Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method
Abstract
1. Introduction
2. Principles of Discrete Element Particle Flow Code
2.1. Force-Displacement Law
2.2. Principles of Motion
2.3. Linear Parallel Bonding Model
3. Influence of Mesoscopic Parameters on Particle Crushing Performance
3.1. Establishment of Numerical Proppant Model
3.2. The Influence of Mesoscopic Parameters on Particle Breakage Characteristics
3.3. Analysis of the Influence Weight of Mesoscopic Parameters on Proppant Crushing Rate
3.4. Proppant Mesoscopic Parameter Calibration and Validation
4. Particle Breakage Characteristics Under Different Mesoscopic Parameters
5. Conclusions
- (1)
- The higher values of pb-ten and pb-coh reduce the susceptibility of proppant particles to crushing, whereas a larger emod facilitates particle breakage.
- (2)
- Among Factor A (pb-ten, 100–700 MPa), Factor B (pb-coh, 200–800 MPa), Factor C (emod, 5–95 GPa), and Factor D (kratio, 0.01–6), Factor A (pb-ten) has the most significant influence on the proppant crushing rate, with a range value of 92.11%. This is followed by Factor B (pb-coh) and Factor C (emod), which have a range value of approximately 26%. Factor D (kratio) has the least significant effect on the crushing rate, with a range value of only 6.321%.
- (3)
- The type of fractures (tension crack or shear crack) produced by the fragmentation of the proppant mainly depends on the relative difference between pb-ten and pb-coh. When the effective modulus emod value is small, the initial deflection angle of the crack at the upper and lower loading points is also small; that is, the crack is easier to expand along the direction of the vertical loading plate.
- (4)
- Investigating the influence of mesoscopic parameters on proppant crushing behavior is crucial, as it provides a reference for calibrating numerical parameters of synthetic proppants and contributes to the accurate characterization of their macroscopic crushing performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lei, Q.; Xu, Y.; Cai, B.; Guan, B.; Wang, X.; Bi, G.; Li, H.; Li, S.; Ding, B.; Fu, H.; et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs. Pet. Explor. Dev. 2022, 49, 191–199. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y. Recent advances in tight oil reservoir development: Integrated technology of horizontal drilling and hydraulic fracturing. Adv. Resour. Res. 2024, 4, 300–317. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Z.; Li, X.; Han, J.; Ji, G. Problems and methods for optimization of hydraulic fracturing of deep coal beds in China. Chem. Technol. Fuels Oils 2015, 51, 41–48. [Google Scholar] [CrossRef]
- Zhang, X.; Jeffrey, R.G. Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. J. Geochem. Explor. 2014, 144, 194–207. [Google Scholar] [CrossRef]
