Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Immune Probes
2.2.1. Synthesis of FLM
2.2.2. Synthesis of GLM
2.3. Assembly of Strips
2.3.1. Assembly of FLMICS
2.3.2. Assembly of GLMICS
2.4. Condition Optimization of Strips
2.5. Performance Evaluation of Strips
2.6. Detection of PCM in Leeks and Peppers
3. Results and Discussion
3.1. Principle Detection of Strips
3.2. Characterization of Immune Probes
3.3. Optimization of the Working Conditions of Strips
3.4. Performance Evaluation and Actual Sample Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Gao, Z.; Qiao, C.; Liu, F.; Peng, Q. Residue analysis and removal of procymidone in cucumber after field application. Food Control 2021, 128, 108168. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Faust, M. Combined exposures to anti-androgenic chemicals: Steps towards cumulative risk assessment. Int. J. Androl. 2010, 33, 463–474. [Google Scholar] [CrossRef]
- Zamora-Sequeira, R.; Starbird-Pérez, R.; Rojas-Carillo, O.; Vargas-Villalobos, S. What are the main sensor methods for quantifying pesticides in agricultural activities? A Review. Molecules 2019, 24, 2659. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Jiang, X.; Li, D.; Xu, X.; Ying, Y.; Li, Y.; Ye, Z.; Wang, J. Immunosensors for detection of pesticide residues. Biosens. Bioelectron. 2008, 23, 1577–1587. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, P.; Xia, Y.; Li, F.; Zhang, M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024, 269, 125352. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, S.; Manickavasagan, A. Nondestructive testing methods for pesticide residue in food commodities: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1226–1256. [Google Scholar] [CrossRef] [PubMed]
- Ilager, D.; Malode, S.J.; Shetti, N.P. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. Chemosphere 2022, 303, 134919. [Google Scholar] [CrossRef]
- Chethan, B.; Sunilkumar, A.; Prasad, V.; Thomas, S. Surfactant electrochemical sensor based on carbon nanotubes for the analysis of fungicides. In Advances in Surfactant Biosensor and Sensor Technologies; Springer Nature: Cham, Switzerland, 2024; pp. 217–228. [Google Scholar]
- Hassoun, A.; Karoui, R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Wu, Y.H.; Xiong, Q.R.; Xu, H.Y.; Xiong, Y.H.; Liu, K.; Jin, Y.; Lai, W.H. Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays. Biosens. Bioelectron. 2014, 54, 262–265. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Huang, B.; Pan, Y.; Zhuang, Z.; Ye, Q.; Peng, C.; Deng, H.; Yi, Y.; Zhang, B.; et al. Rapid, on-site quantitative determination of mycotoxins in grains using a multiple time-resolved fluorescent microsphere immunochromatographic test strip. Biosens. Bioelectron. 2024, 258, 116357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.G.; Xu, S.L.; Xiong, Y.H.; Duan, H.; Chen, W.Y.; Li, X.M.; Yuan, M.-F.; Lai, W.H. Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosens. Bioelectron. 2019, 135, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, H. Functional polymer microspheres. Prog. Polym. Sci. 2000, 25, 1171–1210. [Google Scholar] [CrossRef]
- Gao, S.; Guisán, J.M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms—A critical review. Anal. Chim. Acta 2022, 1189, 338907. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev. 2008, 108, 423–461. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.N.; Reynolds, G.M.; Waldron, E.E.; Ward, E.; Giannopoulos, K.; Murray, P.G. Demystified…: Monoclonal antibodies. Mol. Pathol. 2000, 53, 111. [Google Scholar] [CrossRef]
- Gan, S.Y.; Tye, G.J.; Chew, A.L.; Ng, W.K.; Lai, N.S. Linker-mediated oriented antibody immobilisation strategies for a more efficient immunosensor and diagnostic applications: A review. Biosens. Bioelectron. X 2023, 14, 100379. [Google Scholar] [CrossRef]
- Chen, Z.; Tabakman, S.M.; Goodwin, A.P.; Kattah, M.G.; Daranciang, D.; Wang, X.; Zhang, G.; Li, X.; Liu, Z.; Utz, P.J.; et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 2008, 26, 1285–1292. [Google Scholar] [CrossRef]
- Li, D.; Dong, H.; Li, Z.; Wang, H.; Sun, J.; Huang, J.; Li, P.; Zhou, S.; Zhai, S.; Zhao, M.; et al. Novel cross-linkable fluorescent probe with oriented antibody to enhance lateral immunoassay strip for the detection of acetamiprid. J. Hazard. Mater. 2024, 476, 134935. [Google Scholar] [CrossRef]
- Su, C.; Ding, F.; Wang, W.; Song, Z.; Ali, Q.; Ali, M.; Hong, N.; Wang, G.; Han, H. Time-resolved fluorescent microsphere lateral flow biosensors for rapid detection of Candidatus Liberibacter asiaticus. Plant Biotechnol. J. 2022, 20, 1235. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, A.; Sun, Y.; Li, Y.; Chen, Y.; Zhou, J.; Liu, H.; Ding, P.; Qi, Y.; Li, N.; et al. Development of a gold nanoparticle-based immunochromatographic strip for rapid detection of porcine circovirus type 2. Microbiol. Spectr. 2023, 11, e01953-22. [Google Scholar] [CrossRef]
