Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,424)

Search Parameters:
Keywords = stress-intensity factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4701 KiB  
Review
Maternal Lifestyle During Pregnancy and Its Influence on Offspring’s Telomere Length
by Elena Vakonaki, Maria Theodora Vitiadou, Eleftherios Panteris, Manolis Tzatzarakis, Aristides Tsatsakis and Eleftheria Hatzidaki
Life 2025, 15(8), 1250; https://doi.org/10.3390/life15081250 - 6 Aug 2025
Abstract
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such [...] Read more.
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such as vitamins C and D, folate, and magnesium. Additionally, adherence to a Mediterranean diet and regular physical activity during pregnancy are correlated with increased placental TL, supporting fetal genomic integrity. Conversely, maternal dietary patterns high in carbohydrates, fats, or alcohol, as well as exposure to triclosan and sleep-disordered breathing, negatively correlate with offspring’s TL. Maternal infections may also shorten TL through heightened inflammation and oxidative stress. However, evidence regarding the impact of other lifestyle factors—including maternal stress, smoking, caffeine intake, polyunsaturated fatty acid consumption, obesity, and sleep quality—remains inconsistent. Given that shorter telomere length has been associated with cardiovascular, pulmonary, and neurodegenerative diseases, as well as certain types of cancer, these findings highlight the vital importance of maternal health during pregnancy in order to prevent potential adverse effects on the fetus. Further studies are required to elucidate the precise timing, intensity, and interplay of these influences, enabling targeted prenatal interventions to enhance offspring health outcomes. Full article
Show Figures

Figure 1

21 pages, 1946 KiB  
Article
Three-Dimensional Modelling for Interfacial Behavior of a Thin Penny-Shaped Piezo-Thermo-Diffusive Actuator
by Hui Zhang, Lan Zhang and Hua-Yang Dang
Modelling 2025, 6(3), 78; https://doi.org/10.3390/modelling6030078 - 5 Aug 2025
Abstract
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, [...] Read more.
This paper presents a theoretical model of a thin, penny-shaped piezoelectric actuator bonded to an isotropic thermo-elastic substrate under coupled electrical-thermal-diffusive loading. The problem is assumed to be axisymmetric, and the peeling stress of the film is neglected in accordance with membrane theory, yielding a simplified equilibrium equation for the piezoelectric film. By employing potential theory and the Hankel transform technique, the surface strain of the substrate is analytically derived. Under the assumption of perfect bonding, a governing integral equation is established in terms of interfacial shear stress. The solution to this integral equation is obtained numerically using orthotropic Chebyshev polynomials. The derived results include the interfacial shear stress, stress intensity factors, as well as the radial and hoop stresses within the system. Finite element analysis is conducted to validate the theoretical predictions. Furthermore, parametric studies elucidate the influence of material mismatch and actuator geometry on the mechanical response. The findings demonstrate that, the performance of the piezoelectric actuator can be optimized through judicious control of the applied electrical-thermal-diffusive loads and careful selection of material and geometric parameters. This work provides valuable insights for the design and optimization of piezoelectric actuator structures in practical engineering applications. Full article
Show Figures

