Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,707)

Search Parameters:
Keywords = stress monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3308 KB  
Article
Deformation of Existing Highway Induced by Close Undercrossing of Shield Tunnel with Steep Slope: A Case Study
by Chaojun Mao, Quanfeng Wang, Jinlong Wang, Fei Sha, Hui Yao and Fanghao Liu
Appl. Sci. 2025, 15(20), 10884; https://doi.org/10.3390/app152010884 (registering DOI) - 10 Oct 2025
Abstract
As Earth Pressure Balance (EPB) shield machine crossed with steep slopes beneath an existing highway in sandstone–mudstone alternating strata, case studies of changes in vertical displacement, settlement trough evolution, and tunnel stress induced by shield tunnel construction were investigated. The quality of synchronous [...] Read more.
As Earth Pressure Balance (EPB) shield machine crossed with steep slopes beneath an existing highway in sandstone–mudstone alternating strata, case studies of changes in vertical displacement, settlement trough evolution, and tunnel stress induced by shield tunnel construction were investigated. The quality of synchronous grouting was evaluated using ground penetrating radar (GPR) technology. The results showed that highway settlement could be categorized into four stages: initial settlement, uplift, secondary settlement, and stabilization. The secondary settlement caused by shield tail detachment was significantly greater than the initial settlement induced by distant shield construction. The settlement trough evolved throughout construction; the maximum settlement point shifted from the tunnel centerline but it consistently remained within 3 m. During the early phase of shield tail detachment, the circumferential stress of shield tunnel changed rapidly. The circumferential stress was primarily compressive, tensile stress was observed at some monitoring points. The tensile stress at the monitoring points gradually transitioned to compressive stress. After the tunnel undercrossed, the circumferential stress gradually stabilized. The GPR detection revealed that in groundwater-rich strata, poor grouting quality areas were prone to appear at the tunnel crown, while grouting quality in other areas performed better. This engineering case can serve as a positive reference for similar EPB shield tunnels passing in close proximity beneath existing highways. Full article
(This article belongs to the Special Issue Advances in Marine Geotechnics)
28 pages, 712 KB  
Review
Next-Generation Wastewater Treatment: Omics and AI-Driven Microbial Strategies for Xenobiotic Bioremediation and Circular Resource Recovery
by Prabhaharan Renganathan and Lira A. Gaysina
Processes 2025, 13(10), 3218; https://doi.org/10.3390/pr13103218 - 9 Oct 2025
Abstract
Wastewater treatment plants (WWTPs) function as engineered ecosystems in which microbial consortia mediate nutrient cycling, xenobiotic degradation, and heavy metal detoxification. This review discusses a forward-looking roadmap that integrates microbial ecology, multi-omics diagnostics, and artificial intelligence (AI) for next-generation treatments. Meta-analyses suggest that [...] Read more.
Wastewater treatment plants (WWTPs) function as engineered ecosystems in which microbial consortia mediate nutrient cycling, xenobiotic degradation, and heavy metal detoxification. This review discusses a forward-looking roadmap that integrates microbial ecology, multi-omics diagnostics, and artificial intelligence (AI) for next-generation treatments. Meta-analyses suggest that a globally conserved core microbiome indicates sludge functions, with high predictive value for treatment stability. Multi-omics approaches, including metagenomics, metatranscriptomics, and environmental DNA (eDNA) profiling, have integrated microbial composition with greenhouse gas (GHG) emissions, showing that WWTPs contribute 2–5% of anthropogenic nitrous oxide (N2O) emissions. Emerging AI-enhanced eDNA models have achieved >90% predictive accuracy for effluent quality and antibiotic resistance gene (ARG) prevalence, facilitating near-real-time monitoring and adaptive control of effluent quality. Key advances include microbial strategies for degrading organic pollutants, pesticides, and heavy metals and monitoring industrial effluents. This review highlights both translational opportunities, including engineered microbial consortia, AI-driven digital twins and molecular indices, and persistent barriers, including ARG dissemination, resilience under environmental stress and regulatory integration. Future WWTPs are envisioned as adaptive, climate-conscious biorefineries that recover resources, mitigate ecological risks, and reduce their carbon footprint. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Figure 1

