Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,961)

Search Parameters:
Keywords = stress disease model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3229 KiB  
Article
AMPK-Targeting Effects of (−)-Epicatechin Gallate from Hibiscus sabdariffa Linne Leaves on Dual Modulation of Hepatic Lipid Accumulation and Glycogen Synthesis in an In Vitro Oleic Acid Model
by Hui-Hsuan Lin, Pei-Tzu Wu, Yu-Hsuan Liang, Ming-Shih Lee and Jing-Hsien Chen
Int. J. Mol. Sci. 2025, 26(15), 7612; https://doi.org/10.3390/ijms26157612 - 6 Aug 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than that of other catechins, its regulatory effects on MASLD have not been fully described previously. Therefore, this study attempted to evaluate the anti-MASLD potential of ECG isolated from Hibiscus leaves on abnormal lipid and glucose metabolism in hepatocytes. First, oleic acid (OA) was used as an experimental model to induce lipid dysmetabolism in human primary hepatocytes. Treatment with ECG can significantly (p < 0.05) reduce the OA-induced cellular lipid accumulation. Nile red staining revealed, compared to the OA group, the inhibition percentages of 29, 61, and 82% at the tested doses of ECG, respectively. The beneficial effects of ECG were associated with the downregulation of SREBPs/HMGCR and upregulation of PPARα/CPT1 through targeting AMPK. Also, ECG at 0.4 µM produced a significant (p < 0.01) decrease in oxidative stress by 83%, and a marked (p < 0.05) increase in glycogen synthesis by 145% on the OA-exposed hepatocytes with insulin signaling blockade. Mechanistic assays indicated lipid and glucose metabolic homeostasis of ECG might be mediated via regulation of lipogenesis, fatty acid β-oxidation, and insulin resistance, as confirmed by an AMPK inhibitor. These results suggest ECG is a dual modulator of lipid and carbohydrate dysmetabolism in hepatocytes. Full article
Show Figures

Figure 1

27 pages, 1619 KiB  
Review
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis
by Linbo Li, Xinjun Liu, Zizhen Si and Xidi Wang
Biomedicines 2025, 13(8), 1913; https://doi.org/10.3390/biomedicines13081913 - 5 Aug 2025
Abstract
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates [...] Read more.
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates the expression of downstream antioxidant genes to protect cells from oxidative stress and ferroptosis. Consequently, precise regulation of Nrf2 expression is crucial. Recent studies have revealed that complex epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA networks regulate Nrf2 expression. DNA methylation usually suppresses while histone acetylation promotes Nrf2 expression. The influences of histone methylation on NFE2L2 are site- and methylation degree-dependent. m6A modification stabilizes NFE2L2 mRNA to promote Nrf2 expression and thereby inhibit ferroptosis. This article summarizes current understanding of the epigenetic mechanisms controlling Nrf2 expression and Nrf2-mediated ferroptosis pathways and their implications in disease models. The challenges associated with the epigenetic regulation of Nrf2 and future research directions are also discussed. A comprehensive understanding of this regulatory interplay could open new avenues for intervention in ferroptosis-related diseases by fine-tuning cellular redox balance through the epigenetic modulation of Nrf2. Full article
(This article belongs to the Special Issue Oxidative Stress in Health and Disease)
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

36 pages, 1202 KiB  
Article
Exploring Service Needs and Development Strategies for the Healthcare Tourism Industry Through the APA-NRM Technique
by Chung-Ling Kuo and Chia-Li Lin
Sustainability 2025, 17(15), 7068; https://doi.org/10.3390/su17157068 - 4 Aug 2025
Abstract
With the arrival of an aging society and the continuous extension of the human lifespan, the quality of life has not improved in a corresponding manner. People’s demand for happiness and health is increasing. As a result, a model emerged that integrates tourism [...] Read more.
With the arrival of an aging society and the continuous extension of the human lifespan, the quality of life has not improved in a corresponding manner. People’s demand for happiness and health is increasing. As a result, a model emerged that integrates tourism and medical services, which is health tourism. This growing demand has prompted many service providers to see it as a business opportunity and enter the market. Tourism can help travelers release work stress and restore physical and mental balance; meanwhile, health check-ups and disease treatment can help them regain health. Consumers have long favored health and medical tourism because it helps relieve stress and promotes overall well-being. As people age, some consumers experience a gradual decline in physical functions, making it difficult for them to participate in regular travel services provided by traditional travel agencies. Therefore, this study aims to explore the service needs of health and medical tourism customers (tourists/patients) and the interrelationships among these service needs, so that health and medical tourism service providers can develop more customized and diversified services. This study identifies four key drivers of medical tourism services: medical services, medical facilities, tour planning, and hospitality facilities. This study uses the APA (attention and performance analysis) method to assess each dimension and criterion and utilizes the DEMATEL method with the NRM (network relationship map) to identify network relationships. By combining APA and NRM techniques, this study develops the APA-NRM technique to evaluate adoption strategies and identify suitable paths for health tourism services, providing tailored development strategies and recommendations for service providers to enhance the service experience. Full article
(This article belongs to the Special Issue Inclusive Tourism and Its Place in Sustainable Development Concepts)
Show Figures

