Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = stress equilibrium time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4079 KiB  
Article
Investigation on the Bearing Characteristics and Bearing Capacity Calculation Method of the Interface of Reinforced Soil with Waste Tire Grid
by Jie Sun, Yuchen Tao, Zhikun Liu, Xiuguang Song, Wentong Wang and Hongbo Zhang
Buildings 2025, 15(15), 2634; https://doi.org/10.3390/buildings15152634 - 25 Jul 2025
Viewed by 256
Abstract
Geogrids are frequently utilized in engineering for reinforcement; yet, they are vulnerable to construction damage when employed on coarse-grained soil subgrades. In contrast, waste tire grids are more appropriate for subgrade reinforcement owing to their rough surfaces, integrated steel meshes, robust transverse ribs, [...] Read more.
Geogrids are frequently utilized in engineering for reinforcement; yet, they are vulnerable to construction damage when employed on coarse-grained soil subgrades. In contrast, waste tire grids are more appropriate for subgrade reinforcement owing to their rough surfaces, integrated steel meshes, robust transverse ribs, extended degradation cycles, and superior durability. Based on the limit equilibrium theory, this study developed formulae for calculating the internal and external frictional resistance, as well as the end resistance of waste tires, to ascertain the interface bearing properties and calculation techniques of waste tire grids. Based on this, a mechanical model for the ultimate pull-out resistance of waste-tire-reinforced soil was developed, and its validity was confirmed through a series of pull-out tests on single-sided strips, double-sided strips, and tire grids. The results indicated that the tensile strength of one side of the strip was approximately 43% of that of both sides, and the rough outer surface of the tire significantly enhanced the tensile performance of the strip; under identical normal stress, the tensile strength of the single-sided tire grid was roughly nine times and four times greater than that of the single-sided and double-sided strips, respectively, and the grid structure exhibited superior anti-deformation capabilities compared to the strip structure. The average discrepancy between the calculated values of the established model and the theoretical values was merely 2.38% (maximum error < 5%). Overall, this research offers technical assistance for ensuring the safety of subgrade design and promoting environmental sustainability in engineering, enabling the effective utilization of waste tire grids in sustainable reinforcement applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 262
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

22 pages, 3499 KiB  
Article
Dynamic Behavior of the Fractional-Order Ananthakrishna Model for Repeated Yielding
by Hongyi Zhu and Liping Yu
Fractal Fract. 2025, 9(7), 425; https://doi.org/10.3390/fractalfract9070425 - 28 Jun 2025
Viewed by 280
Abstract
This paper introduces and analyzes a novel fractional-order Ananthakrishna model. The stability of its equilibrium points is first investigated using fractional-order stability criteria, particularly in regions where the corresponding integer-order model exhibits instability. A linear finite difference scheme is then developed, incorporating an [...] Read more.
This paper introduces and analyzes a novel fractional-order Ananthakrishna model. The stability of its equilibrium points is first investigated using fractional-order stability criteria, particularly in regions where the corresponding integer-order model exhibits instability. A linear finite difference scheme is then developed, incorporating an accelerated L1 method for the fractional derivative. This enables a detailed exploration of the model’s dynamic behavior in both the time domain and phase plane. Numerical simulations, including Lyapunov exponents, bifurcation diagrams, phase and time diagrams, demonstrate that the fractional model exhibits stable and periodic behaviors across various fractional orders. Notably, as the fractional order approaches a critical threshold, the time required to reach stability increases significantly, highlighting complex stability-transition dynamics. The computational efficiency of the proposed scheme is also validated, showing linear CPU time scaling with respect to the number of time steps, compared to the nearly quadratic growth of the classical L1 and Grünwald-Letnikow schemes, making it more suitable for long-term simulations of complex fractional-order models. Finally, four types of stress-time curves are simulated based on the fractional Ananthakrishna model, corresponding to both stable and unstable domains, effectively capturing and interpreting experimentally observed repeated yielding phenomena. Full article
(This article belongs to the Special Issue Modeling and Dynamic Analysis of Fractional-Order Systems)
Show Figures

