Dyck, E.; Ross, N.; Upadhyaya, M.K.; Hall, L.M.; Martin, S.L. The biology of canadian weeds. 159. Capsella bursa-pastoris (L.) Medik. Can. J. Plant Sci. 2021, 102, 529–552. [Google Scholar] [CrossRef]
- Shariatipour, N.; Heidari, B.; Shams, Z.; Richards, C. Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions. Sci. Rep. 2022, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Házi, J.; Purger, D.; Penksza, K.; Bartha, S. Changes in species composition, diversity, and biomass of secondary dry grasslands following long-term mowing: A case study in Hungary. Grasses 2024, 3, 130–142. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Wang, C.; Cheng, J.; Qiang, S. A comparative study reveals the key biological traits causing bioinvasion differences among four alien species of genus Veronica in China. J. Plant Ecol. 2023, 16, rtac068. [Google Scholar] [CrossRef]
- Nishida, S.; Tamakoshi, N.; Takakura, K.I.; Watanabe, Y.; Kanaoka, M.M. Reproductive interference between alien species in Veronica. J. Plant Res. 2024, 137, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Grădilă, M.; Jalobă, D.; Şerban, M.; Petcu, V. Management measures for Veronica persica (Plantaginaceae), an invasive alien species and a weed in rapeseed crops in Southeast Romania. Phytol. Balcan. 2021, 27, 305–312. [Google Scholar]
- Al-Qthanin, R.; Radwan, A.M.; Donia, A.M.; Balah, M.A. Comprehensive analysis and implications of Veronica persica germination and growth traits in their invasion ecology. Sci. Rep. 2024, 14, 16285. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P.; Rejmanek, M.; Barbour, M.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Managementul Adecvat al Speciilor Invazive din România, în Conformitate cu Regulamentul UE 1143/2014, Referitor la Prevenirea și Gestionarea Introducerii și Răspândirii Speciilor Alogene Invazive. Available online: https://invazive.ccmesi.ro/ (accessed on 6 July 2025).
- Gómez, J.A.; Campos, M.; Guzmán, G.; Castillo-Llanque, F.; Vanwalleghem, T.; Lora, Á.; Giráldez, J.V. Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard. Environ. Sci. Pollut. Res. 2018, 25, 977–989. [Google Scholar] [CrossRef]
- Juárez, A.; Solé, X.; Conesa, J.A. Diversity and richness of exotic weeds in fruit tree orchards in relation to irrigation management. Asp. Appl. Biol. 2010, 104, 79–87. [Google Scholar]
- Kakampoura, B.; Panitsa, M. Plant diversity of olive groves under different management practices: A case study on Lesbos island (East Aegean area, Greece). Flora Mediterr. 2022, 32, 375–386. [Google Scholar] [CrossRef]
- Danne, A.; Thomson, L.J.; Sharley, D.J.; Penfold, C.M.; Hoffmann, A.A. Effects of native grass cover crops on beneficial and pest invertebrates in Australian vineyards. Environ. Entomol. 2010, 39, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
No. | Species | X | SD | LC | DP | F | C | W | ID | Lifespan | Invasivity |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Capsella bursa-pastoris | 44.80 | 42.37 | 26.6 | 19.80 | 100.00 | Constant | 19.80 | 33.59 | Annual–biennial | Non-invasive |
2. | Poa angustifolia | 34.60 | 57.42 | 35.59 | 15.29 | 30.00 | Accessory | 4.59 | Perennial | Non-invasive | |
3. | Veronica hederifolia | 28.20 | 21.71 | 13.46 | 12.46 | 90.00 | Constant | 11.22 | Annual | Non-invasive | |