32 pages, 51644 KB  
Article
Fault Diagnosis of Planetary Gear Carrier Cracks Based on Vibration Signal Model and Modulation Signal Bispectrum for Actuation Systems
by Xiaosong Lin, Niaoqing Hu, Zhengyang Yin, Yi Yang, Zihao Deng and Zuanbo Zhou
Actuators 2025, 14(10), 488; https://doi.org/10.3390/act14100488 (registering DOI) - 9 Oct 2025
Abstract
Planetary gearbox serves as a key transmission component in planetary ball screw actuator systems. Under the action of alternating loads, the stress concentration locations of the planet carrier in actuators with planetary gear trains are prone to fatigue cracks, which can lead to [...] Read more.
Planetary gearbox serves as a key transmission component in planetary ball screw actuator systems. Under the action of alternating loads, the stress concentration locations of the planet carrier in actuators with planetary gear trains are prone to fatigue cracks, which can lead to catastrophic system breakdowns. However, due to the complex vibration transmission path and the interference of uninterested vibration components, the characteristic modulation signal is ambiguous, so it is challenging to diagnose this fault. Therefore, this paper proposes a new fault diagnosis method. Firstly, a vibration signal model is established to accurately characterize the amplitude and phase modulation effects caused by cracked carriers, providing theoretical guidance for fault feature identification. Subsequently, three novel sideband evaluators of the modulation signal bispectrum (MSB) and their parameter selection ranges are proposed to efficiently locate the optimal fault-related bifrequency signatures and reduce computational cost, leveraging the effects identified by the model. Finally, a novel health indicator, the mean absolute root value (MARV), is used to monitor the state of the planet carrier. The effectiveness of this method is verified by experiments on the planetary gearbox test rig. The results show that the robustness of the amplitude and phase modulation effect of the cracked carrier in the low-frequency band is significantly higher than that in the high-frequency band, and the initial carrier crack can be accurately identified using this phenomenon under different operating conditions. This study provides a reliable solution for the condition monitoring and health management of the actuation system, which is helpful to improve the safety and reliability of operation. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

19 pages, 24139 KB  
Article
EnhancedMulti-Scenario Pig Behavior Recognition Based on YOLOv8n
by Panqi Pu, Junge Wang, Geqi Yan, Hongchao Jiao, Hao Li and Hai Lin
Animals 2025, 15(19), 2927; https://doi.org/10.3390/ani15192927 - 9 Oct 2025
Abstract
Advances in smart animal husbandry necessitate efficient pig behavior monitoring, yet traditional approaches suffer from operational inefficiency and animal stress. We address these limitations through a lightweight YOLOv8n architecture enhanced with SPD-Conv for feature preservation during downsampling, LSKBlock attention for contextual feature fusion, [...] Read more.
Advances in smart animal husbandry necessitate efficient pig behavior monitoring, yet traditional approaches suffer from operational inefficiency and animal stress. We address these limitations through a lightweight YOLOv8n architecture enhanced with SPD-Conv for feature preservation during downsampling, LSKBlock attention for contextual feature fusion, and a dedicated small-target detection head. Experimental validation demonstrates superior performance: the optimized model achieves a 92.4% mean average precision (mAP@0.5) and 87.4% recall, significantly outperforming baseline YOLOv8n by 3.7% in AP while maintaining minimal parameter growth (3.34M). Controlled illumination tests confirm enhanced robustness under strong and warm lighting conditions, with performance gains of 1.5% and 0.7% in AP, respectively. This high-precision framework enables real-time recognition of standing, prone lying, lateral lying, and feeding behaviors in commercial piggeries, supporting early health anomaly detection through non-invasive monitoring. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