Figure 1

15 pages, 967 KiB  
Article
Biomarker Correlations in PTSD: IL-18, IRE1, pERK, and ATF6 via Courtauld Emotional Control Scale (CECS)
by Izabela Woźny-Rasała and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(15), 7506; https://doi.org/10.3390/ijms26157506 - 3 Aug 2025
Viewed by 176
Abstract
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better [...] Read more.
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better comprehend the impact of the disorder on the body and its clinical course. An analysis of biomarkers such as Interleukin-18 (IL-18), Inositol-Requiring Enzyme 1 (IRE1), Phosphorylated Extracellular Signal-Regulated Kinase (pERK), and Activating Transcription Factor–6 (ATF-6) in PTSD patients with varying durations of illness (≤5 years and >5 years) and a control group without PTSD revealed significant differences. Patients with recently diagnosed PTSD (≤5 years) showed markedly elevated levels of inflammatory and cellular stress markers, indicating an intense neuroinflammatory response during the acute phase of the disorder. In the chronic PTSD group (>5 years), the levels of these biomarkers were lower than in the recently diagnosed group, but still significantly higher than in the control group. An opposite trend was observed regarding the suppression of negative emotions, as measured by the Courtauld Emotional Control Scale (CECS): individuals with chronic PTSD exhibited a significantly greater suppression of anger, depression, and anxiety than those with recent PTSD or healthy controls. Correlations between biomarkers were strongest in individuals with chronic PTSD, suggesting a persistent neuroinflammatory dysfunction. However, the relationships between biomarkers and emotional suppression varied depending on the stage of PTSD. These findings highlight the critical role of PTSD duration in shaping the neurobiological and emotional mechanisms of the disorder, which may have important implications for therapeutic strategies and patient monitoring. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 - 1 Aug 2025
Viewed by 142
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 382 KiB  
Article
Food, Quality of Life and Mental Health: A Cross-Sectional Study with Federal Education Workers
by José Igor Ferreira Santos Jesus, Manuel Monfort-Pañego, Gabriel Victor Alves Santos, Yasmin Carla Monteiro, Suelen Marçal Nogueira, Priscilla Rayanne e Silva and Matias Noll
Nutrients 2025, 17(15), 2519; https://doi.org/10.3390/nu17152519 - 31 Jul 2025
Viewed by 287
Abstract
Background: The consumption of ultra-processed foods (UPFs) represents an important public health challenge, especially among education workers, whose intense routine can negatively impact eating habits. This study aimed to analyze the factors associated with the regular consumption of UPF among employees of [...] Read more.
Background: The consumption of ultra-processed foods (UPFs) represents an important public health challenge, especially among education workers, whose intense routine can negatively impact eating habits. This study aimed to analyze the factors associated with the regular consumption of UPF among employees of the Federal Network of Professional, Scientific and Technological Education (RFEPCT) in Brazil. Methods: This was a cross-sectional study, with a quantitative approach, carried out with 1563 education workers. Validated instruments on eating habits (PeNSE), mental health (DASS-21) and quality of life (WHOQOL-bref) were used. The regular consumption of UPF was defined as intake on ≥5 days in the last seven days. The association between the regular consumption of UPF and sociodemographic, occupational, behavioral, mental health and quality of life variables was assessed by Poisson regression with robust variance, generating adjusted prevalence ratios (PRadj) and respective 95% confidence intervals. Results: The regular consumption of UPF was associated mainly with female gender, a lower age group, Southeast and Midwest regions, dissatisfaction with sleep and the body, physical inactivity and poor sleep quality. In addition, the findings suggested a significant relationship between the worst stress scores and soft drinks (PRadj: 2.11; CI: 1.43–3.13), anxiety and soft drinks (PRadj: 1.83; CI: 1.24–2.70) and depression and industrialized/ultra-processed salty foods (PRadj: 2.43; CI: 1.82–3.26). The same was observed in the scores for the worst perception of quality of life, where there was a prevalence of up to 2.32 in the psychological domain and the consumption of industrialized/ultra-processed salty foods. Conclusions: The findings indicate that multiple interrelated factors—individual, psychosocial and occupational—are associated with the consumption of UPF among education workers. These results reinforce the importance of institutional policies that integrate actions to promote dietary health, mental health care and improved working conditions in the education sector. Full article
(This article belongs to the Section Nutrition and Public Health)
21 pages, 5188 KiB  
Article
Radar Monitoring and Numerical Simulation Reveal the Impact of Underground Blasting Disturbance on Slope Stability
by Chi Ma, Zhan He, Peitao Wang, Wenhui Tan, Qiangying Ma, Cong Wang, Meifeng Cai and Yichao Chen
Remote Sens. 2025, 17(15), 2649; https://doi.org/10.3390/rs17152649 - 30 Jul 2025
Viewed by 220
Abstract
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, [...] Read more.
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, this research develops a dynamic mechanical response model of slope stability that accounts for blasting loads. By integrating slope radar remote sensing data and applying the Pearson correlation coefficient, this study quantitatively evaluates—for the first time—the correlation between underground blasting activity and slope surface deformation. The results reveal that blasting vibrations are characterized by typical short-duration, high-amplitude pulse patterns, with horizontal shear stress identified as the primary trigger for slope shear failure. Both elevation and lithological conditions significantly influence the intensity of vibration responses: high-elevation areas and structurally loose rock masses exhibit greater dynamic sensitivity. A pronounced lag effect in slope deformation was observed following blasting, with cumulative displacements increasing by 10.13% and 34.06% at one and six hours post-blasting, respectively, showing a progressive intensification over time. Mechanistically, the impact of blasting on slope stability operates through three interrelated processes: abrupt perturbations in the stress environment, stress redistribution due to rock mass deformation, and the long-term accumulation of fatigue-induced damage. This integrated approach provides new insights into slope behavior under blasting disturbances and offers valuable guidance for slope stability assessment and hazard mitigation. Full article
Show Figures