Figure 1

17 pages, 8353 KiB  
Article
Restoration of the Denudation Volume in the Tankou Area Based on a Tectonic Strain Analysis
by Hao Yang, Tao Li and Junjie Chang
Processes 2025, 13(6), 1781; https://doi.org/10.3390/pr13061781 - 4 Jun 2025
Viewed by 499
Abstract
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by [...] Read more.
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by well-developed plastic materials, intense tectonic deformation, and insufficient well data, fails to meet the applicability criteria of the conventional denudation estimation methods. This study proposes a novel approach based on the structural strain characteristics. The method estimates the stratigraphic denudation by analysing residual formation features and fault characteristics. First, a stress analysis is performed using the fault characteristics, and the change law for the thickness of the target layer is summarised based on the characteristics of the residual strata to recover the amount of erosion in the profile. Second, a grid of the stratigraphic lines in the profiles of the main line and the tie line is used to complete the recovery of the amount of erosion in the plane through interpolation, and the results of the profile recovery are corrected again. Finally, the evolution results of the geological equilibrium method and the stress–strain analysis are compared to analyse the reasonableness of their differences and verify the accuracy of the erosion recovery results. The area of erosion in each layer increases from bottom to top. The amount of denudation in each layer gradually increases from the denudation area near the southern slope to the surrounding area. It converges to 0 at the boundary of the denudation area. The maximum amount of erosion is distributed in the erosion area close to the side of the residual layer with a low dip angle. The specific denudation results are as follows: Qian1 Member + Jinghezhen Formation has a denudation area of 6.3 km2 with a maximum denudation thickness of 551 m; Qian2 Member has a denudation area of 2.6 km2 with a maximum denudation thickness of 164 m; Qian3 Member has a denudation area of 2.3 km2 with a maximum denudation thickness of 215 m; Upper Qian4 Submember has a denudation area of 1.54 km2 with a maximum denudation thickness of 191 m; and Lower Qian4 Submember has a denudation area of 1.2 km2 with a maximum denudation thickness of 286 m. This method overcomes the conventional denudation restoration approaches’ reliance on well logging and geochemical parameters. Using only seismic interpretation results, it achieves relatively accurate denudation restoration in the study area, thereby providing reliable data for timely analyses of the tectonic evolution, sedimentary facies, and hydrocarbon distribution patterns. In particular, the fault displacement characteristics can be employed to promptly examine how reasonable the results on the amount of denudation between faults are during the denudation restoration process. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 7345 KiB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Viewed by 572
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

16 pages, 4950 KiB  
Article
Protective Effect of Whey Protein and Polysaccharide Complexes on Lactobacillus paracasei F50: Comparative Analysis of Powder Characteristics and Stability
by Xinrui Zhang, Xiaowei Peng, Huijing Chen, Aijun Li, Gang Yang and Jianquan Kan
Foods 2025, 14(9), 1555; https://doi.org/10.3390/foods14091555 - 28 Apr 2025
Cited by 2 | Viewed by 603
Abstract
To enhance Lactobacillus paracei F50 viability during spray drying and long-term storage, this study evaluates whey protein (WP) crosslinked with four polysaccharides (κ-carrageenan (KC), xanthan gum (XG), low-methoxyl pectin (LMP), sodium alginate (SA)) for the first time as protective matrices for L. paracasei [...] Read more.
To enhance Lactobacillus paracei F50 viability during spray drying and long-term storage, this study evaluates whey protein (WP) crosslinked with four polysaccharides (κ-carrageenan (KC), xanthan gum (XG), low-methoxyl pectin (LMP), sodium alginate (SA)) for the first time as protective matrices for L. paracasei F50 during spray drying. The four kinds of crosslinked wall materials were compared by various characterization methods. Among them, the WP-κ-carrageenan (WP-KC) composite exhibited optimal performance, forming a uniform microcapsule with high colloidal stability. After spray drying, WP-KC achieved the highest viable cell density (9.62 lg CFU/g) and survival rate (91.85%). Notably, WP-KC maintained viability above 8.68 lg CFU/g after 120 days of storage at 4 °C, surpassing other formulations. Structural analysis showed that the WP-KC microcapsule was completely encapsulated without breaking or leaking and confirmed the molecular interaction between WP and KC. Under the condition of high temperatures (≤142.63 °C), the wall material of the microcapsule does not undergo any endothermic or exothermic process and is in a state of thermodynamic equilibrium, with excellent stability and good dispersion. Additionally, microcapsules exhibited enhanced resistance to thermal stress (55–75 °C) and UV irradiation, higher than that of free cells. These results highlight WP-KC as an industrially viable encapsulation system for improving probiotic stability in functional foods, offering critical insights into polysaccharide–protein interactions for optimized delivery systems. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 6960 KiB  
Article
Stability Analysis of Horizontal Layered Multi-Stage Fill Slope Based on Limit Equilibrium Method
by Xiaohui Li, Shuaihua Ye, Manman Qiu, Weina Ye and Jingbang Li
Buildings 2025, 15(7), 1105; https://doi.org/10.3390/buildings15071105 - 28 Mar 2025
Cited by 1 | Viewed by 406
Abstract
The stability of a multi-stage fill slope composed of horizontal layered soil is particularly prominent due to its complex structural characteristics, the variability of filler properties, and the combined effects of external environmental factors. Therefore, it is of great significance to clarify whether [...] Read more.
The stability of a multi-stage fill slope composed of horizontal layered soil is particularly prominent due to its complex structural characteristics, the variability of filler properties, and the combined effects of external environmental factors. Therefore, it is of great significance to clarify whether such slopes are in a safe state. Based on the limit equilibrium method, this paper divides the soil horizontally and obliquely and analyzes the stress and establishes the potential failure mechanism (such as slope toe circle, midpoint circle, etc.) of the multi-stage fill slope in the overall failure mode and local failure mode. The analytical expressions of slope safety factors corresponding to various failure mechanisms are further derived, and the stability analysis process of multi-stage fill slope and the determination method of the most dangerous slip surface are proposed. Through the verification of two examples, the results show that the safety factor obtained by this method is similar to the minimum safety factor obtained by the traditional slice method, and the error is small. At the same time, the most dangerous slip surface and slip range are basically consistent with the traditional method. The research results can provide a theoretical basis and practical reference for stability analysis, filler selection, and engineering design of the fill slope. Full article
Show Figures