13 pages, 601 KB  
Article
The Association Between Short-Term Blood Pressure Variability and Inflammation in Healthy Young Adults
by Charles J. Weeks, Bayu B. Bekele, Michelle Altvater, Jie Cheng, Haidong Zhu, Ying Huang, Deborah A. Jehu, Abigayle B. Simon, Wenjun Li and Yanbin Dong
J. Cardiovasc. Dev. Dis. 2025, 12(10), 399; https://doi.org/10.3390/jcdd12100399 - 9 Oct 2025
Abstract
Blood pressure variability (BPV) is linked to cardiovascular disease (CVD) and systemic inflammation in adults, but its relevance in young, healthy populations remains unclear. This study examined the association between short-term BPV and inflammatory markers in 447 normotensive participants (mean age, 22.9 years) [...] Read more.
Blood pressure variability (BPV) is linked to cardiovascular disease (CVD) and systemic inflammation in adults, but its relevance in young, healthy populations remains unclear. This study examined the association between short-term BPV and inflammatory markers in 447 normotensive participants (mean age, 22.9 years) from the Georgia Stress and Heart (GSH) study, a cohort of Non-Hispanic Black and White individuals. Participants underwent 24 h ambulatory blood pressure monitoring and assessment of serum inflammatory markers, including hs-CRP, IFN-γ, IL-6, and TNF-α. BPV was quantified using average real variability (ARV), and generalized estimating equations (GEEs) were used to evaluate associations, adjusting for age, sex, race, and mean blood pressure. Diastolic BPV was significantly, positively associated with hs-CRP and TNF-α, whereas systolic BPV was not associated with any inflammatory marker. Specifically, 24 h diastolic BPV was positively associated with hs-CRP (p = 0.001) and TNF-α (p = 0.015), while daytime diastolic BPV was positively associated with hs-CRP (p = 0.002). Nighttime diastolic BPV was positively associated with both hs-CRP (p = 0.020) and TNF-α (p = 0.007). No significant associations were found between BPV and IL-6 or IFN-γ. These findings suggest diastolic BPV may be a marker of low-grade inflammation in healthy young adults and could represent an early cardiovascular risk factor that warrants longitudinal study. Full article
Show Figures

Graphical abstract

20 pages, 4879 KB  
Article
Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method
by Yi Zou, Desheng Zhou, Yufei Wang, Chen Lu, Haiyang Wang and Qingqing Wang
Processes 2025, 13(10), 3188; https://doi.org/10.3390/pr13103188 - 8 Oct 2025
Viewed by 138
Abstract
Proppant crushing seriously affects the efficiency and effectiveness of oil and gas production. In conventional studies, multi-particle crushing research often adopts the particle replacement method; however, this method results in a relatively rough and discontinuous crushing simulation process, making energy conservation difficult to [...] Read more.
Proppant crushing seriously affects the efficiency and effectiveness of oil and gas production. In conventional studies, multi-particle crushing research often adopts the particle replacement method; however, this method results in a relatively rough and discontinuous crushing simulation process, making energy conservation difficult to maintain before and after crushing, neglects complex mechanical behaviors such as internal stress distribution and crack propagation of particles, and thus lacks mechanical authenticity. Thus, this study employs the bonded crushing method and establishes a calibration method for mesoscopic parameters. By constructing a particle flow numerical model, the force and crushing processes of proppants under different mesoscopic parameter conditions for both single-particle clusters and multi-particle clusters are simulated, enabling comprehensive monitoring of internal crack propagation within particle clusters. The study systematically analyzes and investigates the influence of key mesoscopic parameters including the tensile strength of parallel bonds (pb-ten), cohesion of parallel bonds (pb-coh), effective modulus (emod), and stiffness ratio (kratio) on the maximum force required for particle crushing. Additionally, orthogonal experiment analysis is used to study the influence of different mesoscopic parameters on the proppant crushing rate. The results show that the larger the pb-ten and pb-coh, the less likely the proppant particle clusters are to crush; conversely, the higher the emod, the more likely the particle clusters are to crush. Within a certain range, pb-ten has the most significant impact on the proppant crushing rate, followed by pb-coh and emod, while kratio has a smaller impact. Based on the research results regarding the influence of laws of different mesoscopic parameters on proppant crushing performance, the mesoscopic parameters of the proppant were calibrated using the post-experiment proppant crushing rate as the fitting index. The simulation results were then compared with the experimental results, verifying the accuracy of the model. The findings of this study clarify the influence of laws of mesoscopic parameters on proppant crushing performance, providing a basis for the subsequent calibration of mesoscopic parameters for numerical proppants and helping to accurately characterize the macroscopic crushing performance of numerical proppants. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