Graphical abstract

10 pages, 4976 KiB  
Article
Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
by Yao Qu, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang and Yafei Cui
Microorganisms 2025, 13(8), 1776; https://doi.org/10.3390/microorganisms13081776 - 30 Jul 2025
Viewed by 184
Abstract
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell [...] Read more.
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell dynamic continuous observation platform (ACDCOP) is proposed with a parallel-plate flow chamber (PPFC) to capture cellular growth images which are then used as input to a computer vision algorithm featuring a pre-trained backpropagation neural network to quantitatively evaluate the volumes and volumetric growth rates of individual cells. The platform was applied to investigate the growth of Scenedesmus quadricauda cells under different hydraulic shear stress conditions. The results indicated that the threshold shear stress for the development of Scenedesmus quadricauda cells was 270 µL min−1 (5.62 × 10−5 m2 s−3). Cellular growth was inhibited at very low and very high intensities of hydraulic shear. Among all the experimental groups, the longest growth period for a cell, from attachment to PPFC to cell division, was 5.7 days. Cells with larger initial volumes produced larger volumes at division. The proposed platform could provide a novel approach for algal research by enabling direct observation of algal growth at the cell scale, and could potentially be applied to investigate the impacts of various environmental stressors such as nutrient, temperature, and light on cellular growth in different algal species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 808 KiB  
Article
Work-Related Low Back Pain and Psychological Distress Among Physiotherapists in Saudi Arabia: A Cross-Sectional Study
by Amjad Abdullah Alsenan, Mohamed K. Seyam, Ghada M. Shawky, Azza M. Atya, Mohamed A. Abdel Ghafar and Shahnaz Hasan
Healthcare 2025, 13(15), 1853; https://doi.org/10.3390/healthcare13151853 - 30 Jul 2025
Viewed by 227
Abstract
Background: Musculoskeletal disorders significantly affect healthcare professionals, particularly physiotherapists, due to the physical demands of their work. The link between physical ailments and psychological distress is especially prominent in clinical settings. Objectives: To assess the prevalence of work-related low back pain [...] Read more.
Background: Musculoskeletal disorders significantly affect healthcare professionals, particularly physiotherapists, due to the physical demands of their work. The link between physical ailments and psychological distress is especially prominent in clinical settings. Objectives: To assess the prevalence of work-related low back pain (LBP), stress, anxiety, and depression among physiotherapists in Saudi Arabia, and to identify associated local risk factors. Methods: A cross-sectional study using convenience sampling included 710 licensed physiotherapists across Saudi Arabia. Participants completed an online survey containing demographic data and the validated measures, including the Visual Analog Scale (VAS) for pain, the Oswestry Disability Index (ODI), and the Depression, Anxiety, and Stress Scale-21 (DASS-21) for psychological distress. Data were analysed using descriptive statistics, chi-square tests, correlation, and regression analyses. Results: Of 710 responses, 697 were valid; 378 physiotherapists reported work-related LBP. The mean pain intensity was 4.6 (SD = 1.6), with 54.2% experiencing moderate to severe disability. Mental health results showed 49.7% had depressive symptoms and 33.9% experienced some level of anxiety. Significant correlations were observed between disability and psychological distress (anxiety: r = 0.382; depression: r = 0.375; stress: r = 0.406; all p < 0.001). Regression analyses indicated psychological distress significantly predicted disability, with R2 values ranging from 0.125 to 0.248, being higher among inpatient physiotherapists. Conclusions: This study reveals a high prevalence of LBP and psychological distress among Saudi physiotherapists, with stress being the strongest predictor of LBP severity. Integrated ergonomic and mental health interventions, including workplace wellness programs and psychological support, are recommended to reduce risks and promote a healthier, more sustainable physiotherapy workforce. Full article
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 283
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
Evaluation of Seismicity Induced by Geothermal Development Based on Artificial Neural Network
by Kun Shan, Yanhao Zheng, Wanqiang Cheng, Zhigang Shan and Yanjun Zhang
Energies 2025, 18(15), 4004; https://doi.org/10.3390/en18154004 - 28 Jul 2025
Viewed by 276
Abstract
The process of geothermal energy development may cause induced seismic activities, posing a potential threat to the sustainable utilization and safety of geothermal energy. To effectively evaluate the danger of induced seismic activities, this paper establishes an artificial neural network model and selects [...] Read more.
The process of geothermal energy development may cause induced seismic activities, posing a potential threat to the sustainable utilization and safety of geothermal energy. To effectively evaluate the danger of induced seismic activities, this paper establishes an artificial neural network model and selects nine influencing factors as the input parameters of the neurons. Based on the results of induced seismic activity under different parameter conditions, a sensitivity analysis is conducted for each parameter, and the influence degree of each parameter on the magnitude of induced seismic activity is ranked from largest to smallest as follows: in situ stress state, fault presence or absence, depth, degree of fracture aggregation, maximum in situ stress, distance to fault, injection volume, fracture dip angle, angle between fracture, and fault. Then, the weights of each parameter in the model are modified to improve the accuracy of the model. Finally, through data collection and the literature review, the Pohang EGS project in South Korea is analyzed, and the induced seismic activity influencing factors of the Pohang EGS site are analyzed and evaluated using the induced seismic activity evaluation model. The results show that the induced seismicity are all located below 3.7 km (drilling depth). As the depth increases, the seismicity magnitude also shows a gradually increasing trend. An increase in injection volume and a shortening of the distance from faults will also lead to an increase in the seismicity magnitude. When the injection volume approaches 10,000 cubic meters, the intensity of the seismic activity sharply increases, and the maximum magnitude reaches 5.34, which is consistent with the actual situation. This model can be used for the induced seismic evaluation of future EGS projects and provide a reference for project site selection and induced seismic risk warning. Full article
Show Figures