4. | Geranium pusillum | 22.10 | 18.79 | 11.64 | 9.77 | 100.00 | Constant | 9.77 | Annual | Non-invasive | |
5. | Poa pratensis | 15.80 | 44.80 | 27.77 | 6.98 | 30.00 | Accessory | 2.09 | Perennial | Non-invasive | |
6. | Lamium amplexicaule | 11.80 | 9.82 | 6.09 | 5.21 | 70.00 | Constant | 3.65 | Annual | Non-invasive | |
7. | Setaria pumila | 9.00 | 14.39 | 8.92 | 3.98 | 40.00 | Accessory | 1.59 | Annual | Non-invasive | |
8. | Lepidium draba | 6.80 | 10.58 | 6.56 | 3.00 | 40.00 | Accessory | 1.20 | Perennial | Non-invasive | |
9. | Lamium purpureum | 6.80 | 12.88 | 7.98 | 3.00 | 60.00 | Constant | 1.80 | Annual | Non-invasive | |
10. | Rorippa austriaca | 6.10 | 11.72 | 7.27 | 2.70 | 30.00 | Accessory | 0.81 | Perennial | Non-invasive | |
11. | Senecio leucanthemifolius subsp. vernalis | 5.80 | 3.79 | 2.35 | 2.56 | 90.00 | Constant | 2.31 | Annual | Non-invasive | |
12. | Bromus hordeaceus | 5.40 | 11.67 | 7.24 | 2.39 | 30.00 | Accessory | 0.72 | Annual–biennial | Non-invasive | |
13. | Trifolium arvense | 4.10 | 12.97 | 8.04 | 1.81 | 10.00 | Accidental | 0.18 | Annual | Non-invasive | |
14. | Convolvulus arvensis | 3.40 | 4.30 | 2.67 | 5.48 | 50.00 | Constant | 2.74 | Perennial | Non-invasive | |
15. | Achillea setacea | 3.20 | 10.12 | 6.27 | 1.41 | 10.00 | Accidental | 0.14 | Perennial | Non-invasive | |
16. | Veronica polita | 3.10 | 9.80 | 6.08 | 1.37 | 10.00 | Accidental | 0.14 | Annual | Non-invasive | |
17. | Ornithogalum umbellatum | 2.80 | 4.54 | 2.81 | 1.24 | 60.00 | Constant | 0.74 | Perennial | Non-invasive | |
18. | Taraxacum officinale | 2.30 | 3.77 | 2.34 | 1.02 | 40.00 | Accessory | 0.41 | Perennial | Non-invasive | |
19. | Filago arvensis | 1.60 | 4.38 | 2.71 | 0.71 | 30.00 | Accessory | 0.21 | Annual | Non-invasive | |
20. | Rumex crispus | 1.40 | 2.46 | 1.52 | 0.62 | 30.00 | Accessory | 0.19 | Perennial | Non-invasive | |
21. | Rubus caesius | 1.10 | 1.60 | 0.99 | 0.49 | 50.00 | Constant | 0.24 | Perennial | Non-invasive | |
22. | Lathyrus pratensis | 0.90 | 1.10 | 0.68 | 0.40 | 50.00 | Constant | 0.20 | Perennial | Non-invasive | |
23. | Vicia sepium | 0.90 | 2.51 | 1.56 | 0.40 | 20.00 | Accidental | 0.08 | Perennial | Non-invasive | |
24. | Arenaria serpyllifolia | 0.80 | 1.87 | 1.16 | 0.35 | 30.00 | Accessory | 0.11 | Annual | Non-invasive | |
25. | Stellaria media | 0.80 | 1.62 | 1.00 | 0.35 | 30.00 | Accessory | 0.11 | Annual | Non-invasive | |
26. | Calepina irregularis | 0.50 | 1.58 | 0.98 | 0.22 | 10.00 | Accidental | 0.02 | Annual–biennial | Non-invasive | |
27. | Hypericum perforatum | 0.40 | 1.26 | 0.78 | 0.18 | 10.00 | Accidental | 0.02 | Perennial | Non-invasive | |
28. | Alopecurus pratensis | 0.30 | 0.67 | 0.42 | 0.13 | 20.00 | Accidental | 0.03 | Perennial | Non-invasive | |
29. | Potentilla argentea | 0.30 | 0.95 | 0.59 | 0.13 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
30. | Sonchus arvensis | 0.30 | 0.67 | 0.42 | 0.61 | 20.00 | Accidental | 0.12 | Perennial | Non-invasive | |
31. | Ornithogalum boucheanum | 0.20 | 0.63 | 0.39 | 0.09 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
32. | Tragopogon pratensis subsp. orientalis | 0.20 | 0.63 | 0.39 | 0.09 | 10.00 | Accidental | 0.01 | Biennial–perennial | Non-invasive | |
33. | Carduus acanthoides | 0.10 | 0.32 | 0.20 | 0.04 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