15 pages, 1405 KB  
Article
Effects of Dietary Supplementation with Abies sibirica Essential Oil on Growth Performance, Digestive Enzymes, Skin Mucus Immunological Parameters, and Response to Heat Stress in Rainbow Trout
by Morteza Yousefi, Hossein Adineh, Yury Anatolyevich Vatnikov, Evgeny Vladimirovich Kulikov, Olesya Anatolyevna Petrukhina, Elena Dmitriyevna Sotnikova, Alena Igorevna Telezhenkova and Seyyed Morteza Hoseini
Animals 2025, 15(19), 2911; https://doi.org/10.3390/ani15192911 - 7 Oct 2025
Viewed by 183
Abstract
Climate change and global warming are concerning issues impacting various industries. In the aquaculture industry, these issues are more important in coldwater species, like rainbow trout Oncorhynchus mykiss. Hence, strategies to control these negative effects are worthy of study. Herbal feed additives [...] Read more.
Climate change and global warming are concerning issues impacting various industries. In the aquaculture industry, these issues are more important in coldwater species, like rainbow trout Oncorhynchus mykiss. Hence, strategies to control these negative effects are worthy of study. Herbal feed additives are reliable tools to increase fish growth and health, thereby mitigating the drawbacks of climate change on fish. In this study, three diets containing 100 (100EO), 200 (200EO), and 400 (400EO) mg/kg essential oil of Abies sibirica (SBF) along with a control diet (CTL; unsupplemented) were fed to triplicate groups of fish for 60 days. Then the fish were exposed to a 96 h heat stress (25 °C) to monitor their survival and biochemical responses. The results showed that growth performance, feed efficiency, heat stress resistance, intestinal activity of digestive enzymes, and skin mucus immunological parameters significantly (p < 0.05) increased in the SBF essential oil treatments, and the highest increases were observed in the 100EO treatment, followed by the 200EO group. Dietary supplementation with SBF essential oil significantly (p < 0.05) mitigated heat stress-induced increases in plasma cortisol and glucose. Moreover, dietary SBF essential oil significantly (p < 0.05) enhanced immunological parameters such as plasma and intestinal lysozyme and immunoglobulin levels, and improved hepatic antioxidant defenses (including catalase, glutathione peroxidase, total antioxidant capacity, and reduced glutathione), while reducing lipid peroxidation. These effects were most pronounced in the 100EO and 200EO treatments, with the highest performance being observed in the former group. In conclusion, dietary SBF essential oil at 100 mg/kg is capable of augmenting growth performance, immunity, and antioxidant capacity, and suppressing physiological stress, thereby augmenting fish resilience against heat stress. Full article
Show Figures

Figure 1

11 pages, 291 KB  
Article
Training Load, Injuries, and Well-Being in Youth Padel Players: A Cross-Sectional Study
by Sofia Ryman Augustsson and Lisa Durdel
Sports 2025, 13(10), 356; https://doi.org/10.3390/sports13100356 - 7 Oct 2025
Viewed by 209
Abstract
The aim of this study was to explore the prevalence of acute and overuse injuries, as well as risk factors, training load and well-being, in male and female youth padel players. Using a cross-sectional design, data were collected from 104 players (aged 15–20) [...] Read more.
The aim of this study was to explore the prevalence of acute and overuse injuries, as well as risk factors, training load and well-being, in male and female youth padel players. Using a cross-sectional design, data were collected from 104 players (aged 15–20) via a web-based form. Players reported injuries, exposure and rating of perceived exertion (RPE), demographics (age and sex), and perceived well-being. Overuse injury severity was scored per body region (0–25), yielding a total possible score of 125. A total of six acute and 49 overuse injuries were recorded, corresponding to a prevalence of 0.53 injuries per player during a one-week recall period. Most injuries affected the knee, while the foot and lower leg had the highest severity scores (median = 44). Female players reported slightly higher stress levels (median 3) than males (median 2: p = 0.01), though no other well-being or training load differences were found. Injured players had significantly higher total wellness scores, indicating worse well-being, compared to non-injured players (median 10 vs. 9, p = 0.03). In conclusion, overuse injuries, particularly to the knee, were most common. Higher perceived stress and poorer wellness scores may be linked to injury risk, underlining the importance of monitoring well-being in youth padel athletes. Full article
(This article belongs to the Special Issue Sports Injury Prevention in Young Athletes)
Show Figures