Figure 1

25 pages, 9220 KiB  
Article
Investigation of Stress Intensity Factors in Welds of Steel Girders Within Steel–Concrete Composite Structures
by Da Wang, Pengxin Zhao, Yuxin Shao, Wenping Peng, Junxin Yang, Chenggong Zhao and Benkun Tan
Buildings 2025, 15(15), 2653; https://doi.org/10.3390/buildings15152653 - 27 Jul 2025
Viewed by 339
Abstract
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A [...] Read more.
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A finite element model was developed and validated against experimental data, followed by the insertion of cracks at both the weld root and weld toe. The influences of stud spacing, initial crack size, crack shape, and lack-of-penetration defects on Mode I SIFs were systematically analyzed. Results show that both weld root and weld toe cracks are predominantly Mode I in nature, with the toe cracks exhibiting higher SIF values. Increasing the stud spacing, crack depth, or crack aspect ratio significantly raises the SIFs. Lack of penetration defects further amplifies the SIFs, especially at the weld root. Based on the computed SIFs, fatigue life predictions were conducted using a crack propagation approach. These findings highlight the critical roles of crack geometry and welding quality in fatigue performance, providing a numerical foundation for optimizing welded joint design in composite structures. Full article
Show Figures

Figure 1

14 pages, 596 KiB  
Article
The Impact of Parafunctional Habits on Temporomandibular Disorders in Medical Students
by Michał Zemowski, Yana Yushchenko and Aneta Wieczorek
J. Clin. Med. 2025, 14(15), 5301; https://doi.org/10.3390/jcm14155301 - 27 Jul 2025
Viewed by 322
Abstract
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as [...] Read more.
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as contributing factors, yet their individual and cumulative contributions remain unclear. This exploratory cross-sectional study aimed to evaluate the prevalence and severity of parafunctional habits and their association with TMD in medical students—a group exposed to elevated stress levels. Subjects were examined in Krakow, Poland, using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) protocol. Methods: Participants completed a 21-item Oral Behavior Checklist (OBC) assessing the frequency of oral behaviors on a 0–4 scale. A self-reported total parafunction load was calculated by summing individual item scores (range: 0–84). Logistic regression was used to evaluate associations between individual and total parafunction severity scores and TMD presence. Results: The study included 66 individuals aged 19–30. TMD was diagnosed in 55 participants (83.3%). The most commonly reported habits were resting the chin on the hand (90.9%) and sleeping in a jaw-compressing position (86.4%). Notably, jaw tension (OR = 14.5; p = 0.002) and daytime clenching (OR = 4.7; p = 0.027) showed significant associations with TMD in the tested population. Each additional point in the total parafunction score increased TMD odds by 13.6% (p = 0.004). Conclusions: These findings suggest that parafunctional behaviors—especially those involving chronic muscle tension or abnormal mandibular positioning—may meaningfully contribute to the risk of TMD in high-stress student populations. Moreover, the cumulative burden of multiple low-intensity habits was also significantly associated with increased TMD risk. Early screening for these behaviors may support prevention strategies, particularly among young adults exposed to elevated levels of stress. Full article
Show Figures