- Tanaka, R.; Yuhi, T.; Nagatani, N.; Endo, T.; Kerman, K.; Takamura, Y.; Tamiya, E. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal. Bioanal. Chem. 2006, 385, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Petrakova, A.V.; Kuzmin, P.G.; Zherdev, A.V.; Sveshnikov, P.G.; Shafeev, G.A.; Dzantiev, B.B. Application of gold nanoparticles produced by laser ablation for immunochromatographic assay labeling. Anal. Biochem. 2015, 491, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.S.; Blanchard, G.J. Formation of gold nanoparticles using amine reducing agents. Langmuir 2006, 22, 5882–5887. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Yang, S.; Yang, Y.; Cui, S.; Feng, Z.; Du, Y.; Song, Z.; Tong, Y.; Yang, L.; Wang, Z.; Zeng, H.; et al. Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. Int. J. Nanomed. 2018, 13, 4987–5002. [Google Scholar] [CrossRef]
- Bu, T.; Jia, P.; Liu, J.; Liu, Y.; Sun, X.; Zhang, M.; Tian, Y.; Zhang, D.; Wang, J.; Wang, L. Diversely positive-charged gold nanoparticles based biosensor: A label-free and sensitive tool for foodborne pathogen detection. Food Chem. X 2019, 3, 100052. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-K.; Joung, H.-A.; Jung, M.; Lee, H.; Kim, M.-G. Rapid and simple detection of ochratoxin a using fluorescence resonance energy transfer on lateral flow immunoassay (FRET-LFI). Toxins 2019, 11, 292. [Google Scholar] [CrossRef]
- Xi, J.; Yu, Q. The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen beta-conglycinin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 241, 118640. [Google Scholar] [CrossRef]
- Kim, H.; Trinh, B.T.; Kim, K.H.; Moon, J.; Kang, H.; Jo, K.; Akter, R.; Jeong, J.; Lim, E.-K.; Jung, J.; et al. Au@ZIF-8 SERS paper for food spoilage detection. Biosens. Bioelectron. 2021, 179, 113063. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Xu, H.; Huang, X.; Kuang, M.; Xiong, Y.; Xu, H.; Xu, Y.; Chen, H.; Wang, A. Immunochromatographic assay for ultrasensitive detection of aflatoxin B(1) in maize by highly luminescent quantum dot beads. Appl. Mater. Interfaces 2014, 6, 14215–14222. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Sun, X.; Li, N.; Li, X.; Wu, T.; Wang, F. New advances in lateral flow immunoassay (LFI) technology for food safety detection. Molecules 2022, 27, 6596. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Dou, L.; Bu, T.; Huang, Q.; Wang, R.; Yang, Q.; Huang, L.; Wang, J.; Zhang, D. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe. Food Chem. 2018, 261, 131–138. [Google Scholar] [CrossRef]
- Dou, L.; Zhao, B.; Bu, T.; Zhang, W.; Huang, Q.; Yan, L.; Huang, L.; Wang, Y.; Wang, J.; Zhang, D. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Anal. Bioanal. Chem. 2018, 410, 3161–3170. [Google Scholar] [CrossRef]
Method | Application Scenario | Lod (ng/mL) | Detection Range (ng/mL) | Cost | Time | Reference |
---|---|---|---|---|---|---|
TD-cGC-MS | Laboratory testing | 0.2 | 0.5~100 | >USD 10 per sample | >10 min | [30] |
GC-MS | Laboratory testing | 0.44 | 1~100 | >USD 10 per sample | >10 min | [31] |
MSPD-GC-ECD | Laboratory testing | 0.4 | 10~100 | >USD 10 per sample | >10 min | [32] |
ELISA | On-site testing | 3 | 25~400 | USD 8 per sample | 10 min | [33] |
HPLC-DAD | Laboratory testing | 0.03 | 1.2~100 | >USD 10 per sample | >10 min | [34] |
FLM, GLM | On-site testing | 1.67 | 5~250 | USD 1 per sample | 10 min | This study |
Sample | Standard Addition Concentration (ng/mL) | Intra-Assay | Inter-Assay | ||
---|---|---|---|---|---|
Mean ± SD (ng/mL) | CV % | Mean ± SD (ng/mL) | CV % | ||
leek | 10 | 10.38 ± 0.58 | 5.58 | 9.85 ± 0.47 | 4.77 |
50 | 50.77 ± 3.06 | 6.02 | 51.25 ± 2.37 | 4.62 | |
100 | 97.91 ± 3.42 | 3.49 | 96.16 ± 4.46 | 4.63 | |
pepper | 10 | 9.92 ± 0.82 | 8.26 | 9.90 ± 0.74 | 7.47 |
50 | 51.20 ± 2.37 | 4.62 | 50.36 ± 4.06 | 8.06 | |
100 | 94.98 ± 1.88 | 1.97 | 97.18 ± 8.66 | 8.91 |
Sample | Standard Addition Concentration (ng/mL) | Qualitative | Quantitative | |
---|---|---|---|---|
Detection Concentration (ng/mL) | Accuracy (%) | |||
leek | 0 | − | 0 | 100 |
50 | + | 49.16 | 98.32 | |
100 | + | 97.03 | 97.03 | |
pepper | 0 | − | 0 | 100 |
50 | + | 48.59 | 97.18 | |
100 | + | 103.26 | 103.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Li, S.; Shao, X.; Fang, M.; Zhang, H.; Zhu, Z.; Sun, X. Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors. Sensors 2025, 25, 2602. https://doi.org/10.3390/s25082602
Sun J, Li S, Shao X, Fang M, Zhang H, Zhu Z, Sun X. Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors. Sensors. 2025; 25(8):2602. https://doi.org/10.3390/s25082602
Chicago/Turabian StyleSun, Jiazheng, Shiling Li, Xijun Shao, Mingxuan Fang, Heng Zhang, Zhiheng Zhu, and Xia Sun. 2025. "Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors" Sensors 25, no. 8: 2602. https://doi.org/10.3390/s25082602
APA StyleSun, J., Li, S., Shao, X., Fang, M., Zhang, H., Zhu, Z., & Sun, X. (2025). Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors. Sensors, 25(8), 2602. https://doi.org/10.3390/s25082602