Figure 1

26 pages, 1945 KB  
Article
Effect of Circadian Blood Pressure Variations on Retinal Microvascular Structures: Optical Coherence Tomography Angiography Analysis with the Nighttime Divided into Subintervals (Retinal Dawn Pattern)
by Oğuzhan Zengin, Şule Nur Polat, Canan Satılmış, Burak Göre, Melike Yakut, İrem Aydoğmuş, Merve Çelik, Mehmet Önen and İhsan Ateş
Medicina 2025, 61(10), 1801; https://doi.org/10.3390/medicina61101801 - 6 Oct 2025
Viewed by 203
Abstract
Background and Objectives: Circadian fluctuations in blood pressure, particularly the non-dipping pattern characterized by the absence of a nocturnal decline, are associated with an increased risk of microvascular complications. The retina, as a highly sensitive microvascular tissue, offers a valuable window into systemic [...] Read more.
Background and Objectives: Circadian fluctuations in blood pressure, particularly the non-dipping pattern characterized by the absence of a nocturnal decline, are associated with an increased risk of microvascular complications. The retina, as a highly sensitive microvascular tissue, offers a valuable window into systemic hemodynamic alterations. However, the literature lacks detailed structural analyses that evaluate all retinal regions by segmenting nighttime into specific time intervals. Notably, the early morning period (04:00–08:00), during which stress hormones such as cortisol and catecholamines rise physiologically, leads to increased blood pressure that may significantly affect retinal microcirculation. This prospective study aims to assess retinal microvascular structures in dipper and non-dipper individuals using structural optical coherence tomography and to investigate their relationship with blood pressure parameters by dividing nighttime into distinct time segments. Materials and Methods: A total of 60 participants were classified as dipper (n = 26) or non-dipper (n = 34) based on 24 h ambulatory blood pressure monitoring results. Structural optical coherence tomography was used to evaluate superficial and deep capillary plexus densities in the foveal, parafoveal, and perifoveal regions, along with the area and perimeter of the foveal avascular zone (FAZ) and flow density (FD). Blood pressure values, including systolic, diastolic, mean arterial, and pulse pressure, were recorded during two nighttime intervals (00:00–04:00 and 04:00–08:00), and correlations with retinal parameters were analyzed. Results: No significant differences were observed in retinal microvascular parameters between the dipper and non-dipper groups. Deep capillary densities, particularly in the parafoveal and perifoveal regions, showed significant positive correlations with serum total protein, albumin, and very low-density lipoprotein (VLDL) levels. Furthermore, systolic and mean arterial pressures measured during the 04:00–08:00 interval demonstrated significant positive correlations with deep retinal vascular densities. The FAZ perimeter was negatively correlated with pulse pressure variability, while FD showed a negative correlation with mean arterial pressure variability. Conclusions: This prospective study is among the first to investigate the effects of circadian blood pressure patterns on retinal microvascular structures by segmenting nighttime into specific intervals and employing comprehensive structural optical coherence tomography across the entire retina. The findings suggest that retinal microvascular structure may be associated with fluctuations in blood pressure. Analyses of blood pressure measurements between 04:00 and 08:00 may offer supplementary insights into the evaluation of retinal microvascular structure. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