34. | Centaurea sp. | 0.10 | 0.32 | 0.20 | 0.04 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
35. | Festuca valesiaca | 0.10 | 0.32 | 0.20 | 0.04 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
36. | Veronica arvensis | 0.10 | 0.32 | 0.20 | 0.04 | 10.00 | Accidental | 0.01 | Annual | Non-invasive | |
37. | Xeranthemum cylindraceum | 0.10 | 0.32 | 0.20 | 0.04 | 10.00 | Accidental | 0.01 | Annual | Non-invasive |
No. | Species | X | SD | LC | DP | F | C | W | ID | Lifespan | Invasivity |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Poa pratensis | 28.40 | 19.04 | 11.80 | 30.41 | 100.00 | Constant | 30.41 | 40.90 | Perennial | Non-invasive |
2. | Trifolium repens | 9.80 | 22.24 | 13.78 | 10.49 | 30.00 | Accessory | 3.15 | Perennial | Non-invasive | |
3. | Medicago minima | 9.60 | 13.07 | 8.10 | 10.28 | 70.00 | Constant | 7.19 | Perennial | Non-invasive | |
4. | Veronica arvensis | 8.70 | 10.03 | 6.22 | 9.31 | 80.00 | Constant | 7.45 | Annual | Non-invasive | |
5. | Veronica polita | 7.50 | 11.62 | 7.20 | 8.03 | 60.00 | Constant | 4.82 | Annual | Non-invasive | |
6. | Veronica hederifolia | 5.40 | 7.23 | 4.48 | 5.78 | 60.00 | Constant | 3.47 | Annual | Non-invasive | |
7. | Stellaria media | 4.40 | 3.84 | 2.38 | 4.71 | 80.00 | Constant | 3.77 | Annual | Non-invasive | |
8. | Arenaria serpyllifolia | 3.60 | 10.37 | 6.43 | 3.85 | 20.00 | Accidental | 0.77 | Annual | Non-invasive | |
9. | Lathyrus pratensis | 3.40 | 5.80 | 3.59 | 3.64 | 50.00 | Constant | 1.82 | Perennial | Non-invasive | |
10. | Geranium pusillum | 1.70 | 3.30 | 2.05 | 1.82 | 40.00 | Accessory | 0.73 | Annual | Non-invasive | |
11. | Senecio leucanthemifolius subsp. vernalis | 1.50 | 4.06 | 2.52 | 1.61 | 30.00 | Accessory | 0.48 | Annual | Non-invasive | |
12. | Capsella bursa-pastoris | 1.20 | 2.30 | 1.43 | 1.28 | 30.00 | Accessory | 0.39 | Annual–biennial | Non-invasive | |
13. | Vicia sepium | 1.20 | 1.55 | 0.96 | 1.28 | 60.00 | Constant | 0.77 | Perennial | Non-invasive | |
14. | Convolvulus arvensis | 0.80 | 1.48 | 0.91 | 0.86 | 30.00 | Accessory | 0.26 | Perennial | Non-invasive | |
15. | Euphorbia esula subsp. tommasiniana | 0.80 | 2.53 | 1.57 | 0.86 | 10.00 | Accidental | 0.09 | Perennial | Non-invasive | |
16. | Lamium purpureum | 0.80 | 0.92 | 0.57 | 0.86 | 50.00 | Constant | 0.43 | Annual | Non-invasive | |
17. | Nonea pulla | 0.80 | 2.53 | 1.57 | 0.86 | 10.00 | Accidental | 0.09 | Perennial | Non-invasive | |
18. | Lamium amplexicaule | 0.70 | 2.21 | 1.37 | 0.75 | 10.00 | Accidental | 0.07 | Annual | Non-invasive | |
19. | Setaria pumila | 0.60 | 1.35 | 0.84 | 0.64 | 20.00 | Accidental | 0.13 | Annual | Non-invasive | |
20. | Taraxacum officinale | 0.60 | 0.84 | 0.52 | 0.64 | 40.00 | Accessory | 0.26 | Perennial | Non-invasive | |
21. | Daucus carota | 0.50 | 0.85 | 0.53 | 0.54 | 30.00 | Accessory | 0.16 | Annual | Non-invasive | |
22. | Rubus caesius | 0.50 | 1.08 | 0.67 | 0.54 | 20.00 | Accidental | 0.11 | Perennial | Non-invasive | |
23. | Cichorium intybus | 0.20 | 0.63 | 0.39 | 0.21 | 10.00 | Accidental | 0.02 | Perennial | Non-invasive | |
24. | Carduus acanthoides | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Biennial | Non-invasive | |
25. | Euphorbia cyparissias | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