Figure 1

20 pages, 1622 KiB  
Review
Behavioural Cardiology: A Review on an Expanding Field of Cardiology—Holistic Approach
by Christos Fragoulis, Maria-Kalliopi Spanorriga, Irini Bega, Andreas Prentakis, Evangelia Kontogianni, Panagiotis-Anastasios Tsioufis, Myrto Palkopoulou, John Ntalakouras, Panagiotis Iliakis, Ioannis Leontsinis, Kyriakos Dimitriadis, Dimitris Polyzos, Christina Chrysochoou, Antonios Politis and Konstantinos Tsioufis
J. Pers. Med. 2025, 15(8), 355; https://doi.org/10.3390/jpm15080355 - 4 Aug 2025
Abstract
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by [...] Read more.
Cardiovascular disease (CVD) remains Europe’s leading cause of mortality, responsible for >45% of deaths. Beyond established risk factors (hypertension, diabetes, dyslipidaemia, smoking, obesity), psychosocial elements—depression, anxiety, financial stress, personality traits, and trauma—significantly influence CVD development and progression. Behavioural Cardiology addresses this connection by systematically incorporating psychosocial factors into prevention and rehabilitation protocols. This review examines the HEARTBEAT model, developed by Greece’s first Behavioural Cardiology Unit, which aligns with current European guidelines. The model serves dual purposes: primary prevention (targeting at-risk individuals) and secondary prevention (treating established CVD patients). It is a personalised medicine approach that integrates psychosocial profiling with traditional risk assessment, utilising tailored evaluation tools, caregiver input, and multidisciplinary collaboration to address personality traits, emotional states, socioeconomic circumstances, and cultural contexts. The model emphasises three critical implementation aspects: (1) digital health integration, (2) cost-effectiveness analysis, and (3) healthcare system adaptability. Compared to international approaches, it highlights research gaps in psychosocial interventions and advocates for culturally sensitive adaptations, particularly in resource-limited settings. Special consideration is given to older populations requiring tailored care strategies. Ultimately, Behavioural Cardiology represents a transformative systems-based approach bridging psychology, lifestyle medicine, and cardiovascular treatment. This integration may prove pivotal for optimising chronic disease management through personalised interventions that address both biological and psychosocial determinants of cardiovascular health. Full article
(This article belongs to the Special Issue Personalized Diagnostics and Therapy for Cardiovascular Diseases)
Show Figures

Graphical abstract

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

18 pages, 3891 KiB  
Review
Navigating Brain Organoid Maturation: From Benchmarking Frameworks to Multimodal Bioengineering Strategies
by Jingxiu Huang, Yingli Zhu, Jiong Tang, Yang Liu, Ming Lu, Rongxin Zhang and Alfred Xuyang Sun
Biomolecules 2025, 15(8), 1118; https://doi.org/10.3390/biom15081118 - 4 Aug 2025
Viewed by 119
Abstract
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial [...] Read more.
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial glia and neuromelanin—that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis. Yet prolonged conventional 3D culture exacerbates metabolic stress, hypoxia-induced necrosis, and microenvironmental instability, leading to asynchronous tissue maturation—electrophysiologically active superficial layers juxtaposed with degenerating cores. This immaturity/heterogeneity severely limits their utility in modeling adult-onset disorders (e.g., Alzheimer’s disease) and high-fidelity drug screening, as organoids fail to recapitulate postnatal transcriptional signatures or neurovascular interactions without bioengineering interventions. We summarize emerging strategies to decouple maturation milestones from rigid temporal frameworks, emphasizing the synergistic integration of chronological optimization (e.g., vascularized co-cultures) and active bioengineering accelerators (e.g., electrical stimulation and microfluidics). By bridging biological timelines with scalable engineering, this review charts a roadmap to generate translationally relevant, functionally mature brain organoids. Full article
Show Figures