21 pages, 2826 KB  
Article
Microbial Selection and Functional Adaptation in Technical Snow: A Molecular Perspective from 16S rRNA Profiling
by Anna Lenart-Boroń, Piotr Boroń, Bartłomiej Grad, Klaudia Bulanda, Natalia Czernecka-Borchowiec, Anna Ratajewicz and Klaudia Stankiewicz
Int. J. Mol. Sci. 2025, 26(19), 9712; https://doi.org/10.3390/ijms26199712 - 6 Oct 2025
Viewed by 200
Abstract
Artificial (technical) snow production is an increasingly common practice in alpine regions, yet little is known about its role in shaping microbial communities at the molecular level. In this study, we combined culture-based methods with high-throughput 16S rRNA gene sequencing and functional trait [...] Read more.
Artificial (technical) snow production is an increasingly common practice in alpine regions, yet little is known about its role in shaping microbial communities at the molecular level. In this study, we combined culture-based methods with high-throughput 16S rRNA gene sequencing and functional trait prediction (FAPROTAX) to investigate bacterial communities across the full technical snowmaking cycle in one of Polish ski resorts. The molecular profiling revealed that technical snow harbors dominant taxa with known cold-adaptation mechanisms, biofilm-forming abilities, and stress tolerance traits (e.g., Brevundimonas, Lapillicoccus, Massilia, with a relative abundance of 2.95, 2.14, 3.38 and 5.61%, respectively). Functional inference revealed a consistent dominance of chemoheterotrophy (up to 38% in relative abundance) and aerobic chemoheterotrophy (up to 36%), with localized enrichment of fermentation (6.9% in cannon filter and 6.5% in sediment) and aromatic compound degradation (3.7% in source waters, 3.8% in cannon filter and 4.6% in sediment). Opportunistic and potentially pathogenic genera (e.g., Acinetobacter, Flavobacterium, Nocardia) persisted in sediments (7.4%, 21.4% and 3.5%) and meltwater (34.9% and 2.31% for the latter two), raising concerns about their environmental reintroduction. Our findings indicate that technical snowmaking systems act as selective environments not only for microbial survival but also for the persistence of molecular traits relevant to environmental resilience and potential pathogenicity. Our study provides a molecular ecological framework for assessing the impacts of snowmaking on alpine ecosystems and underscores the importance of monitoring microbial functions in addition to taxonomic composition. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 4365 KB  
Article
Thermo-Mechanical Coupled Characteristics for the Non-Axisymmetric Outer Ring of the High-Speed Rail Axle Box Bearing with Embedded Intelligent Sensor Slots
by Longkai Wang, Can Hu, Fengyuan Liu and Hongbin Tang
Symmetry 2025, 17(10), 1667; https://doi.org/10.3390/sym17101667 - 6 Oct 2025
Viewed by 192
Abstract
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in [...] Read more.
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in localized stress concentrations and thermal distortion, which compromise the bearing’s overall performance and service life. This study focuses on a double-row tapered roller bearing used in axle boxes and develops a multi-physics finite element model incorporating the effects of sensor-embedded grooves, based on Hertzian contact theory and the Palmgren frictional heat model. Both contact load verification and thermo-mechanical coupling analysis were performed to evaluate the influence of two key design parameters—groove depth and arc length—on equivalent stress, temperature distribution, and thermo-mechanical coupling deformation. The results show that the embedded slot structure significantly alters the local thermodynamic response. Especially when the slot depth reaches a certain value, both stress and deformation due to thermo-mechanical effects exhibit obvious nonlinear escalation. During the design process, the length and depth of the arc-shaped embedded slot, among other parameters, should be strictly controlled. The study of the stress and temperature characteristics under the thermos-mechanical coupling effect of the axle box bearing is of crucial importance for the design of the intelligent bearing body structure and safety assessment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 - 5 Oct 2025
Viewed by 497
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

21 pages, 2509 KB  
Article
Metabolic Reprogramming and Amino Acid Adjustments in Pistachio (Pistacia vera L.) Under Salinity Stress
by Hooman Shirvani, Foad Fatehi, Sara Hejri and Ramesh Katam
Horticulturae 2025, 11(10), 1201; https://doi.org/10.3390/horticulturae11101201 - 4 Oct 2025
Viewed by 334
Abstract
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by [...] Read more.
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by salinity stress, which negatively affects their growth and metabolism. Understanding the impact of salinity stress on pistachios is crucial for developing effective strategies to enhance their tolerance, improve growth, and ensure sustainable production in saline environments. To investigate the effects of salinity on energy metabolism and amino acid composition, we monitored key metabolites and free amino acid levels in UCB-1 pistachio leaves at 7- and 21-day salt stress treatments using Liquid Chromatography–Mass Spectrometry (LC-MS) and Ultra Performance Liquid Chromatography (UPLC). Our findings revealed that salinity affected nearly all analyzed metabolites, with varied patterns observed at different time points. Notably, all free amino acids except threonine accumulated significantly in response to salt stress. Meanwhile, reductions in 3PGA, Fru1,6bP, and Glu6P+Fru6P (glycolysis and Calvin cycle intermediates) suggest a decrease in photosynthetic activity, which may ultimately impact respiration rates. These results demonstrate that salinity stress affects both amino acid metabolism and central carbon metabolism, with the magnitude and pattern of these changes depending on the duration of exposure. The observed metabolic adjustments likely represent an adaptive response, enabling the plant to partially mitigate the detrimental effects of salt stress. Full article
Show Figures