26. | Filago arvensis | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Annual | Non-invasive | |
27. | Geranium dissectum | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Annual | Non-invasive | |
28. | Rorippa austriaca | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
29. | Sonchus arvensis | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
30. | Vicia villosa | 0.10 | 0.32 | 0.20 | 0.11 | 10.00 | Accidental | 0.01 | Annual–Biennial | Non-invasive |
No. | Species | X | SD | LC | DP | F | C | W | ID | Lifespan | Invasivity |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Veronica hederifolia | 11.50 | 10.07 | 6.24 | 11.33 | 100.00 | Constant | 11.33 | 21.87 | Annual | Non-invasive |
2. | Lepidium draba | 10.70 | 18.32 | 11.35 | 10.54 | 60.00 | Constant | 6.33 | Perennial | Non-invasive | |
3. | Lolium perenne | 9.60 | 9.95 | 6.16 | 9.46 | 100.00 | Constant | 9.46 | Perennial | Non-invasive | |
4. | Convolvulus arvensis | 8.40 | 6.92 | 4.29 | 8.28 | 100.00 | Constant | 8.28 | Perennial | Non-invasive | |
5. | Polygonum aviculare | 6.80 | 8.42 | 5.22 | 6.70 | 70.00 | Constant | 4.69 | Annual | Non-invasive | |
6. | Artemisia absinthium | 5.20 | 16.44 | 10.19 | 5.12 | 10.00 | Accidental | 0.51 | Perennial | Non-invasive | |
7. | Capsella bursa-pastoris | 4.50 | 4.58 | 2.84 | 4.43 | 100.00 | Constant | 4.43 | Annual–biennial | Non-invasive | |
8. | Verbena officinalis | 4.30 | 13.60 | 8.43 | 4.24 | 10.00 | Accidental | 0.42 | Annual–perennial | Non-invasive | |
9. | Rumex crispus | 4.20 | 3.61 | 2.24 | 4.14 | 90.00 | Constant | 3.72 | Perennial | Non-invasive | |
10. | Medicago arabica | 3.70 | 11.70 | 7.25 | 3.65 | 10.00 | Accidental | 0.36 | Annual | Non-invasive | |
11. | Senecio leucanthemifolius subsp. vernalis | 3.50 | 5.52 | 3.42 | 3.45 | 90.00 | Constant | 3.10 | Annual | Non-invasive | |
12. | Sonchus arvensis | 3.30 | 5.40 | 3.34 | 3.25 | 60.00 | Constant | 1.95 | Perennial | Non-invasive | |
13. | Bromus hordeaceus | 2.90 | 4.25 | 2.64 | 2.86 | 50.00 | Constant | 1.43 | Annual–biennial | Non-invasive | |
14. | Senecio leucanthemifolius subsp. vulgaris | 2.60 | 3.78 | 2.34 | 2.56 | 70.00 | Constant | 1.79 | Annual | Non-invasive | |
15. | Medicago minima | 2.40 | 5.25 | 3.26 | 2.36 | 40.00 | Accessory | 0.95 | Annual | Non-invasive | |
16. | Stellaria media | 2.20 | 2.04 | 1.27 | 2.17 | 80.00 | Constant | 1.73 | Annual | Non-invasive | |
17. | Taraxacum officinale | 2.20 | 1.62 | 1.00 | 2.17 | 90.00 | Constant | 1.95 | Perennial | Non-invasive | |
18. | Chenopodium album | 2.00 | 4.14 | 2.56 | 1.97 | 30.00 | Accessory | 0.59 | Annual | Non-invasive | |
19. | Veronica polita | 2.00 | 2.11 | 1.31 | 1.97 | 70.00 | Constant | 1.38 | Annual | Non-invasive | |
20. | Cirsium arvense | 1.50 | 1.35 | 0.84 | 1.48 | 60.00 | Constant | 0.89 | Perennial | Non-invasive | |
21. | Rubus caesius | 1.20 | 2.20 | 1.36 | 1.18 | 40.00 | Accessory | 0.47 | Perennial | Non-invasive | |
22. | Ochlopoa annua | 1.00 | 1.76 | 1.09 | 0.99 | 30.00 | Accessory | 0.30 | Annual | Non-invasive | |
23. | Plantago major | 0.90 | 1.20 | 0.74 | 0.89 | 40.00 | Accessory | 0.35 | Perennial | Non-invasive | |
24. | Geranium dissectum | 0.80 | 2.20 | 1.36 | 0.79 | 20.00 | Accidental | 0.16 | Annual | Non-invasive | |