Figure 1

19 pages, 582 KiB  
Article
Xylitol Antioxidant Properties: A Potential Effect for Inflammation Reduction in Menopausal Women?—A Pilot Study
by Ilona Górna, Magdalena Kowalówka, Barbara Więckowska, Michalina Banaszak, Grzegorz Kosewski, Olivia Grządzielska, Juliusz Przysławski and Sławomira Drzymała-Czyż
Curr. Issues Mol. Biol. 2025, 47(8), 611; https://doi.org/10.3390/cimb47080611 - 2 Aug 2025
Viewed by 199
Abstract
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess [...] Read more.
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess the effect of replacing sucrose with xylitol on serum antioxidant capacity in postmenopausal women. Methods: This study included 34 women aged 50 to 65 years who successively consumed 5 g/d, 10 g/d, and 15 g/d of xylitol. The dietary intervention lasted a total of 6 weeks, with each phase covering a 2-week period. Diet was assessed twice based on a 7-day dietary interview (Diet 6.0, NIZP–PZH, Warsaw). The material for this study was venous blood. Antioxidant capacity was determined using the DPPH radical scavenging method and the ABTS cation radical scavenging method. Results: In both methods, a significant increase in serum antioxidant potential was observed after replacing sugar with xylitol (p < 0.0001). An increase in the ability to neutralize free radicals was observed in almost all women studied. Additional analysis of the effect of selected nutrients on the obtained effects of the nutritional intervention showed that the most significant effect could potentially be exerted by manganese, maltose, sucrose, and mercury, and the strongest positive correlation was exerted by vitamin A, retinol, and vitamin E. Although the values obtained in the constructed models were not statistically significant, the large effect indicates potentially significant relationships that could have a significant impact on serum antioxidant potential in the studied group of women. Conclusions: The results suggest a potential role of xylitol in enhancing antioxidant defense mechanisms in menopausal women. Although the sample size was relatively small, this study was powered at approximately 80% to detect large effects, supporting the reliability of the observed results. Nevertheless, given the pilot nature of this study, further research with larger cohorts is warranted to confirm these preliminary observations and to clarify the clinical significance of xylitol supplementation in populations exposed to oxidative stress. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammatory Diseases)
Show Figures

Graphical abstract

10 pages, 868 KiB  
Article
The Response of Cell Cultures to Nutrient- and Serum-Induced Changes in the Medium
by Marijana Leventić, Katarina Mišković Špoljarić, Karla Vojvodić, Nikolina Kovačević, Marko Obradović and Teuta Opačak-Bernardi
Sci 2025, 7(3), 105; https://doi.org/10.3390/sci7030105 - 2 Aug 2025
Viewed by 178
Abstract
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial [...] Read more.
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial function and autophagy are investigated in four human cell lines: MRC-5, HeLa, Caco-2 and SW-620. Cells were cultured in defined media for 72 h, and viability was assessed by LDH release, mitochondrial membrane potential using Rhodamine 123, ATP content by luminescence and autophagy activity by dual fluorescence staining. The results showed that HeLa and SW-620 cancer cells exhibited increased proliferation and mitochondrial activity under high glucose conditions, while low glucose media resulted in decreased ATP content and increased membrane permeability in HeLa cells. MRC-5 fibroblasts and Caco-2 cells showed greater resilience to nutrient stress, with minimal changes in LDH release and consistent proliferation. Autophagy was activated under all conditions, with a significant increase only in selected cell-medium combinations. These results highlight the importance of medium composition in influencing cellular bioenergetics and stress responses, which has implications for cancer research, metabolic disease modelling and the development of serum-free culture systems for regenerative medicine. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