Figure 1

34 pages, 4325 KiB  
Review
Boosting Aeroponic System Development with Plasma and High-Efficiency Tools: AI and IoT—A Review
by Waqar Ahmed Qureshi, Jianmin Gao, Osama Elsherbiny, Abdallah Harold Mosha, Mazhar Hussain Tunio and Junaid Ahmed Qureshi
Agronomy 2025, 15(3), 546; https://doi.org/10.3390/agronomy15030546 - 23 Feb 2025
Cited by 5 | Viewed by 3703
Abstract
Sustainable agriculture faces major issues with resource efficiency, nutrient distribution, and plant health. Traditional soil-based and soilless farming systems encounter issues including excessive water use, insufficient nutrient uptake, nitrogen deficiency, and restricted plant development. According to the previous literature, aeroponic systems accelerate plant [...] Read more.
Sustainable agriculture faces major issues with resource efficiency, nutrient distribution, and plant health. Traditional soil-based and soilless farming systems encounter issues including excessive water use, insufficient nutrient uptake, nitrogen deficiency, and restricted plant development. According to the previous literature, aeroponic systems accelerate plant growth rates, improve root oxygenation, and significantly enhance water use efficiency, particularly when paired with both low- and high-pressure misting systems. However, despite these advantages, they also present certain challenges. A major drawback is the inefficiency of nitrogen fixation, resulting in insufficient nutrient availability and heightened plant stress from uncontrolled misting, which ultimately reduces yield. Many studies have investigated plasma uses in both soil-based and soilless plant cultures; nevertheless, however, its function in aeroponics remains unexplored. Therefore, the present work aims to thoroughly investigate and review the integration of plasma-activated water (PAW) and plasma-activated mist (PAM) in aeroponics systems to solve important problems. A review of the current literature discloses that PAW and PAM expand nitrogen fixation, promote nutrient efficiency, and modulate microbial populations, resulting in elevated crop yields and enhanced plant health, akin to soil-based and other soilless systems. Reactive oxygen and nitrogen species (RONS) produced by plasma treatments improve nutrient bioavailability, root development, and microbial equilibrium, alleviating critical challenges in aeroponics, especially within fine-mist settings. This review further examines artificial intelligence (AI) and the Internet of Things (IoT) in aeroponics. Models driven by AI enable the accurate regulation of fertilizer concentrations, misting cycles, temperature, and humidity, as well as real-time monitoring and predictive analytics. IoT-enabled smart farming systems employ sensors for continuous nutrient monitoring and gas detection (e.g., NO2, O3, NH3), providing automated modifications to enhance aeroponic efficiency. Based on a brief review of the current literature, this study concludes that the future integration of plasma technology with AI and IoT may address the limitations of aeroponics. The integration of plasma technology with intelligent misting and data-driven control systems can enhance aeroponic systems for sustainable and efficient agricultural production. This research supports the existing body of research that advocates for plasma-based innovations and intelligent agricultural solutions in precision farming. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 2800 KiB  
Review
Algorithmic Approaches for Assessing Multiscale Irreversibility in Time Series: Review and Comparison
by Massimiliano Zanin and David Papo
Entropy 2025, 27(2), 126; https://doi.org/10.3390/e27020126 - 25 Jan 2025
Cited by 1 | Viewed by 828
Abstract
Many physical and biological phenomena are characterized by time asymmetry, and are referred to as irreversible. Time-reversal symmetry breaking is in fact the hallmark of systems operating away from equilibrium and reflects the power dissipated by driving the system away from it. Time [...] Read more.
Many physical and biological phenomena are characterized by time asymmetry, and are referred to as irreversible. Time-reversal symmetry breaking is in fact the hallmark of systems operating away from equilibrium and reflects the power dissipated by driving the system away from it. Time asymmetry may manifest in a wide range of time scales; quantifying irreversibility in such systems thus requires methods capable of detecting time asymmetry in a multiscale fashion. In this contribution we review the main algorithmic solutions that have been proposed to detect time irreversibility, and evaluate their performance and limitations when used in a multiscale context using several well-known synthetic dynamical systems. While a few of them have a general applicability, most tests yield conflicting results on the same data, stressing that a “one size fits all” solution is still to be achieved. We conclude presenting some guidelines for the interested practitioner, as well as general considerations on the meaning of multiscale time irreversibility. Full article
(This article belongs to the Section Entropy Reviews)
Show Figures