- Al-Muntasheri, G.A. A critical review of hydraulic-fracturing fluids for moderate-to ultralow-permeability formations over the last decade. SPE Prod. Oper. 2014, 29, 243–260. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Fu, S.; Zhao, H.; Chen, Z.; Bai, X.; Li, J.; Xiu, C.; Zhang, L.; Wang, J. Analysis of the Effectiveness Mechanism and Research on Key Influencing Factors of High-Pressure Water Injection in Low-Permeability Reservoirs. Processes 2025, 13, 2664. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, T.; Ma, C.; Wang, B.; Zhou, F. Characteristics of Propped Fracture Propagation in Volcanic Clastic Reservoirs: A Multiscale Study of Conductivity Sustainability and Fracture Network Complexity. Rock Mech. Rock Eng. 2025, 1–26. [Google Scholar] [CrossRef]
- Wang, J.; Elsworth, D. Role of proppant distribution on the evolution of hydraulic fracture conductivity. J. Pet. Sci. Eng. 2018, 166, 249–262. [Google Scholar] [CrossRef]
- Liang, F.; Sayed, M.; Al-Muntasheri, G.A.; Chang, F.F.; Li, L. A comprehensive review on proppant technologies. Petroleum 2016, 2, 26–39. [Google Scholar] [CrossRef]
- Coulter, G.; Wells, R. The advantages of high proppant concentration in fracture stimulation. J. Pet. Technol. 1972, 24, 643–650. [Google Scholar] [CrossRef]
- Ghosh, S.; Rai, C.S.; Sondergeld, C.H.; Larese, R.E. Experimental Investigation of Proppant Diagenesis. In Proceedings of the SPE/CSUR Unconventional Resources Conference, Calgary, AB, Canada, 30 September–2 October 2014. [Google Scholar]
- Mittal, A.; Rai, C.S.; Sondergeld, C.H. Proppant conductivity testing under simulated reservoir conditions: Impact of crushing, embedment, and diagenesis on long-term production in shales. SPE J. 2018, 23, 1304–1315. [Google Scholar] [CrossRef]
- Terracina, J.M.; Turner, J.M.; Collins, D.H.; Spillars, S. Proppant Selection and Its Effect on the Results of Fracturing Treatments Performed in Shale Formations. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 20–22 September 2010. [Google Scholar]
- Kaiser, M.J.; Yu, Y. A scenario-based hydrocarbon production forecast for Louisiana. Nat. Resour. Res. 2012, 21, 143–162. [Google Scholar] [CrossRef]
- Simo, H.; Pournik, M.; Sondergeld, C.H. Proppant crush test: A new approach. In Proceedings of the SPE Oklahoma City Oil and Gas Symposium/Production and Operations Symposium, Oklahoma, OK, USA, 23–26 March 2013; SPE: Bellingham, WA, USA, 2013; p. SPE-164506-MS. [Google Scholar]
- Aderibigbe, A.A.; Valdes, C.C.; Heidari, Z.; Fuss-Dezelic, T. Mechanical-damage characterization in proppant packs by use of acoustic measurements. SPE Prod. Oper. 2017, 32, 168–176. [Google Scholar] [CrossRef]
- Man, S.; Wong, R.C.K. Compression and crushing behavior of ceramic proppants and sand under high stresses. J. Pet. Sci. Eng. 2017, 158, 268–283. [Google Scholar] [CrossRef]
- Stephens, W.T.; Schubarth, S.K.; Dickson, K.R.; Snyder, E.M.; Doles, K.J.; Herndon, D.C. Behavior of proppants under cyclic stress. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, College Station, TX, USA, 29 January 2007; SPE: Bellingham, WA, USA, 2007; p. SPE-106365-MS. [Google Scholar]
- Ramlan, A.S.; Zin, R.M.; Abu Bakar, N.F.; Othman, N.H.; Jarni, H.H.; Hussain, M.H.; Najib, N.I.M.; Zakran, M.Z. Characterisation of graphene oxide-coated sand for potential use as proppant in hydraulic fracturing. Arab. J. Geosci. 2022, 15, 1126. [Google Scholar] [CrossRef]
- Alzanam, A.A.A.; Ishtiaq, U.; Muhsan, A.S.; Mohamed, N.M. A multiwalled carbon nanotube-based polyurethane nanocomposite-coated sand/proppant for improved mechanical strength and flowback control in hydraulic fracturing applications. ACS Omega 2021, 6, 20768–20778. [Google Scholar] [CrossRef]