24 pages, 2128 KiB  
Article
Central Insulin-Like Growth Factor-1-Induced Anxiolytic and Antidepressant Effects in a Rat Model of Sporadic Alzheimer’s Disease Are Associated with the Peripheral Suppression of Inflammation
by Joanna Dunacka, Beata Grembecka and Danuta Wrona
Cells 2025, 14(15), 1189; https://doi.org/10.3390/cells14151189 - 1 Aug 2025
Viewed by 246
Abstract
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with [...] Read more.
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with IGF-1 in a rat model of streptozotocin (STZ)-induced neuroinflammation can prevent the emergence of anhedonia and anxiety-like behavior by impacting the peripheral inflammatory responses. (2) Male Wistar rats were subjected to double ICVSTZ (total dose: 3 mg/kg) and ICVIGF-1 injections (total dose: 2 µg). We analyzed the level of anhedonia (sucrose preference), anxiety (elevated plus maze), peripheral inflammation (hematological and cytometric measurement of leukocyte populations, interleukin (IL)-6), and corticosterone concentration at 7 (very early stage, VES), 45 (early stage, ES), and 90 days after STZ injections (late stage, LS). (3) We found that ICVIGF-1 administration reduces behavioral symptoms: anhedonia (ES and LS) and anxiety (VES, ES), and peripheral inflammation: number of leukocytes, lymphocytes, T lymphocytes, monocytes, granulocytes, IL-6, and corticosterone concentration (LS) in the rat model of sAD. (4) The obtained results demonstrate beneficial effects of central IGF-1 administration on neuropsychiatric symptoms and peripheral immune system activation during disease progression in the rat model of sAD. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 287 KiB  
Article
Exploring the Link Between Social and Economic Instability and COPD: A Cross-Sectional Analysis of the 2022 BRFSS
by Michael Stellefson, Min-Qi Wang, Yuhui Yao, Olivia Campbell and Rakshan Sivalingam
Int. J. Environ. Res. Public Health 2025, 22(8), 1207; https://doi.org/10.3390/ijerph22081207 - 31 Jul 2025
Viewed by 170
Abstract
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk [...] Read more.
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk Factor Surveillance System (BRFSS) data from 37 U.S. states and territories to determine how financial hardship, food insecurity, employment loss, healthcare access barriers, and psychosocial stressors influence the prevalence of COPD. Weighted logistic regression models were used to assess the associations between COPD and specific SDOHs and HRSNs. Several individual SDOH and HRSN factors were significantly associated with COPD prevalence, with financial strain emerging as a particularly strong predictor. In models examining specific SDOH factors, economic hardships like inability to afford medical care were strongly linked to higher COPD odds. Psychosocial HRSN risks, such as experiencing mental stress, also showed moderate associations with increased COPD prevalence. These findings suggest that addressing both structural and individual-level social risks may be critical for reducing the prevalence of COPD in populations experiencing financial challenges. Full article
24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 178
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Viewed by 273
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Graphical abstract

35 pages, 1467 KiB  
Review
Marine Derived Strategies Against Neurodegeneration
by Vasileios Toulis, Gemma Marfany and Serena Mirra
Mar. Drugs 2025, 23(8), 315; https://doi.org/10.3390/md23080315 - 31 Jul 2025
Viewed by 473
Abstract
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative [...] Read more.
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative disorders. We focus specifically on the retina and brain—two key components of the central nervous system—as primary targets for therapeutic interventions against neurodegeneration. Alzheimer’s disease and retinal degeneration diseases are used here as a representative model of neurodegenerative disorders, where complex molecular processes such as protein misfolding, oxidative stress, and neuroinflammation drive disease progression. We also examine gene therapy approaches inspired by marine biology, with particular attention to their application in retinal diseases, aimed at preserving or restoring photoreceptor function and vision. Full article
(This article belongs to the Special Issue Marine-Derived Novel Drugs in the Treatment of Alzheimer’s Disease)
Show Figures

Figure 1

14 pages, 3504 KiB  
Article
Optimizing Aortic Arch Stent-Graft Performance Through Material Science: An Exploratory Study
by Xiaobing Liu, Linxuan Zhang, Zongchao Liu and Shuai Teng
Materials 2025, 18(15), 3592; https://doi.org/10.3390/ma18153592 - 31 Jul 2025
Viewed by 226
Abstract
Thoracic endovascular aortic repair (TEVAR) for cardiovascular diseases often encounters complications that are closely linked to the mechanical properties of stent-grafts. Both the design and material properties influence device performance, but the specific impacts of material properties remain underexplored and poorly understood. This [...] Read more.
Thoracic endovascular aortic repair (TEVAR) for cardiovascular diseases often encounters complications that are closely linked to the mechanical properties of stent-grafts. Both the design and material properties influence device performance, but the specific impacts of material properties remain underexplored and poorly understood. This study aims to fill this gap by systematically investigating how material science can modulate stent-graft mechanics. Four types of bare nitinol stents combined with expanded polytetrafluoroethylene (e-PTFE) or polyethylene terephthalate (PET) grafts were modeled via finite element analysis, creating eight stent-graft configurations. Key mechanical properties—flexibility, crimpability, and fatigue performance—were evaluated to dissect material effects. The results revealed that nitinol’s properties significantly influenced all performance metrics, while PET grafts notably enhanced flexibility and fatigue life. No significant differences in equivalent stress were found between PET and e-PTFE grafts, and both had minimal impacts on radial force. This work underscores the potential of material science-driven optimization to enhance stent-graft performance for improved clinical outcomes. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Figure 1

Back to TopTop