25. | Poa pratensis | 0.70 | 1.64 | 1.01 | 0.69 | 20.00 | Accidental | 0.14 | Perennial | Non-invasive | |
26. | Trifolium repens | 0.50 | 1.08 | 0.67 | 0.49 | 20.00 | Accidental | 0.10 | Perennial | Non-invasive | |
27. | Daucus carota | 0.40 | 0.70 | 0.43 | 0.39 | 30.00 | Accessory | 0.12 | Annual | Non-invasive | |
28. | Galium aparine | 0.40 | 0.97 | 0.60 | 0.39 | 20.00 | Accidental | 0.08 | Annual | Non-invasive | |
29. | Carex divulsa | 0.30 | 0.67 | 0.42 | 0.30 | 20.00 | Accidental | 0.06 | Perennial | Non-invasive | |
30. | Geranium pusillum | 0.30 | 0.67 | 0.42 | 0.30 | 20.00 | Accidental | 0.06 | Annual | Non-invasive | |
31. | Vicia hirsuta | 0.30 | 0.95 | 0.59 | 0.30 | 10.00 | Accidental | 0.03 | Annual | Non-invasive | |
32. | Veronica persica | 0.20 | 0.63 | 0.39 | 0.20 | 10.00 | Accidental | 0.02 | Annual | Non-invasive | |
33. | Vicia grandiflora | 0.20 | 0.42 | 0.26 | 0.20 | 20.00 | Accidental | 0.04 | Annual | Non-invasive | |
34. | Vicia sepium | 0.20 | 0.63 | 0.39 | 0.20 | 10.00 | Accidental | 0.02 | Perennial | Non-invasive | |
35. | Amaranthus powellii | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Annual | Invasive | |
36. | Carduus acanthoides | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
37. | Cerastium glomeratum | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Annual | Non-invasive | |
38. | Lathyrus tuberosus | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Perennial | Non-invasive | |
39. | Malva sylvestris | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Biennial–perennial | Non-invasive | |
40. | Tripleurospermum inodorum | 0.10 | 0.32 | 0.20 | 0.10 | 10.00 | Accidental | 0.01 | Annual–biennial | Non-invasive |
Plantation | D | 1 − D | H′ | E | Hmax | DMn | G | U | DMg |
---|---|---|---|---|---|---|---|---|---|
Plum | 0.22 ± 0.07 ab | 0.78 ± 0.07 ab | 0.81 ± 0.11 b | 0.74 ± 0.07 a | 1.09 ± 0.10 b | 0.88 ± 0.23 b | 2.38 ± 0.51 b | 106.47 ± 49.69 a | 3.13 ± 1.27 a |
Cherry | 0.24 ± 0.13 a | 0.76 ± 0.13 b | 0.75 ± 0.20 b | 0.74 ± 0.13 a | 0.99 ± 0.12 c | 4.80 ± 2.03 a | 2.27 ± 0.67 b | 47.00 ± 20.52 b | 2.05 ± 0.66 b |
Apple | 0.15 ± 0.05 b | 0.85 ± 0.05 a | 0.97 ± 0.11 a | 0.80 ± 0.08 a | 1.21 ± 0.07 a | 1.70 ± 0.38 b | 3.64 ± 0.65 a | 40.96 ± 16.75 b | 3.42 ± 0.65 a |
Total | 0.20 ± 0.09 | 0.80 ± 009 | 0.85 ± 0.17 | 0.76 ± 0.10 | 1.10 ± 0.14 | 2.46 ± 2.07 | 2.76 ± 0.87 | 64.81 ± 43.45 | 2.87 ± 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosmulescu, S.; Stamin, F.D.; Răduțoiu, D.; Gheorghiu, N.C. Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania. Diversity 2025, 17, 494. https://doi.org/10.3390/d17070494
Cosmulescu S, Stamin FD, Răduțoiu D, Gheorghiu NC. Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania. Diversity. 2025; 17(7):494. https://doi.org/10.3390/d17070494
Chicago/Turabian StyleCosmulescu, Sina, Florin Daniel Stamin, Daniel Răduțoiu, and Nicolae Constantin Gheorghiu. 2025. "Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania" Diversity 17, no. 7: 494. https://doi.org/10.3390/d17070494
APA StyleCosmulescu, S., Stamin, F. D., Răduțoiu, D., & Gheorghiu, N. C. (2025). Plant Diversity and Ecological Indices of Naturally Established Native Vegetation in Permanent Grassy Strips of Fruit Orchards in Southern Romania. Diversity, 17(7), 494. https://doi.org/10.3390/d17070494