- Stephens, W.T.; Schubarth, S.K.; Rivera, D.I.; Snyder, E.M.; Herndon, D.C. Statistical Study of the Crush Resistance Measurement for Ceramic Proppants. In Proceedings of the SPE Annual Technical Conference and Exhibition? San Antonio, TX, USA, 24–27 September 2006; SPE: Bellingham, WA, USA, 2006; p. SPE-102645-MS. [Google Scholar]
- Gaurav, A.; Dao, E.K.; Mohanty, K.K. Evaluation of ultra-light-weight proppants for shale fracturing. J. Pet. Sci. Eng. 2012, 92, 82–88. [Google Scholar] [CrossRef]
- Zheng, W.; Tannant, D.D. Influence of proppant fragmentation on fracture conductivity-insights from three-dimensional discrete element modeling. J. Pet. Sci. Eng. 2019, 177, 1010–1023. [Google Scholar] [CrossRef]
- Deng, S.; Li, H.; Ma, G.; Huang, H.; Li, X. Simulation of shale–proppant interaction in hydraulic fracturing by the discrete element method. Int. J. Rock Mech. Min. Sci. 2014, 70, 219–228. [Google Scholar] [CrossRef]
- Bolintineanu, D.S.; Rao, R.R.; Lechman, J.B.; Romero, J.A.; Jove-Colon, C.F.; Quintana, E.C.; Bauer, S.J.; Ingraham, M.D. Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 2017, 100, 188–198. [Google Scholar] [CrossRef]
- Kulkarni, M.C.; Ochoa, O. Mechanics of light weight proppants: A discrete approach. Compos. Sci. Technol. 2012, 72, 879–885. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, L.; Ma, G.; Chang, X.; Lai, Z.; Xu, K. DEM analysis of the size effects on the behavior of crushable granular materials. Granul. Matter 2016, 18, 64. [Google Scholar] [CrossRef]
- Zheng, W.; Tannant, D. Grain breakage criteria for discrete element models of sand crushing under one-dimensional compression. Comput. Geotech. 2018, 95, 231–239. [Google Scholar] [CrossRef]
- Itasca, C.G. PFC2D-Particle Flow Code in 2 Dimensions, Version 6.0 User’S Manual; Itasca Consulting Group: Minneapolis, MN, USA, 2019. [Google Scholar]
- Wang, H.; Zhou, D.; Zou, Y.; Zheng, P. Effect mechanism of seepage force on the hydraulic fracture propagation. Int. J. Coal Sci. Technol. 2024, 11, 43. [Google Scholar] [CrossRef]
- David, C.T.; García-Rojo, R.; Herrmann, H.J.; Luding, S. Powder flow testing with 2d and 3d biaxial and triaxial simulations. Part. Part. Syst. Charact. 2007, 24, 29–33. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Proppant Diameter (Particle Clusters Diameter) | 0.000425 m |
Particle Size within the Particle Clusters | 0.00001 m |
Tensile Strength of Contact Bond (pb-ten) | 50–850 MPa |
Cohesion of Contact Bond (pb-coh) | 50–1200 MPa |
Stiffness Ratio (kratio) | 0.01–6.9 |
Effective Modulus (emod) | 5–95 GPa |
Friction Angle of Contact Bond (pb_fa) | 30° |
Normal Critical Ramping Ratio (dp_nratio) | 0.3 |
Friction Coefficient (fric) | 0.3 |
Gap | 1.6 × 10−7 |
Level | Factor A | Factor B | Factor C | Factor D |
---|---|---|---|---|
pb-ten (MPa) | pb-coh (MPa) | emod (GPa) | Kratio | |
1 | 100 | 200 | 5 | 0.01 |
2 | 200 | 300 | 20 | 1 |
3 | 300 | 400 | 35 | 2 |
4 | 400 | 500 | 50 | 3 |
5 | 500 | 600 | 65 | 4 |
6 | 600 | 700 | 80 | 5 |
7 | 700 | 800 | 95 | 6 |