Figure 1

19 pages, 1351 KiB  
Article
An Open-Source Algorithm for Correcting Stress Wave Dispersion in Split-Hopkinson Pressure Bar Experiments
by Arthur Van Lerberghe, Kin Shing O. Li, Andrew D. Barr and Sam D. Clarke
Sensors 2025, 25(1), 281; https://doi.org/10.3390/s25010281 - 6 Jan 2025
Cited by 3 | Viewed by 1019
Abstract
Stress wave dispersion can result in the loss or distortion of critical high-frequency data during high-strain-rate material tests or blast loading experiments. The purpose of this work is to demonstrate the benefits of correcting stress wave dispersion in split-Hopkinson pressure bar experiments under [...] Read more.
Stress wave dispersion can result in the loss or distortion of critical high-frequency data during high-strain-rate material tests or blast loading experiments. The purpose of this work is to demonstrate the benefits of correcting stress wave dispersion in split-Hopkinson pressure bar experiments under various testing situations. To do this, an innovative computational algorithm, SHPB_Processing.py, is created. Following the operational run through of SHPB_Processing.py’s capabilities, it is used to process test data acquired from split-Hopkinson pressure bar tests on aluminium, sand and kaolin clay samples, under various testing conditions. When comparing dispersion corrected and simple time shifting data obtained from SHPB experiments, accounting for dispersion removes spurious oscillations and improves the inferred measurement at the front of the specimen. The precision of the stress and strain results gathered from its application emphasises its importance through the striking contrast between its application and omission. This has a significant impact on the validity, accuracy and quality of the results. As a result, in the future, this tool can be utilised for any strain rate testing situation with cylindrical bars that necessitates dispersion correction, confinement, or stress equilibrium analysis. Full article
Show Figures