Figure 1

20 pages, 377 KiB  
Article
Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women
by Dominika Borowy, Agnieszka Boroń, Jolanta Chmielowiec, Krzysztof Chmielowiec, Milena Lachowicz, Jolanta Masiak, Anna Grzywacz and Aleksandra Suchanecka
Int. J. Mol. Sci. 2025, 26(15), 7109; https://doi.org/10.3390/ijms26157109 - 23 Jul 2025
Viewed by 359
Abstract
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to [...] Read more.
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to conduct a comprehensive association analysis of these factors within a cohort of women who use nicotine. The study included 239 female participants: 112 cigarette users (mean age = 29.19, SD = 13.18) and 127 never-smokers (mean age = 28.1, SD =10.65). Study participants were examined using the NEO Five-Factor Inventory and the State–Trait Anxiety Inventory. Genotyping of rs6265, rs10767664, and rs2030323 was performed by real-time PCR using an oligonucleotide assay. We did not observe significant differences in the distribution of either genotype or allele of rs6265, rs10767664 and rs2030323 between groups. However, compared to the never-smokers, cigarette users scored significantly lower on the Agreeableness (5.446 vs. 6.315; p = 0.005767; dCohen’s = 0.363; η2 = 0.032) and the Conscientiousness (5.571 vs. 6.882; p = 0.000012; dCohen’s = 0.591; η2= 0.08) scales. There was significant linkage disequilibrium between all three analysed polymorphic variants—between rs6265 and rs10767664 (D′ = 0.9994962; p < 2.2204 × 10−16), between rs6265 and rs2030323 (D′ = 0.9994935; p < 2.2204 × 10−16) and between rs10767664 and rs20330323 (D′ = 0.9838157; p < 2.2204 × 10−16), but the haplotype association analysis revealed no significant differences. While our study did not reveal an association between the investigated brain-derived neurotrophic factor polymorphisms (rs6265, rs10767664 and rs2030323) and nicotine use, it is essential to acknowledge that nicotine dependence is a complex, multifactorial phenotype. Our study expands the current knowledge of BDNF ’s potential role in addictive behaviours by exploring the understudied variants (rs10767664 and rs2030323), offering a novel contribution to the field and paving the way for future research into their functional relevance in addiction-related phenotypes. The lower Agreeableness and Conscientiousness scores observed in women who use nicotine compared to never-smokers suggest that personality traits play a significant role in nicotine use in women. The observed relationship between personality traits and nicotine use lends support to the self-medication hypothesis, suggesting that some women may initiate or maintain nicotine use as a coping mechanism for stress and negative affect. Public health initiatives targeting women should consider personality and psychological risk factors in addition to biological risks. Full article
(This article belongs to the Special Issue Molecular Insights into Addiction)
60 pages, 9590 KiB  
Article
Dealing with High-Risk Police Activities and Enhancing Safety and Resilience: Qualitative Insights into Austrian Police Operations from a Risk and Group Dynamic Perspective
by Renate Renner, Vladimir M. Cvetković and Nicola Lieftenegger
Safety 2025, 11(3), 68; https://doi.org/10.3390/safety11030068 - 18 Jul 2025
Viewed by 702
Abstract
Special police units like Austria’s EKO Cobra are uniquely trained to manage high-risk operations, including terrorism, amok situations, and hostage crises. This study explores how group dynamics contribute to operational safety and resilience, emphasising the interconnection between risk perception, training, and operational practices. [...] Read more.