Experiment Number | Factor A | Factor B | Factor C | Factor D | Crushing Rate % |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 89.75 |
2 | 1 | 2 | 2 | 2 | 97.50 |
3 | 1 | 3 | 3 | 3 | 98.50 |
4 | 1 | 4 | 4 | 4 | 98.75 |
5 | 1 | 5 | 5 | 5 | 99.75 |
6 | 1 | 6 | 6 | 6 | 99.50 |
7 | 1 | 7 | 7 | 7 | 99.25 |
8 | 2 | 1 | 2 | 3 | 45.75 |
9 | 2 | 2 | 3 | 4 | 78.75 |
10 | 2 | 3 | 4 | 5 | 87.50 |
11 | 2 | 4 | 5 | 6 | 89.00 |
12 | 2 | 5 | 6 | 7 | 92.50 |
13 | 2 | 6 | 7 | 1 | 92.50 |
14 | 2 | 7 | 1 | 2 | 0.50 |
15 | 3 | 1 | 3 | 5 | 38.25 |
16 | 3 | 2 | 4 | 6 | 27.50 |
17 | 3 | 3 | 5 | 7 | 28.35 |
18 | 3 | 4 | 6 | 1 | 30.75 |
19 | 3 | 5 | 7 | 2 | 33.50 |
20 | 3 | 6 | 1 | 3 | 1.80 |
21 | 3 | 7 | 2 | 4 | 1.50 |
22 | 4 | 1 | 4 | 7 | 45.00 |
23 | 4 | 2 | 5 | 1 | 24.50 |
24 | 4 | 3 | 6 | 2 | 11.25 |
25 | 4 | 4 | 7 | 3 | 18.50 |
26 | 4 | 5 | 1 | 4 | 0.00 |
27 | 4 | 6 | 2 | 5 | 0.25 |
28 | 4 | 7 | 3 | 6 | 0.60 |
29 | 5 | 1 | 5 | 2 | 12.25 |
30 | 5 | 2 | 6 | 3 | 9.45 |
31 | 5 | 3 | 7 | 4 | 16.75 |
32 | 5 | 4 | 1 | 5 | 0.00 |
33 | 5 | 5 | 2 | 6 | 0.50 |
34 | 5 | 6 | 3 | 7 | 1.25 |
35 | 5 | 7 | 4 | 1 | 1.00 |
36 | 6 | 1 | 6 | 4 | 30.75 |
37 | 6 | 2 | 7 | 5 | 13.75 |
38 | 6 | 3 | 1 | 6 | 0.00 |
39 | 6 | 4 | 2 | 7 | 0.00 |
40 | 6 | 5 | 3 | 1 | 0.00 |
41 | 6 | 6 | 4 | 2 | 0.00 |
42 | 6 | 7 | 5 | 3 | 3.25 |
43 | 7 | 1 | 7 | 6 | 31.25 |
44 | 7 | 2 | 1 | 7 | 0.00 |
45 | 7 | 3 | 2 | 1 | 0.00 |
46 | 7 | 4 | 3 | 2 | 1.75 |
47 | 7 | 5 | 4 | 3 | 1.75 |
48 | 7 | 6 | 5 | 4 | 1.75 |
49 | 7 | 7 | 6 | 5 | 1.75 |
Category | Crushing Rate (%) | Category | Crushing Rate (%) | Category | Crushing Rate (%) | Category | Crushing Rate (%) |
---|---|---|---|---|---|---|---|
K_A1 | 97.57 | K_B1 | 41.86 | K_C1 | 13.15 | K_D1 | 31.77 |
K_A2 | 69.50 | K_B2 | 35.92 | K_C2 | 20.79 | K_D2 | 27.93 |
K_A3 | 23.09 | K_B3 | 34.62 | K_C3 | 31.30 | K_D3 | 33.54 |
K_A4 | 14.30 | K_B4 | 34.11 | K_C4 | 37.36 | K_D4 | 29.51 |
K_A5 | 5.89 | K_B5 | 32.57 | K_C5 | 36.98 | K_D5 | 34.25 |
K_A6 | 6.82 | K_B6 | 28.15 | K_C6 | 39.42 | K_D6 | 32.54 |
K_A7 | 5.46 | K_B7 | 15.41 | K_C7 | 39.11 | K_D7 | 33.11 |
Category | Value |
---|---|
Proppant Particle Diameter | 40-Mesh (0.000425 m) |
Particle Cluster Size | 0.00001 m |
Tensile Strength of Contact Bond (pb-ten) | 220 MPa |
Cohesion of Contact Bond (pb-coh) | 520 MPa |
Effective Modulus (emod) | 20.5 GPa |
Stiffness Ratio (kratio) | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Zhou, D.; Wang, Y.; Lu, C.; Wang, H.; Wang, Q. Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method. Processes 2025, 13, 3188. https://doi.org/10.3390/pr13103188
Zou Y, Zhou D, Wang Y, Lu C, Wang H, Wang Q. Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method. Processes. 2025; 13(10):3188. https://doi.org/10.3390/pr13103188
Chicago/Turabian StyleZou, Yi, Desheng Zhou, Yufei Wang, Chen Lu, Haiyang Wang, and Qingqing Wang. 2025. "Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method" Processes 13, no. 10: 3188. https://doi.org/10.3390/pr13103188
APA StyleZou, Y., Zhou, D., Wang, Y., Lu, C., Wang, H., & Wang, Q. (2025). Study on the Influence of Mesoscopic Parameters on Proppant Crushing Performance Based on the Particle Flow Method. Processes, 13(10), 3188. https://doi.org/10.3390/pr13103188