Figure 1

19 pages, 6191 KiB  
Article
Research on the Instability Mechanism and Control Technology of Gob-Side Entry in Deep Mines with Soft Rock
by Lu Ma, Luyi Xing, Chang Liu, Tongyuan Cui, Xi Qiao, Wang Miao and Peng Kong
Buildings 2025, 15(1), 19; https://doi.org/10.3390/buildings15010019 - 25 Dec 2024
Cited by 2 | Viewed by 648
Abstract
The gob-side entry driving in deep mines with soft rock exhibits a complex deformation and instability mechanism. This complexity leads to challenges in roadway stability control which greatly affects the coal mine production succession and safe and efficient mining. This paper takes the [...] Read more.
The gob-side entry driving in deep mines with soft rock exhibits a complex deformation and instability mechanism. This complexity leads to challenges in roadway stability control which greatly affects the coal mine production succession and safe and efficient mining. This paper takes the gob-side entry in Liuzhuang Coal Mine as the background. By adopting the method of theoretical analysis, a dynamic model of the roof subsidence in the goaf is established. The calculation indicates that achieving the stable subsidence of the basic roof and the equilibrium of the lateral abutment stress within the goaf requires a minimum of 108.9 days, offering a theoretical foundation for selecting an optimal driving time for the gob-side entry. The control technologies and methods of gob-side entry through grouting modification and high-strength support are proposed. Enhancing the length of anchor ropes and the density of bolt (cable) support to improve the role of the roadway support components can be better utilized, so the role of the support components of the roadway can be better exerted. The method of grouting and the reinforcement of coal pillars can effectively improve the carrying capacity of coal pillars. The numerical simulation is used to analyze the deformation law of gob-side entry. The study reveals significant deformation in the coal pillar and substantial roof subsidence, highlighting that maintaining the stability of the coal pillar is crucial for ensuring roadway safety. Following the grouting process, the deformation of the coal pillar and roof subsidence decreased by 16.7% and 7.1%, respectively. This demonstrates that coal pillar grouting not only mitigates pillar deformation but also provides effective control over roof subsidence. This study offers a quantitative calculation method to ascertain the excavation time of gob-side entry, and suggests that the application of high-strength support and the practice of coal pillar grouting can effectively maintain the steadiness of gob-side entry in deep mines with soft rock. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

16 pages, 10659 KiB  
Article
Research on the Method for Solving the Safety Factor of Rock Slope Based on Deformation Monitoring Warning Threshold
by Xiaoyan Wei and Xiuli Zhang
Appl. Sci. 2024, 14(24), 12061; https://doi.org/10.3390/app142412061 - 23 Dec 2024
Viewed by 772
Abstract
In view of the fact that field monitoring information can more intuitively and accurately reflect the stability state of slopes, this paper takes the warning threshold of slope deformation rate monitoring as the slope stability evaluation standard, and puts forward a method for [...] Read more.
In view of the fact that field monitoring information can more intuitively and accurately reflect the stability state of slopes, this paper takes the warning threshold of slope deformation rate monitoring as the slope stability evaluation standard, and puts forward a method for solving the safety coefficient of rocky slopes. The discrete element method (3DEC), which is suitable for rocky slopes, is selected as the numerical calculation tool, the convergence criterion of its strength reduction method is modified to the slope deformation rate threshold, and the method is realized by the bifurcation method through its built-in FISH programming language. The results of the classical case show that, by selecting the slope deformation rate threshold in the appropriate interval, the results of this paper’s method are very close to those of the finite unit stress method and the limit equilibrium method, verifying the reliability of this paper’s method. Further, the method of this paper is applied to an open-pit mine slope project, based on the slope deformation on-site monitoring data and through the time series prediction method to determine the slope deformation rate warning threshold, using the threshold as an evaluation criterion to solve the slope’s coefficient of safety. The calculation results show that the slope’s coefficient of safety in natural working conditions is 1.086, being basically stable. However, with continuous rainfall, the slope’s body gradually becomes saturated, the slope’s coefficient of safety is reduced to 0.987, and the slope’s safety is reduced to 0.987. After continuous rainfall and gradual saturation of the slope, the coefficient of safety decreases to 0.987, resulting in destabilization and destruction, which is consistent with the site conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 4591 KiB  
Article
“From Waste to Wonder”: Comparative Evaluation of Chinese Cabbage Waste and Banana Peel Derived Hydrogels on Soil Water Retention Performance
by Yufan Xie, Yuan Zhong, Jun Wu, Shiwei Fang, Liqun Cai, Minjun Li, Jun Cao, Hejie Zhao and Bo Dong
Gels 2024, 10(12), 833; https://doi.org/10.3390/gels10120833 - 18 Dec 2024
Viewed by 1261
Abstract
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques [...] Read more.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N′-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments. The optimal hydrogel was identified and its applicability in wheat seedling growth was assessed. The findings revealed that the CW-gel, with an equilibrium swelling ratio of 551.8 g/g in ultrapure water, demonstrated remarkable performance and sustained a high water retention of 57.6% even after drying, which was markedly superior to that of the BP-gel. The CW-gel with the best comprehensive properties significantly improved water retention in sandy soil by 78.2% and prolonged the retention time by five days, indicating its potential for long-term irrigation management. In contrast, the BP-gel showed better performance in clay soil, with an increased water-holding capacity of 43.3%. The application of a 1.5% CW-gel concentration under drought stress significantly improved wheat seedling growth, highlighting the role of hydrogels in agriculture and providing a new path for sustainable water resource management in dryland farming. Full article
(This article belongs to the Special Issue Gel-Based Adsorbent Materials for Environmental Remediation)
Show Figures