Figure 1

12 pages, 1484 KB  
Article
Are There Resource Allocation Constraints to Floral Production in the Endangered Barbarea vulgaris subsp. lepuznica (Southern Carpathians, Romania)?
by Dan Gafta, Emilia Aczel, Rahela Carpa, Claudia Dănău and Irina Goia
Conservation 2025, 5(4), 56; https://doi.org/10.3390/conservation5040056 - 4 Oct 2025
Viewed by 113
Abstract
Given the endangered status and very limited distribution of Barbarea vulgaris R.Br. subsp. lepuznica (Nyár.) Soó in stressful, high-elevation habitats, where these plants must prioritise the resource acquisition and vegetative growth to sustain their survival and persistence, we aimed to reveal possible abiotic/biotic-driven [...] Read more.
Given the endangered status and very limited distribution of Barbarea vulgaris R.Br. subsp. lepuznica (Nyár.) Soó in stressful, high-elevation habitats, where these plants must prioritise the resource acquisition and vegetative growth to sustain their survival and persistence, we aimed to reveal possible abiotic/biotic-driven constraints in biomass allocation for flower production. Three functional traits, i.e., the tallest shoot height, leaf mass area (LMA) and number of inflorescences (racemes), were measured in thirty plants in each of the three studied populations differing in altitude and sheep grazing intensity (P1—1700 m, grazed; P2—1900 m, ungrazed; P3—2100 m, ungrazed). The LMA and dominant shoot height were significantly higher and, respectively, lower in P3 compared with P1. Although the mean number of racemes in P1 was lower than in P2 and P3, the differences were not statistically significant. The tallest shoot height, followed by the LMA, displayed the highest contribution to differentiating the three populations. The raceme count decreased significantly with increasing height of the dominant shoot in P1 and P2, and also with increasing LMA in P3. The observed constraint in raceme production within all populations is very likely one facet of the trade-off between reproductive and vegetative allocation under harsh edapho-climatic conditions. The studied plants have adopted a conservative-tolerant strategy to cope with the abiotic stress at higher elevations, but an acquisitive-tolerant strategy in face of grazing. The subspecies lepuznica seems to be in a favourable conservation status, but a close monitoring in grazed areas is recommended. Full article
Show Figures

Figure 1

21 pages, 3716 KB  
Article
A Synergistic Approach with Doxycycline and Spirulina Extracts in DNBS-Induced Colitis: Enhancing Remission and Controlling Relapse
by Meriem Aziez, Mohamed Malik Mahdjoub, Tahar Benayad, Ferroudja Abbas, Sarah Hamid, Hamza Moussa, Ibrahima Mamadou Sall, Hichem Tahraoui, Abdeltif Amrane and Noureddine Bribi
J. Xenobiot. 2025, 15(5), 160; https://doi.org/10.3390/jox15050160 - 3 Oct 2025
Viewed by 287
Abstract
Background: Chronic relapsing colitis involves immune dysregulation and oxidative stress, making monotherapies often insufficient. This study investigates a therapeutic strategy combining doxycycline (Dox), an immunomodulatory antibiotic, with Arthrospira platensis extracts to enhance anti-inflammatory and antioxidant effects, improving remission and controlling relapse. Methods: Ethanolic [...] Read more.
Background: Chronic relapsing colitis involves immune dysregulation and oxidative stress, making monotherapies often insufficient. This study investigates a therapeutic strategy combining doxycycline (Dox), an immunomodulatory antibiotic, with Arthrospira platensis extracts to enhance anti-inflammatory and antioxidant effects, improving remission and controlling relapse. Methods: Ethanolic (ES) and aqueous (AS) extracts of A. platensis were chemically characterized by GC-MS after derivatization. Colitis was induced in mice using two intrarectal DNBS administrations spaced 7 days apart, with oral treatments (Dox, ES, AS, or combinations) given daily between doses. Disease progression was evaluated through clinical monitoring, histological scoring, and biochemical analysis, including MPO and CAT activities, as well as NO, MDA, and GSH levels. Results: GC-MS identified 16 bioactive compounds in each extract. ES contained mainly fatty acids and amino acids, whereas AS was rich in polysaccharides and phytol. Combined doxycycline and A. platensis extracts significantly enhanced recovery in reactivated DNBS colitis compared to monotherapies. Each treatment alone reduced disease severity, but their combination showed synergistic effects, significantly reducing disease activity index (p < 0.001), restoring mucosal integrity, and modulating inflammatory and oxidative markers (p < 0.001). Conclusion: Doxycycline potentiates the anti-colitic effects of A. platensis extracts via complementary mechanisms, offering a promising combination for managing relapsing colitis. Full article
Show Figures

Graphical abstract

Back to TopTop