Special police units like Austria’s EKO Cobra are uniquely trained to manage high-risk operations, including terrorism, amok situations, and hostage crises. This study explores how group dynamics contribute to operational safety and resilience, emphasising the interconnection between risk perception, training, and operational practices. Interviews with current and former EKO Cobra members reveal key risk factors, including overconfidence, insufficient training, inadequate equipment, and the challenges of high-stakes scenarios. Using a structured yet thematically flexible interview analysis approach, the study adopts group dynamics theory as its framework and applies a semi-inductive, semi-deductive qualitative methodology. It examines risk categorisation in ad hoc operations, as well as the interplay between risk perception and training, proposing actionable strategies to enhance safety and preparedness through tailored training programmes. The findings underscore the transformative impact of intensive scenario-based and high-stress training, which enhances situational awareness and reinforces team-based responses through cohesion and effective communication. Group dynamics, including cohesion and effective communication, play a pivotal role in mitigating risks and ensuring operational success. Importantly, this research advocates for continuous, adaptive, and specialised training to address evolving challenges. By linking theoretical frameworks with practical and actionable insights, this study proposes a holistic training approach that promotes both resilience and long-term sustainability in police operations. These findings offer valuable guidance to elite units like EKO Cobra for broader policy frameworks by providing insights that make police operations safer and more effective and resilient. Full article
Show Figures

Figure 1

23 pages, 36557 KiB  
Article
Mixed-Mode Fracture Behavior of Penta-Graphene: A Molecular Dynamics Perspective on Defect Sensitivity and Crack Evolution
by Afia Aziz Kona, Aaron Lutheran and Alireza Tabarraei
Solids 2025, 6(3), 36; https://doi.org/10.3390/solids6030036 - 11 Jul 2025
Viewed by 446
Abstract
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out [...] Read more.
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out to evaluate the impact of structural defects on mechanical performance and to elucidate crack propagation mechanisms. The results reveal that void defects involving sp3-hybridized carbon atoms cause a more significant degradation in mechanical strength compared to those involving sp2 atoms. During fracture, local atomic rearrangements and bond reconstructions lead to the formation of energetically favorable ring structures—such as hexagons and octagons—at the crack tip, promoting enhanced energy dissipation and fracture resistance. A central focus of this work is the evaluation of the critical stress intensity factor (SIF) under mixed-mode (I/II) loading conditions. The simulations demonstrate that the critical SIF is influenced by the loading phase angle, with pure mode I exhibiting a higher SIF than pure mode II. Notably, penta-graphene shows a critical SIF significantly higher than that of graphene, indicating exceptional fracture toughness that is rare among ultra-thin two-dimensional materials. This enhanced toughness is primarily attributed to penta-graphene’s capacity for substantial out-of-plane deformation prior to failure, which redistributes stress near the crack tip, delays crack initiation, and increases energy absorption. Additionally, the study examines crack growth paths as a function of loading phase angle, revealing that branching and kinking can occur even under pure mode I loading. Full article
Show Figures

Figure 1

Back to TopTop