Figure 1

24 pages, 6270 KiB  
Article
Analytical Model and Optimization of Joint Systems in Modular Precast Foundations for Onshore Wind Turbines
by Dongliang Zhang, Wantong Liu, Kun Fu, Fei Wang, Xiangguo Wu, Chu Zhao, Chao Shen, Zhiqiang Yu and Yunchao Tang
Buildings 2024, 14(12), 3952; https://doi.org/10.3390/buildings14123952 - 12 Dec 2024
Cited by 1 | Viewed by 909
Abstract
This study presents a comprehensive design and calculation methodology for prefabricated expansion foundations of onshore wind turbines, addressing the critical need for modular construction while ensuring structural integrity. The proposed approach encompasses both overall structural performance verification and connection joint design, considering the [...] Read more.
This study presents a comprehensive design and calculation methodology for prefabricated expansion foundations of onshore wind turbines, addressing the critical need for modular construction while ensuring structural integrity. The proposed approach encompasses both overall structural performance verification and connection joint design, considering the stiffness reduction effects of modularization. A novel punching shear capacity checking method is developed specifically for assembled expansion foundations, incorporating joint weakening factors. The research establishes equilibrium equations and verification formulas for splice joints under different loading conditions, demonstrating that the shear amplification factor at joints varies with local compressive stress. The analytical results demonstrate several key findings: (1) the derived maximum joint shear formula shows excellent agreement with finite element results across various load conditions (R2 = 0.99906); (2) the optimized shear key configuration increases the joint’s load-bearing capacity by 35% compared to conventional designs; and (3) the developed Python-based calculation system reduces the design time by 60% while maintaining accuracy within 5% of detailed FEM analysis. These quantitative outcomes validate the effectiveness of the proposed methodology and provide practical guidelines for implementing modular construction in wind energy infrastructure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 7993 KiB  
Article
Incorporating Non-Equlibrium Ripple Dynamics into Bed Stress Estimates Under Combined Wave and Current Forcing
by Raúl P. Flores, Sabine Rijnsburger, Saulo Meirelles, Alexander R. Horner-Devine, Alejandro J. Souza and Julie D. Pietrzak
J. Mar. Sci. Eng. 2024, 12(12), 2116; https://doi.org/10.3390/jmse12122116 - 21 Nov 2024
Cited by 1 | Viewed by 805
Abstract
We present direct measurements of seafloor ripple dimensions, near-bed mean flow Reynolds stresses and near-bed turbulent sediment fluxes on a sandy inner shelf subjected to strong wave and tidal current forcing. The measurements of ripple dimensions (height, wavelength) and Reynolds stresses are used [...] Read more.
We present direct measurements of seafloor ripple dimensions, near-bed mean flow Reynolds stresses and near-bed turbulent sediment fluxes on a sandy inner shelf subjected to strong wave and tidal current forcing. The measurements of ripple dimensions (height, wavelength) and Reynolds stresses are used to evaluate the performance of a methodology for the incorporation of non-equilibrium ripple dynamics into the calculations of the drag exerted by the bed on the overlying flow (i.e., the bed stress) using a boundary layer model for wave–current interaction. The methodology is based on the simultaneous use of existing models for the time-dependent evolution of ripple geometry and for the wave–current boundary layer that enable a continuous feedback between bottom drag and small-scale seabed morphology, which determines seabed roughness. The model-data comparison shows good agreement between modeled and measured bed stresses and bedform dimensions. Moreover, the proposed methodology is shown to give better results than combining the wave–current interaction model and standard equilibrium ripple predictors, both in terms of bed stresses and ripple dimensions. The near-bed turbulent vertical sediment fluxes show good correlation with the combined wave–current stresses and are used as a proxy for the resuspension of fine sediments (d < 64 μm) from the sandy seabed matrix. Implications for the modeling of the resuspension processes and erosional fluxes are discussed in light of our findings. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop